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3 Parametric integrals

3.1 Continuity and differentiability

Problem 3.1.1 Let f(x, y) = log(x2 + y2) for y ∈ (0, 1) and x > 0.

a) Prove that ϕ(x) =
∫ 1
0 f(x, y) dy is well defined and is derivable. Prove that ϕ′(x) =∫ 1

0
∂f
∂x dy and calculate ϕ′(x).

b) Prove that ϕ(x) is continuous at x0 = 0 and that ϕ(0) = −2.

c) Compute ϕ(x) integrating by parts.

Hint: f(x, ·) is continuous on [0, 1] for fixed x > 0. Besides
∣∣ ∂
∂x

[
f(x, y)

]∣∣ ≤ 2
x0
∈ L1(0, 1) for

x ≥ x0 > 0. Hence, F is derivable on (x0,∞) for all x0 > 0 and so it is derivable on (0,∞).

Solution: a) For each fixed x > 0, the function fx(y) = log(x2 + y2) is continuous on [0, 1].
Hence, ϕ(x) is well defined. Now, fixed x0 > 0, we have

∂

∂x

[
log(x2 + y2)

]
=

2x

x2 + y2
≤ 2x

x2
=

2

x
≤ 2

x0
∈ L1(0, 1) , if x > x0 .

Hence, by the theorem on differentiation of parametric integrals, we have that ϕ(x) is derivable
on (x0, 1), for all x0 > 0. Therefore ϕ(x) is derivable on (0, 1) and

ϕ′(x) =

∫ 1

0

∂

∂x

[
log(x2+y2)

]
dy =

∫ 1

0

2x

x2 + y2
dy =

[
2 arctan

y

x

]y=1

y=0
=2 arctan

1

x
=π−2 arctanx.

b) As log y2 ≤ log(x2 + y2) ≤ log(1 + y2) if x ∈ [0, 1] and fx is increasing on [0, 1], we have that
| log(x2 + y2)| ≤ max{log(1 + y2), | log y2|} = max{log(1 + y2), 2 log(1/y)} for all x ∈ (0, 1]. Now

the equation 1 + y2 = 1/y2 has the unique solution y0 =
√

(
√

5− 1)/2 in (0, 1), and therefore

| log(x2 + y2)| ≤ g(y) :=

{
2 log(1/y) , if y ≤ y0 ,
log(1 + y2) , if y ≥ y0 .

But log(1 + y2) is continuous on [y0, 1] and so, g ∈ L1[y0, 1]. Also, using the monotone conver-
gence theorem and integrating by parts:∫ y0

0
log

1

y
dy = lim

N→∞

∫ y0

1/N
log

1

y
dy = lim

N→∞

[
y log

1

y

]y=y0
y=1/N

+ 1 <∞

since, by L’Hopital rule, limN→∞N logN = 0. Therefore, g ∈ L1(0, 1] and by the theorem on
continuity of parametric integrals, ϕ is continuous at x0 = 0 and

ϕ(0) = lim
x→0+

ϕ(x) =

∫ 1

0
lim
x→0+

log(x2 + y2) dy =

∫ 1

0
log y2dy .

Using now the monotone convergence theorem and integrating again by parts we get that:

ϕ(0) = 2 lim
N→∞

∫ 1

1/N
log y dy = 2 lim

N→∞

[
y log y

]y=1

y=1/N
− 2 = 2 lim

N→∞

1

N
logN − 2 = 0− 2 = −2 .
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c) Integrating by parts taking u = arctanx, v′ = 1 =⇒ u′ = 1/(1 + x2), v = x:

ϕ(x) = πx− 2

∫
arctanx dx = πx− 2x arctanx+

∫
2x

1 + x2
dx

= πx− 2x arctanx+ log(x2 + 1) + c .

But using that ϕ(0) = −2 we obtain that c = −2. Hence, ϕ(x) = πx−2x arctanx+log(x2+1)−2.

Problem 3.1.2 Let F,G : R −→ R defined as

F (x) =

(∫ x

0
e−t

2
dt

)2

and G(x) =

∫ 1

0

e−x
2(1+t2)

1 + t2
dt .

Prove that:

a) F ′(x)+G′(x) = 0, for all x ∈ R. Justify why you can apply the theorem on differentiation
of parametric integrals.

b) F (x) +G(x) = π/4, for all x ∈ R.

c) Deduce that

∫ ∞
0

e−t
2
dt =

√
π/2.

Hints: a)
∣∣ ∂
∂x

[
e−x

2(1+t2)

1+t2

]∣∣ = |2xe−x2(1+t2)| ≤ 2 ∈ L1[0, 1] for x ∈ R. c) Let x → ∞ in b) by
applying monotone convergence.

Solution: a) Using the Fundamental Theorem of Calculus we have that F is derivable on R and
F ′(x) = 2e−x

2 ∫ x
0 e
−t2dt. On the other hand, for all x ∈ R:

∣∣∣ ∂
∂x

[e−x2(1+t2)
1 + t2

]∣∣∣ =
∣∣2xe−x2(1+t2)∣∣ ≤ 2 ∈ L1[0, 1] .

Hence, using the theorem on differentiation of parametric integrals, G is derivable on R and:

G′(x) =

∫ 1

0

∂

∂x

[e−x2(1+t2)
1 + t2

]
dt = −2x

∫ 1

0
e−x

2(1+t2) dt = −2xe−x
2

∫ 1

0
e−x

2t2 dt=−2e−x
2

∫ x

0
e−t

2
dt ,

where we have done the change of variable u = xt.
b) As F ′(x) + G′(x) = 0 for all x ∈ (0,∞), we deduce that F (x) + G(x) = k ∈ R. But then
k = F (0) +G(0) = 0 + [arctan t]t=1

t=0 = arctan 1 = π/4.
c) We have that limx→∞

(
F (x) +G(x)

)
= π/4 and so, by the monotone convergence theorem,

(∫ ∞
0

e−t
2
dt
)2

+ lim
x→∞

∫ 1

0

e−x
2(1+t2)

1 + t2
dt =

π

4
=⇒

(∫ ∞
0

e−t
2
dt
)2

+ 0 =
π

4
.

Problem 3.1.3 Calculate F (s) =

∫ ∞
0

e−x sin(sx) dx, and, justifying all the steps, from the

obtained result calculate

G(s) =

∫ ∞
0

x e−x cos(sx) dx .
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Hints: Use integration by parts to evaluate F (s); G(s) is derivable since
∣∣ ∂
∂s

[
e−x sin(sx)

]∣∣ ≤
x e−x ∈ L1(0,∞).

Solution: First of all, integrating twice by parts and using the monotone convergence theorem,
it is easy to obtain that F (s) = s/(1 + s2).
On the other hand, as

∣∣ ∂
∂s

[
e−x sin(sx)

]∣∣ = |xe−x cos(sx)| ≤ x e−x ∈ L1(0,∞), by the theorem
on differentiation of parametric integrals we have that

F ′(s)=

∫ ∞
0

∂

∂s

[
e−x sin(sx)

]
dx =

∫ ∞
0
xe−x cos(sx) dx = G(s) =⇒ G(s)=

d

ds

[ s

1+s2

]
=

1− s2

(1 + s2)2
.

Problem 3.1.4

a) Assuming that we can apply the Fundamental Theorem of Calculus and the theorem on
parametric derivation, prove that:

F (x) =

∫ f(x)

a
g(x, t) dt =⇒ F ′(x) = g(x, f(x)) f ′(x) +

∫ f(x)

a

∂g

∂x
(x, t) dt .

b) Prove that ∫ π/(4a)

0

x

cos2ax
dx =

1

2a2

(π
2
− log 2

)
, for a > 0.

Hints: a) Consider the function G(u, v) =
∫ v
a g(u, t) dt and apply the chain rule. b) Use the

previous part to calculate the derivative of
∫ π/(4a)
0 tan ax dx with respect to a.

Solution: a) Let G(u, v) =
∫ u
a g(v, t) dt. Then, by the Fundamental Theorem of Calculus,

∂G
∂u = g(v, u) and, by the theorem on differentiation of parametric integrals, ∂G∂v =

∫ u
a
∂g
∂v (v, t) dt.

Finally, as F (x) = G(f(x), x), u = f(x), v = x, by the chain rule:

F ′(x) =
∂G

∂u
f ′(x) +

∂G

∂v
= g(x, f(x)) f ′(x) +

∫ f(x)

a

∂g

∂x
(x, t) dt .

b) Let F (a) :=

∫ π/(4a)

0
tan ax dx. First of all, let us observe that if x ∈ [0, π/(4a)], then

ax ∈ [0, π/4] and tan ax is continuous on this interval. Hence, F (a) is well-defined. Secondly,
we can compute the value of F (a):

F (a) =

∫ π/(4a)

0

sin ax

cos ax
dx = −1

a

[
log(cos ax)

]x=π/(4a)
x=0

=
1

2a
log 2 .

Thirdly, let us fix a0 > 0 and let a > a0 > 0. As∣∣∣ ∂
∂a

(tan ax)
∣∣∣ =

x

cos2ax
≤ x

cos2(π/4)
= 2x ∈ L1[0, π/(4a0)] ,

using part a) we obtain that F (a) is derivable on (a0,∞) for every a0 > 0 and so, derivable on
(0,∞) and

F ′(a) = tan
(
a
π

4a

)(−π
4a2

)
+

∫ π
4a

0

x

cos2ax
dx =⇒

∫ π
4a

0

x

cos2ax
dx =

π

4a2
− 1

2a2
log 2 =

1

2a2

(π
2
−log 2

)
.
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Problem 3.1.5 Prove that

J(a) =

∫ a

0

dx

(a2 + x2)2
=
π + 2

8a3
, for a > 0.

Hint:
∣∣ ∂
∂a

[
1

x2+a2

]∣∣ = 2a
(x2+a2)2

≤ 2M
(x2+ε2)2

∈ L1(0,∞) for a ∈ [ε,M ].

Solution: Let F (a) :=

∫ a

0

dx

x2 + a2
for a > 0.

First of all,
∣∣ ∂
∂a

[
1

x2+a2

]∣∣ = 2a
(x2+a2)2

≤ 2M
(x2+ε2)2

∈ L1(0,∞) for a ∈ [ε,M ], and so, by the theorem

on differentiation of parametric integrals, F is derivable on (ε,M) for all ε,M > 0. Hence, F is
derivable on (0,∞) and by part a) of problem 3.1.4 we have that

F ′(a) =
1

2a2
− 2a

∫ a

0

dx

(x2 + a2)2
.

But F (a) = 1
a

[
arctan x

a

]x=a
x=0

= π
4a . Therefore

− π

4a2
=

1

2a2
− 2a

∫ a

0

dx

(x2 + a2)2
=⇒

∫ a

0

dx

(x2 + a2)2
=
π + 2

8a3
.

Problem 3.1.6 Let F (α) =

∫ ∞
0

e−αx − e−x

x
dx.

a) Study when the integral converges.

b) Calculate F ′(α) explicitly and then calculate F (α).

c) Obtain the successive derivatives F (k)(α) and calculate

∫ ∞
0

xne−xdx.

Hints: a) limx→0+
e−αx−e−x

x = 1 − α and so,
∫ 1
0
e−ax−e−x

x dx < ∞. Also,
∫∞
1

∣∣ e−αx−e−x
x

∣∣ dx ≤∫∞
0 (e−αx + e−x) dx < ∞ if α > 0. b)

∣∣ ∂
∂α

[
e−αx−e−x

x

]∣∣ ≤ e−α0x ∈ L1(0,∞) for α > α0 > 0
and so F is derivable on (α0,∞) for all α0 > 0. c) Derive both members of the identity
F ′(α) = −

∫∞
0 e−αxdx = −1/α.

Solution: a) Using L’Hopital rule we get that limx→0+(e−αx−e−x)/x = limx→0+ −αe−αx+e−x =
1 − α. Hence, f(x) = (e−αx − e−x)/x is continuous at x = 0 (defining f(0) = 1 − α) and so,∫ 1
0 ((e−αx − e−x)/x) dx <∞. Also,

∫∞
1

∣∣(e−αx − e−x)/x
∣∣ dx ≤ ∫∞1 (e−αx + e−x) dx <∞ if α > 0.

Finally, if α < 0, then limx→+∞ f(x) = ∞ and, if α = 0 then, as limx→+∞ e
−x = 0, we have

that (1 − e−x)/x > (1 − ε)/x for x > M = M(ε) and so
∫∞
M [(1 − e−x)/x] dx = ∞. Therefore,

F (α) converges (and so is well-defined) only for α > 0.

b) We have that
∣∣ ∂
∂α

[
e−αx−e−x

x

]∣∣ = e−αx ≤ e−α0x ∈ L1(0,∞) for α > α0 > 0 and so F is
derivable on (α0,∞) for all α0 > 0. Hence, F is derivable on (0,∞) and, as in problem 2.1.8,
we have that

F ′(α) =

∫ ∞
0

∂

∂α

[e−αx − e−x
x

]
dx = −

∫ ∞
0

e−αxdx = − 1

α
.

Hence, F (α) = −
∫

1
α dα = c − logα. But, if α = 1, then f(x) = 0 and so, F (1) = 0. Hence,

F (α) = − logα = log 1
α .
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c) It is easy to prove by induction that F (k)(α) = (−1)k (k−1)!
αk

for all k ∈ N. On the other hand,
we have that for α > α0 and k ∈ N:∣∣∣ ∂k

∂ak
(xk−1e−αx)

∣∣∣ = xke−αx ≤ xke−α0x ∈ L1(0,∞) .

Hence, by the theorem on differentiation of parametric integrals, F (k)(α) is derivable on (α0,∞)
for all α0 > 0 and so it is derivable on (0,∞) and, for all k ≥ 1,

F (k+1)(α) = (−1)k
∫ ∞
0

∂

∂a
(xk−1e−αx) dx = (−1)k+1

∫ ∞
0
xke−αx dx =⇒

∫ ∞
0
xke−αx dx =

k!

αk+1
.

Problem 3.1.7 Prove that for a > 0 and b > 0:

F (a, b) =

∫ ∞
0

(e−a
2/x2 − e−b2/x2) dx =

√
π(b− a) .

Hint:
∣∣ ∂
∂a

[
e−a

2/x2 − e−b2/x2
]∣∣ ≤ 2a

x2
e−a

2
0/x

2 ∈ L1(0,∞) for a ≥ a0 > 0. Hence, F is derivable on

[a0,∞) for all a0 > 0 and so it is derivable on (0,∞). To compute ∂
∂aF (a, b) change variables to

t = 1/x. Recall that
∫∞
0 e−t

2
dt =

√
π/2 and observe that F (a, a) = 0.

Solution: First of all, F (a, b) is well-defined since making the change of variable t = 1/x:∫ 1

0
e−a

2/x2 dx =

∫ ∞
1

1

t2
e−a

2t2 dt ≤
∫ ∞
1

e−a
2t2 dt ≤

∫ ∞
1

e−a
2t dt <∞

by problem 2.1.8, and similarly
∫ 1
0 e
−b2/x2 dx <∞. Besides, using again problem 2.1.8,∫ ∞

1

(
e−a

2/x2 − e−b2/x2
)
dx ≤

∫ ∞
1

C

x2
dx <∞ ,

because, from the Taylor expansion of et, we have that e−a
2/x2 − e−b2/x2 = b2−a2

x2
+ o( 1

x2
) ≤ C

x2
,

∀x ∈ R.
On the other hand, we have that

∣∣ ∂
∂a

[
e−a

2/x2 − e−b2/x2
]∣∣ = 2a

x2
e−a

2/x2 ≤ 2a
x2
e−a

2
0/x

2 ∈ L1(0,∞)
for a ≥ a0 > 0, since making t = 1/x we get that∫ ∞

1

1

x2
e−a

2
0/x

2
dx =

∫ 1

0
e−a

2
0t

2
dt <∞ ,

because e−a
2
0t

2
is continuous on [0, 1], and∫ 1

0

1

x2
e−a

2
0/x

2
dx =

∫ ∞
1

e−a
2
0t

2
dt ≤

∫ ∞
1

e−a
2
0t dt <∞ ,

by problem 2.1.8. Hence, by the theorem on differentiation of parametric integrals, F is derivable
with respect to a on (a0,∞) for all a0 > 0 and so it is derivable on (0,∞). Besides,

∂F

∂a
= −

∫ ∞
0

2a

x2
e−a

2/x2 dx = −2

∫ ∞
0

e−t
2
dt = −

√
π ,

where we have done the change of variable t = a/x and we have used the problem 2.3.1. Hence,
F (a, b) = −

√
π a+ C(b). But for a = b it is clear that F (a, a) = 0 =⇒ −

√
π b+ C(b) = 0 and

so, C(b) =
√
π b and finally, we obtain that F (a, b) =

√
π (b− a).



Problems of Integration & Measure: Parametric integrals 6

Problem 3.1.8 Explain in the following cases why we can differentiate the parametric integral
and why they are well-defined. Obtain explicitly the function deriving with respect to the
parameter and integrating later with respect to it:

i) F (s) =

∫ π/2

0
log

(
1 + s cosx

1− s cosx

)
dx

cosx
, with |s| < 1.

ii) G(a) =

∫ ∞
0

log

(
1 +

a2

x2

)
dx, with a ∈ R.

iii) H(p) =

∫ 1

0

xp − 1

log x
dx, with p > −1.

iv) I(λ) =

∫ π/2

0

log(1− λ2 sin2x)

sinx
dx, with |λ| < 1.

v) K(x) =

∫ ∞
0

e−t
2−x2/t2dt, with x ∈ R.

Hints: i)
∣∣ ∂
∂s

[
log
(
1+s cosx
1−s cosx

)
1

cosx

]∣∣ ≤ 2
1−s2

0
cos2x

∈ L1(0, π/2) if |s| ≤ s0 < 1. ii) Since G is an even

function, it is enough to consider the case a ≥ 0;
∣∣ ∂
∂a

[
log(1 + a2

x2
)
]∣∣∣ = 2|a|

x2+a2
≤ 2M

x2+ε2
∈ L1(0,∞)

if |a| ∈ [ε,M ]. iii)
∣∣ ∂
∂p

[
xp−1
log x

]∣∣ = xp ∈ L1(0, 1) since p > −1. iv)
∣∣ ∂
∂λ

[ log(1−λ2 sin2x)
sinx

]∣∣ =
2|λ|| sinx|
1−λ2 sin2x ≤

2
1−λ0 sin2x

∈ L1(0, π/2) if |λ| < λ0 < 1. v)
∣∣ ∂
∂x

[
e−t

2−x2/t2]∣∣ ≤ 2M
t2

(e−t
2
χ

[1,∞)
(t) +

e−ε
2/t2χ

(0,1)
(t)) ∈ L1(0,∞) if |x| ∈ [ε,M ]. To compute K ′(x) change variables to s = x/t and

prove that K ′(x) = −2K(x). Note that K(x) is even and so it is enough to compute it for x ≥ 0.

Solutions: i) First of all, using L’Hopital rule,

lim
x→π/2

log
(1 + s cosx

1− s cosx

) 1

cosx
= lim

x→π/2

log(1 + s cosx)− log(1− s cosx)

cosx

= lim
x→π/2

−s sinx
1+s cosx −

s sinx
1−s cosx

− sinx
= lim

x→π/2

( −s
1 + s cosx

− s

1− s cosx

)
= −2s

and so, the integrand is continuous on [0, π/2] and F (s) is well defined. On the other hand, as∣∣∣ ∂
∂s

[
log
(1 + s cosx

1− s cosx

) 1

cosx

]∣∣∣ =
∣∣∣[ cosx

1 + s cosx
− − cosx

1− s cosx

] 1

cosx

∣∣∣
=

2

1− s2 cos2x
≤ 2

1− s2
0

cos2x
∈ L1(0, π/2) ,

for |s| ≤ s0 < 1. Hence, by the theorem on differentiation of parametric integrals, F (s) is
derivable on (−s0, s0) for all s0 < 1, and so F (s) is derivable on (−1, 1). Besides,

F ′(s) =

∫ π/2

0

∂

∂s

[
log
(1 + s cosx

1− s cosx

) 1

cosx

]
dx =

∫ π/2

0

2

1− s2 cos2x
dx

and making the change of variable t = tanx, and using the monotone convergence theorem, we
have that

F ′(s) =

∫ ∞
0

2

1− s2

1+t2

dt

1 + t2
=

∫ ∞
0

2

1− s2 + t2
dt =

2

1− s2

∫ ∞
0

dt

1 +
(

t√
1−s2

)2
= lim

N→∞

2

1− s2

∫ N

0

dt

1 +
(

t√
1−s2

)2 = lim
N→∞

2√
1− s2

[
arctan

( t√
1− s2

)]t=N
t=0

=
π√

1− s2
.
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Hence, F (s) = π arcsin s + c. But, from the definition of F (s) it is clear that F (0) = 0, and so
c = 0. Therefore, F (s) = π arcsin s.

ii) Using the Taylor expansion of log(1 + t) around t = 0 we get that log
(
1 + a2

x2

)
= a2

x2
+ o
(

1
x2

)
as x→∞ for each fixed a ∈ R. Hence,∫ ∞

1
log
(

1 +
a2

x2

)
dx ≤ C

∫ ∞
1

1

x2
dx <∞ .

Also, ∫ 1

0
log
(

1 +
a2

x2

)
dx =

∫ 1

0
log(x2 + a2) dx− 2

∫ 1

0
log x dx <∞

since log(x2+a2) is continuous on [0, 1] if a 6= 0, and integrating by parts and using the monotone
convergence theorem and L’Hopital rule:∫ 1

0
log x dx = lim

ε→0+

[
x log x− x

]x=1

x=ε
= −1− lim

ε→0+
ε log ε = −1 > −∞ .

Hence, log(1 + a2/x2) ∈ L1(0,∞) and so, G(a) is well-defined. On the other hand, as

∂

∂a

[
log
(

1 +
a2

x2

)]
=

2a

x2 + a2
≤ 2M

x2 + ε2
∈ L1(0,∞)

for all a ∈ [ε,M ] with 0 < ε < M < ∞, using the theorem on differentiation of parametric
integrals we deduce that G(a) is derivable on (ε,M) for all ε and M and therefore, since G is
also even, is derivable on R \ {0} and

G′(a) =

∫ ∞
0

∂

∂a

[
log
(

1 +
a2

x2

)]
dx =

∫ ∞
0

2a

x2 + a2
dx .

Therefore,

G′(a) =

∫ ∞
0

2a

x2 + a2
dx = 2

[
arctan

x

a

]x=∞
x=0

= 2
π

2
= π .

This implies that G(a) = πa+ c for a > 0, where c is a constant.
Since G is derivable on R \ {0}, it is a continuous function on R \ {0}. Let us prove that G is
also continuous at 0: Consider a with |a| < 1. If x ≥ 1, then

log
(

1 +
a2

x2

)
dx ≤ C

x2
∈ L1(1,∞).

If 0 < x < 1, then

log
(

1 +
a2

x2

)
dx ≤ log

(
1 +

1

x2

)
dx ∈ L1(0, 1).

As G is continuous on R, we deduce that G(0) = c. But, it is clear from the definition of G
that G(0) = 0. Hence, G(a) = πa for a ≥ 0. Since G(a) is an even function, we conclude that
G(a) = π|a| for a ∈ R.

iii) First of all, if p ≥ 0 we have that limx→0+
xp−1
log x = 0 and so the integrand is continuous on

[0, 1]. If −1 < p < 0, let q = −p ∈ (0, 1). Then

xp − 1

log x
=
x−q − 1

log x
=

1− xq

log x

1

xq
≤ C 1

xq
∈ L1[0, 1] .
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Hence, in any case, H(p) is well defined for p > −1. On the other hand, as p > −1 we have that∣∣∣ ∂
∂p

[xp − 1

log x

]∣∣∣ = xp ≤ xp0 ∈ L1(0, 1) ∀ p ≥ p0 > −1

and so, by the theorem on derivation of parametric integrals, we conclude that H(p) is derivable
on (p0,∞) ∀ p0 > −1. Consequently, H(p) is derivable on (−1,∞). Also, this same theorem
gives that

H ′(p) =

∫ 1

0

∂

∂p

[xp − 1

log x

]
dx =

∫ 1

0
xp dx =

[ xp+1

p+ 1

]x=1

x=0
=

1

p+ 1
,

and therefore

H(p) =

∫
1

p+ 1
dp = log(p+ 1) + c .

As H(0) =
∫ 1
0 0 dx = 0, we obtain that 0 = H(0) = log 1 + c = 0 + c = c and therefore

H(p) = log(p+ 1).

iv) First of all, applying L’Hopital rule, we have that

lim
x→0+

log(1− λ2 sin2x)

sinx
= lim

x→0+

−2λ2 sinx cosx
1−λ2 sin2x

cosx
= 0

and so log(1−λ2 sin2x)
sinx is continuous on [0, π/2] and I(λ) is well-defined. On the other hand,∣∣∣ ∂

∂λ

[ log(1− λ2 sin2x)

sinx

]∣∣∣ =
2|λ|| sinx|

1− λ2 sin2x
≤ 2

1− λ2
0

sin2x
∈ L1(0, π/2) , if |λ| ≤ λ0 < 1

because 2
1−λ2

0
sin2x

is continuous on [0, π/2]. Hence, by the theorem on differentiability of para-

metric integrals, we have that I(λ) is derivable on (−λ0 , λ0) for all λ0 ∈ (−1, 1) and so it is
derivable on (−1, 1). Besides,

I ′(λ) =

∫ π/2

0

∂

∂λ

[ log(1− λ2 sin2x)

sinx

]
dx = −

∫ π/2

0

2λ sinx

1− λ2 sin2x
dx .

Changing variables to t = cosx we obtain that

I ′(λ) = −
∫ 1

0

2λ

1− λ2(1− t2)
dt = −

∫ 1

0

2λ

1− λ2 + λ2t2
dt = − 2λ

1− λ2

∫ 1

0

dt

1 +
(

λt√
1−λ2

)2
= − 2√

1− λ2
[

arctan
λt√

1− λ2
]t=1

t=0
= − 2√

1− λ2
arctan

λ√
1− λ2

.

But, if α := arctan λ√
1−λ2 =⇒ tanα = λ√

1−λ2 =⇒ sec2 α = 1
1−λ2 =⇒ cos2α = 1 − λ2 =⇒

α = arcsinλ and so I ′(λ) = − 2√
1−λ2 arcsinλ =⇒ I(λ) = −(arcsinλ)2 + c. But, from the

definition of I(λ), we have that I(0) = 0. Hence, c = 0 and so I(λ) = −(arcsinλ)2.

v) First of all e−t
2−x2/t2 ≤ e−t

2 ∈ L1(0,∞) and so K(x) is well-defined and continuous on R.
Also, K(x) is even and therefore, it is enough to compute it for x ≥ 0. Now, given 0 < ε ≤ x ≤
M , we have that∣∣∣ ∂

∂x

[
e−t

2−x2/t2]∣∣∣ =
∣∣∣− 2x

t2
e−t

2−x2/t2
∣∣∣ ≤ 2M

t2
(
e−t

2
χ

[1,∞)
(t) + e−ε

2/t2χ
(0,1)

(t)
)
∈ L1(0,∞) ,
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Hence, by the theorem on differentiation of parametric integrals, K(x) is derivable on (ε,M) for
all ε,M > 0 and so it is derivable on (0,∞). Besides,

K ′(x) =

∫ ∞
0

∂

∂x

[
e−t

2−x2/t2] dt = −
∫ ∞
0

2x

t2
e−t

2−x2/t2 dt = −2

∫ ∞
0

e−x
2/s2−s2 ds = −2K(x) .

Hence, K ′(x)/K(x) = −2 for x > 0 and so logK(x) = −2x+ c =⇒ K(x) = C e−2x. But, from
the definition, we have that K(0) =

∫∞
0 e−t

2
dt =

√
π/2 by problem 2.3.1. As K is continuous,

we conclude that C =
√
π/2 and that K(x) =

√
π
2 e−2x for x ≥ 0 and, by symmetry, that

K(x) =
√
π
2 e−2|x| for x ∈ R.

Problem 3.1.9 Obtain explicitly the function F (t) justifying all the steps:

F (t) =

∫ ∞
0

e−tx
sinx

x
dx , ∀ t > 0 .

Hint: As
∣∣ ∂
∂t

[
e−tx sinx

x

]∣∣ ≤ e−tx ≤ e−εx ∈ L1(0,∞) for t ∈ (ε,∞), we have that F (t) is derivable
on (ε,∞) for all ε > 0 and so it is derivable on (0,∞).

Solution: First of all,
∣∣e−tx sinx

x

∣∣ ≤ e−tx ∈ L1(0,∞) because | sinx/x| ≤ 1 and by problem 2.1.8.
Hence, F (t) is well defined. On the other hand,∣∣∣ ∂

∂t

[
e−tx

sinx

x

]∣∣∣ =
∣∣∣− xe−tx sinx

x

∣∣∣ ≤ e−tx ≤ e−εx ∈ L1(0,∞)

for all t ∈ (ε,∞). Hence, by the theorem on differentiation of parametric integrals, F (t) is
derivable on (ε,∞) for all ε > 0 and so it is derivable on (0,∞). Besides,

F ′(t) =

∫ ∞
0

∂

∂t

[
e−tx

sinx

x

]
dx = −

∫ ∞
0

e−tx sinx dx .

Integrating twice by parts and using the dominated convergence theorem we get that

F ′(t) = lim
N→∞

[
e−tx cosx

]x=N
x=0

+ lim
N→∞

t

∫ N

0
e−tx cosx dx

= −1 + lim
N→∞

t
[
e−tx sinx

]x=N
x=0

+ lim
N→∞

t2
∫ N

0
e−tx sinx dx = −1− t2F ′(t) .

Hence, F ′(t) = − 1
1+t2

=⇒ F (t) = c−arctan t. But, from the definition and using the dominated
convergence theorem, it is easy to check that limt→∞ F (t) = 0. Therefore, as limt→∞ arctan t =
π/2, we conclude that c = π/2 and so that F (t) = π

2 − arctan t.

Problem 3.1.10 Prove that ∫ ∞
0

1− e−x
2

x2
dx =

√
π.

Hint: Consider the function F (t) =
∫∞
0

1−e−tx2

x2
dx for t > 0 and proceed in a similar way to the

previous problems.

Solution: Let F (t) :=

∫ ∞
0

1− e−tx
2

x2
dx for t > 0 and f(x, t) =

1− e−tx
2

x2
.
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First of all, as limx→0+
1−e−tx2

x2
= t, we have that f(x, t) is continuous on x ∈ [0, 1] and so∫ 1

0
1−e−tx2

x2
dx < ∞. Also

∫∞
1

1−e−tx2

x2
dx ≤

∫∞
1

dx
x2

< ∞. Hence, F (t) is well-defined. On the
other hand,

∂

∂t

[1− e−tx
2

x2

]
= e−tx

2 ≤ e−εx2 ∈ L1(0,∞) , for all t > ε ,

since e−εx
2

is continuous and so integrable on [0, 1] and, if x ∈ (1,∞), then e−εx
2 ≤ e−εx ∈

L1(1,∞) by problem 2.1.8. Hence, by the theorem on differentiation of parametric integrals,
F (t) is derivable on (ε,∞) for all ε > 0, and so it is derivable on (0,∞). Besides,

F ′(t) =

∫ ∞
0

∂

∂t

[1− e−tx
2

x2

]
dx =

∫ ∞
0

e−tx
2
dx =

1√
t

∫ ∞
0

e−u
2
du =

1√
t

√
π

2
=

1

2

√
π

t
,

where we have done the change of variable u =
√
t x and we have used the problem 2.3.1. Hence,

F (t) =
√
πt+ c.

But, from the Taylor expansion of f(x, t) around x = 0 we have, for given ε > 0, that there
exists δ > 0 such that f(x, t) ≤ t+ ε ≤ 1 + ε for x ∈ (0, δ) and t ∈ [0, 1]. Hence, we have that

f(x, t) ≤ g(x) := (1 + ε)χ
(0,δ)

+
1

x2
χ

[δ,∞)
∈ L1(0,∞)

and so, by the theorem on continuity of parametric integrals, F (t) is continuous on [0, 1]. Besides,

0 = F (0) = lim
t→0+

F (t) = lim
t→0+

√
πt+ c = c =⇒ c = 0

and ∫ ∞
0

1− e−x
2

x2
dx = F (1) =

√
π .

Problem 3.1.11 Let F (λ) =

∫ ∞
0

dx

x2 + λ
. Write the derivatives of F , and later prove that for

all λ > 0, ∫ ∞
0

dx

(x2 + λ)n+1
=

1 · 3 · · · (2n− 1)

2nn!

π

2λn+1/2
=

(2n)!π

(n!)2(2
√
λ )2n+1

.

Hints: First of all, it is easy to calculate F (λ) and then all its derivatives F (n)(λ). Also,∣∣ ∂
∂λ

[
1

x2+λ

]∣∣ = 1
(x2+λ)2

≤ 1
(x2+λ0)2

∈ L1(0,∞) for λ > λ0 > 0. Hence, F is derivable on (λ0,∞)

for all λ0 > 0 and so it is derivable on (0,∞). Similarly, we can see that F is infinitely
derivable on (0,∞), and its derivatives can be calculated by parametric derivation: F (n)(λ) =∫∞
0

∂n

∂λn

[
1

x2+λ

]
dx.

Solution: First of all,∣∣∣ ∂
∂λ

[ 1

x2 + λ

]∣∣∣ =
1

(x2 + λ)2
≤ 1

(x2 + λ0)2
∈ L1(0,∞) , for all λ > λ0 > 0 .

Hence, by the theorem on differentiation of parametric integrals, F (λ) is derivable on (λ0,∞)
for all λ0 > 0 and so it is derivable on (0,∞). Besides, F ′(λ) =

∫∞
0

−1
(x2+λ)2

dx. Similarly,∣∣∣ ∂
∂λ

[ 1

(x2 + λ)2

]∣∣∣ =
2

(x2 + λ)3
≤ 1

(x2 + λ0)3
∈ L1(0,∞) , for all λ > λ0 > 0 ,
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and F ′(λ) is again derivable on (0,∞) and F ′′(λ) =
∫∞
0

2
(x2+λ)3

. Proceeding by induction, it is

easy to obtain that F (λ) is C∞ on (0,∞) and, for all n ∈ N,

F (n)(λ) = (−1)nn!

∫ ∞
0

dx

(x2 + λ)n+1
. (1)

But using the monotone convergence theorem and integrating directly, we have

F (λ) = lim
N→∞

∫ N

0

dx

x2 + λ
=

1√
λ

lim
N→∞

[
arctan

x√
λ

]x=N
x=0

=
π

2
√
λ
,

and proceeding again by induction, it is easy to obtain that, for all n ∈ N,

F (n)(λ) = (−1)n
π

2

1 · 3 · 5 · · · (2n− 1)

2n(
√
λ )2n+1

. (2)

From (1) and (2) we obtain that∫ ∞
0

dx

(x2 + λ)n+1
=

(−1)n

n!
F (n)(λ) =

(2n)!π

2n+12n(n!)2
1

(
√
λ )2n+1

=
(2n)!π

(n!)2(2
√
λ )2n+1

.

Problem 3.1.12 Let

F (x) =

∫ 2x

0

log(1 + 2xt)

1 + t2
dt , x ≥ 0 .

a) Check that F is derivable on (0,∞) and prove that

F ′(x) =
log(1 + 4x2)

1 + 4x2
+

4x

1 + 4x2
arctan 2x .

b) Using the previous part, prove that

F (x) = log
√

1 + 4x2 arctan 2x .

Hints: a)
∣∣ ∂
∂x

[ log(1+2xt)
1+t2

]∣∣ ≤ 2t
(1+t2)(1+2x0t)

∈ L1(0,∞), for x > x0 > 0. Hence, F is derivable on

(x0,∞) for all x0 > 0 and so it is derivable on (0,∞). To calculate F ′(x) use decomposition on
simple fractions. b) Integrate by parts.

Solution: a) First of all,

∂

∂x

[ log(1 + 2xt)

1 + t2

]
=

1

1 + t2
2t

1 + 2xt
≤ 2t

(1 + t2)(1 + 2x0t)
∈ L1(0,∞) , for all x ≥ x0 > 0 .

Hence, by the theorem on differentiation of parametric integrals, F (x) is derivable on (x0,∞)
for all x0 > 0 and so it is derivable on (0,∞). Besides, by part a) of problem 3.1.4

F ′(x) = 2
log(1 + 4x2)

1 + 4x2
+

∫ 2x

0

2t

(1 + t2)(1 + 2xt)
dt .

Decomposing into simple fractions, we have that

2t

(1 + t2)(1 + 2xt)
=
At+B

1 + t2
+

C

1 + 2xt
, with A =

2

1 + 4x2
, B = −C =

4x

1 + 4x2
.
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Hence,

F ′(x) = 2
log(1 + 4x2)

1 + 4x2
+

1

1 + 4x2

∫ 2x

0

2t

1 + t2
dt+

4x

1 + 4x2

∫ 2x

0

dt

1 + t2
− 2

1 + 4x2

∫ 2x

0

2x dt

1 + 2xt

= 2
log(1 + 4x2)

1 + 4x2
+

1

1 + 4x2
[

log(1 + t2)
]t=2x

t=0
+

4x

1 + 4x2
[

arctan t
]t=2x

t=0

− 2

1 + 4x2
[

log(1 + 2xt)
]t=2x

t=0
=

log(1 + 4x2)

1 + 4x2
+

4x

1 + 4x2
arctan 2x .

b) Integrating by parts with u = log(1 + 4x2) and v′ = 1/(1 + 4x2), we obtain that∫
log(1 + 4x2)

1 + 4x2
dx =

1

2
log(1 + 4x2) arctan 2x−

∫
4x

1 + 4x2
arctan 2x dx

and so

F (x) =

∫
log(1 + 4x2)

1 + 4x2
dx+

∫
4x

1 + 4x2
arctan 2x dx = log

√
1 + 4x2 arctan 2x+ c .

But, from the definition of F (x), we know that F (0) = 0 and so, c = 0.

Problem 3.1.13∗ Prove that ∫ π

0

log(1 + cosx)

cosx
dx =

π2

2
,

calculating first

F (t) :=

∫ π

0

log(1 + t cosx)

cosx
dx for |t| ≤ 1 .

Hints:
∣∣ ∂
∂t

[ log(1+t cosx)
cosx

]∣∣ = 1
1+t cosx which is continuous for |t| < 1, and so it belongs to L1(0, π).

This means that F (t) is derivable on (−1, 1). Compute F (t) by using parametric derivation
and calculate F ′(t) = π/

√
1− t2 (change variables to u = tan(x/2)). Now, if 0 ≤ t ≤ 1, we

have that f(x, t) = log(1+t cosx)
cosx verifies, for x ∈ [0, π/2), that f(x, t) ≤ log(1+cosx)

cosx which is
continuous at x = π/2 and so it belongs to L1[0, π/2), and for x ∈ (π/2, π) that f(x, t) ≤
g(x) := 1

| cosx| log 1
1−| cosx| . But g(x) is continuous at x = π/2 and log 1

1−| cosx| ∈ L1[π/2, π)

since limx→π−
log(1+cosx)
(π−x)−ε = 0 for each ε > 0. Hence, F (t) is continuous on [0, 1] and F (1) =

limt→1− F (t).

Solution: F (t) = π arcsen t.

Problem 3.1.14∗ Let us consider the function

F (x) =

∫ 1

0

(log(1− xt))2

t
dt.

a) Find the values of x such that F (x) is defined.

b) Calculate F ′(x) justifying why you can derive. Evaluate the resulting integral.

c) Study the increasing and decreasing intervals of F .
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Hints: a) As limz→0+(log(1 − z))/z = 1 we have log(1 − z) ≤ Cz for 0 < z < δ. As

limz→0+ z
ε log z = 0 we have | log z| ≤ z−ε for 0 < z < δ′. b) If x < x0 < 1, then ∂

∂x

( (log(1−xt))2
t

)
≤

2 1
1−x0t log 1

1−x0t which is continuous for t ∈ [0, 1]. To evaluate F ′, integrate by parts.

Solution: a) F (x) < ∞ for x ∈ (−∞, 1]. b) F is derivable for x ∈ (−∞, 1) and F ′(x) =
(log(1− x))2/x. c) F decreases on (−∞, 0) and increases on (0, 1).

Problem 3.1.15∗∗ Given a > 0, b > 0, prove that∫ ∞
0

cos ax− cos bx

x2
dx =

π

2
(b− a) .

Hints: Consider the function f(x, t) = cos ax−cos bx
x2

e−tx. Then
∣∣ ∂
∂tf(x, t)

∣∣ ≤ | cos ax−cos bx|x e−t0x ∈
L1(0,∞) for t ≥ t0 > 0. Hence, F (t) =

∫∞
0 f(x, t) dx is derivable on (0,∞). Even more, as∣∣ ∂2

∂t2
f(x, t)

∣∣ ≤ 2e−t0x ∈ L1(0,∞) for t ≥ t0 > 0, we also have that F (t) is twice derivable on

(0,∞). Also, as |f(x, t)| ≤ | cos ax−cos bx|
x2

∈ L1(0,∞) for t ≥ 0, we have that F is continuous
on [0,∞) and so, F (0) = limt→0+ F (t). To compute F ′′(t), integrate by parts and prove that

F ′′(t) = t
t2+a2

− t
t2+b2

. Hence, F ′(t) = log
√

t2+a2

t2+b2
+ c1. By dominated convergence we have

that limt→∞ F
′(t) = 0 and so we deduce that c1 = 0. Integrate again by parts to obtain

F (t) = t log
√

t2+a2

t2+b2
+ a arctan t

a − b arctan t
b + c2. Finally, again by dominated convergence

limt→∞ F (t) = 0 and so c2 = π
2 (b− a), since limt→∞ t log t2+a2

t2+b2
= 0 by L’Hopital Rule.


