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3 Parametric integrals

3.1 Continuity and differentiability

Problem 3.1.1 Let f(z,y) = log(2? + y?) for y € (0,1) and = > 0.
a) Prove that ¢(x fo x,y)dy is well defined and is derivable. Prove that ¢'(z) =
I 5 Lof = dy and calculate o' (x).
b) Prove that ¢(x) is continuous at zp = 0 and that ¢(0) = —2.
¢) Compute ¢(x) integrating by parts.

Hint: f(x,-) is continuous on [0, 1] for fixed x > 0. Besides }%[f(:v,y)” < % € L'(0,1) for
x > x9 > 0. Hence, F is derivable on (z, 00) for all xp > 0 and so it is derivable on (0, c0).

Solution: a) For each fixed x > 0, the function f,(y) = log(x? + y?) is continuous on [0, 1].
Hence, ¢(x) is well defined. Now, fixed z¢ > 0, we have

2
70

0
[log(x —|—y)] <5 =-x5 e LY(0,1), ifz>uxg.

2x 2x g
oz 22492 " g x

Hence, by the theorem on differentiation of parametric integrals, we have that ¢(x) is derivable
on (xp, 1), for all xg > 0. Therefore p(z) is derivable on (0,1) and

L op =1

1
0 y 1
o' (x) :/0 p [log(x2—|—y2)] dy :/0 PR dy = [2 arctan %L:O =2arctan p =7 —2arctan z.

b) As logy? < log(z? + y?) < log(1+%?) if z € [0,1] and f, is increasing on [0, 1], we have that
|log(2? +y?)| < max{log(1+y?),|logy?|} = max{log(1+y?),2log(1/y)} for all z € (0,1]. Now
the equation 1 + y2 = 1/y? has the unique solution yo = 1/(v/5 — 1)/2 in (0, 1), and therefore

2log(1/y), ify <wo,

log(* +y?)| < gly) == .
| log( N < 9(y) log(1 1+ 42). ify> 0.

But log(1 + %?) is continuous on [yo, 1] and so, g € L'[yo, 1]. Also, using the monotone conver-
gence theorem and integrating by parts:

/yol dy= lim [ log Ldy— 1 [1 1]y:y° 1<
0 8 YT N /Nogy nygnooyogy y=1/N >

since, by L’Hopital rule, limy_,, Nlog N = 0. Therefore, g € L'(0,1] and by the theorem on
continuity of parametric integrals, ¢ is continuous at xg = 0 and

1 1
©(0) = lim ¢(x) = / lim log(z? +y )dy:/ log y2dy .
0 0

z—0t xz—0t

Using now the monotone convergence theorem and integrating again by parts we get that:

1

. . 1
Lp(O):2]\}gnoo 1/Nlogydy—2]\}gn [ylogy]y 1N 2—2]\}gnooﬁlogN 2=0—-2=-2.
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c) Integrating by parts taking u = arctanz, v =1 = o = 1/(1 +2?), v =

2x

Tr2®

o(z) =mr —2 / arctan x de = mx — 2z arctanx + /

= 1x — 2z arctanz + log(z? + 1) +c.

But using that ¢(0) = —2 we obtain that ¢ = —2. Hence, p(x) = 72 —2x arctan z+log(z?+1)—2.

Problem 3.1.2 Let F,G : R — R defined as

T 2 1 o—a®(1+t?)
F(x) = - = ————dt.
(x) (/0 e dt) and G(z) /0 e dt

a) F'(x)+G'(x) =0, for all z € R. Justify why you can apply the theorem on differentiation
of parametric integrals.

b) F(z)+ G(z) = /4, for all z € R.

Prove that:

c¢) Deduce that / e dt = /7/2.
0

e—r2(1+t2)

Hints: a) ‘%[ e 1| = 12z~ (H)| < 2 € L1[0,1] for # € R. ¢) Let © — oo in b) by
applying monotone convergence.

Solution: a) Using the Fundamental Theorem of Calculus we have that F' is derivable on R and
Fl(z) = 2¢~° Iy e~ dt. On the other hand, for all z € R:

N —a2 (1442 1
o )| = e <2 e L2.1).

Hence, using the theorem on differentiation of parametric integrals, G is derivable on R and:

1 —a?(1+42) 1 1 @
G’(x) = / g {672] dt = —2x/ e~ (1H+%) gy — —2%6_:02/ et dt:—2e_x2/ e_tht,
0 (937 1 + t 0 0 0

where we have done the change of variable u = xt.

b) As F'(z) + G'(z) = 0 for all x € (0,00), we deduce that F(z) + G(x) = k € R. But then
k= F(0)+ G(0) = 0 + [arctan t]!=} = arctan 1 = /4.

¢) We have that lim,_, (F(z) + G(2)) = 7/4 and so, by the monotone convergence theorem,

0o 2 1 —22(1+¢?) 00 2
_t2 . e T —t2 T
dt) 1 dt::>(/ dt) 0=""
(/0 ¢ T, iy 4 0 0=y

oo
Problem 3.1.3 Calculate F(s) = / e 7 sin(sx) dx, and, justifying all the steps, from the
0

obtained result calculate

Gls) = /0 " e cos(sz) dx
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Hints: Use integration by parts to evaluate F'(s); G(s) is derivable since ‘% [e=” sin(sx)” <
re ® e LY(0,00).

Solution: First of all, integrating twice by parts and using the monotone convergence theorem,
it is easy to obtain that F(s) = s/(1 + s2).

On the other hand, as ‘% [e™ sin(sqr)” = |ve % cos(sx)| < ze® € L}(0,00), by the theorem
on differentiation of parametric integrals we have that

/ o oog —x . _/oo —x o _i S - 1-— 82
F'(s) —/0 95 [e""sin(sz)]| dz = ; xe *cos(sz)dr = G(s) = G(s)= 7 [1+82:| BT
Problem 3.1.4

a) Assuming that we can apply the Fundamental Theorem of Calculus and the theorem on
parametric derivation, prove that:

f(z) f(z)
F(x) = / g(z,t)dt = F'(z) = g(x, f(x)) f'(z) —|—/ gg(x,t) dt .

b) Prove that

w/(4a) T 1 /7
do = —(f 1 2) . 0.
/0 costaz U 242\2 T8 ora=

Hints: a) Consider the function G(u,v) = [ g(u,t)dt and apply the chain rule. b) Use the
previous part to calculate the derivative of fgr /49 tan az dz with respect to a.

Solution: a) Let G(u,v) = [g(v,t)dt. Then, by the Fundamental Theorem of Calculus,

%—f = ¢g(v,u) and, by the theorem on differentiation of parametric integrals, %—f =" %(U, t)dt.

Finally, as F(z) = G(f(z),z), u = f(x), v = z, by the chain rule: ‘

f(=)
P@) =50 @)+ 50 =gt @) F@ + [ Ewar,

a

m/(4a)
b) Let F(a) := / tanaxdz. First of all, let us observe that if = € [0,7/(4a)], then

ax € [0,7/4] and tanaz is continuous on this interval. Hence, F'(a) is well-defined. Secondly,
we can compute the value of F(a):

m/(49) gin 1 o=n/(4a) 1
F(a) = /0 o dr = - [log(cos azx)] —; =5 log2.

Thirdly, let us fix ag > 0 and let a > ag > 0. As

x T

<
cos?ax ~ cos¥m/4)

’%(tan a:c)’ = =2z € L'[0,7/(4a0)],

using part a) we obtain that F'(a) is derivable on (ag, o) for every ag > 0 and so, derivable on
(0, 00) and

_ ﬁ €T ﬁ x e 1 1 T
F'la) =t ( 1)(—”) / de — do = -~ | 2:—(7—1 2).
(a) = tan “4a) \4a2 + o cosax o o cos2ax T T a2 227 2a2\2 %
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Problem 3.1.5 Prove that

@ dx T+ 2
J(a) /0 (@ 1 222 S5 or a>0

Hint: ‘% [aﬂqlt(ﬁ] ‘ =

M e LY(0,00) for a € [e, M].

2
(x2+(:;2)2 S ($2+€2)
, ¢ dx
Solution: Let F(a) := —5—— fora>0.
0o T°+a

First of all, ‘% [xgiﬁ” = (wﬁ‘fﬂ)g < (wﬂ‘gg)g € LY(0,00) for a € [, M], and so, by the theorem

on differentiation of parametric integrals, F' is derivable on (g, M) for all e, M > 0. Hence, F' is
derivable on (0,00) and by part a) of problem 3.1.4 we have that

1 a dz
Flla)= ——2a | — % .
(a) 2a? a/o (2% 4 a?)?

But F(a) = 1[arctan %]iig = f-. Therefore

u 1 5 /a dx /“ dx T+ 2
—_ = — —2a _— = — .
4a?  2a? o (224 a?)? o (22+a?)?  8a?

Problem 3.1.6 Let F(«) :/ £ "
0

x

a) Study when the integral converges.

b) Calculate F'(«) explicitly and then calculate F'(«).

oo
¢) Obtain the successive derivatives F*)(a) and calculate / x"e *dx.
0

—axr _

Hints: a) lim, g+ “——¢— = 1 — a and so, fol e L dr < co. Also, [[7|¢"|dx <
Jo (e + e ") dr < oo if o > 0. b) ‘%[#” < e %% ¢ L'(0,00) for a > ag > 0
and so F' is derivable on (g, 00) for all ag > 0. c¢) Derive both members of the identity
Flla) = — [T e *dz = —1/a.

Solution: a) Using L’Hopital rule we get that lim,_,o+ (™ —e™%)/z = lim,_,g+ —ae”*4e % =
1 — a. Hence, f(z) = (e7** — e~ *)/x is continuous at x = 0 (defining f(0) = 1 — «) and so,
fol((e_w —e ") /z)dx < oo. Also, [° ‘(e_w - e_z)/:d de < [C(e +e ) dr < oo if a > 0.
Finally, if a@ < 0, then lim, 4~ f(z) = oo and, if & = 0 then, as lim, , ;. ™% = 0, we have
that (1 —e *)/z > (1 —¢)/z for & > M = M(e) and so [,;[(1 — e *)/z]dx = oo. Therefore,
F(a) converges (and so is well-defined) only for @ > 0.

b) We have that ‘8%[#] = e < e %% ¢ LY0,00) for @ > ag > 0 and so F is
derivable on (agp,0) for all g > 0. Hence, F' is derivable on (0,00) and, as in problem 2.1.8,

we have that ~ 9 roas . - .
F'(a) = / A [!} dr = —/ e YWdr = ——.
0 O« x 0 @

Hence, F(a) = —féda = c—loga. But, if @« =1, then f(x) = 0 and so, F(1) = 0. Hence,
F(a) = —loga =log .
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¢) It is easy to prove by induction that F*)(a) = (—1)’“% for all k£ € N. On the other hand,
we have that for a > ag and k € N:

ak k—1_—ax
e

(z gFe0® < gFem0% ¢ 110, 00).

Hence, by the theorem on differentiation of parametric integrals, F¥)(a) is derivable on (ayg, 00)
for all ap > 0 and so it is derivable on (0, 00) and, for all £k > 1,

- k!
Fk+D (g / 8a 2Flem ) de = (—1 )kH/ e % dr — / zPe amdﬂ@_ﬁ‘

Problem 3.1.7 Prove that for ¢ > 0 and b > O:

F(a,b) = /0 Oo(e—*/z? — e /") dz = /7(b—a).

Hint: ’8% [e‘“Q/IZ - e‘bz/“’"z]‘ < i—%e‘“g/xz € LY(0,00) for a > ag > 0. Hence, F is derivable on

[ap, 00) for all ap > 0 and so it is derivable on (0, 00). To compute %F (a,b) change variables to
t =1/z. Recall that [ e ¥ dt = \/7/2 and observe that F(a,a) = 0.
Solution: First of all, F'(a,b) is well-defined since making the change of variable t = 1/x:

1 2 2 o0 1 2t2 o0 2t2 o0 2t
/ e/ dy = / 2 et dt < / eV dt < / e vt dt < oo
0 1 1 1

by problem 2.1.8, and similarly fol e /7" 4 < oco. Besides, using again problem 2.1.8,
o0 2.2 b2 /2 > C
/ (ea/x —e /‘”)dxg/ —dr < 0,
1 1
2

because, from the Taylor expansion of e, we have that e=@"/7* — ¢=b*/2* — be%“ + o(x%) < x%,
Vo eR.

9 [,—a?/x? —b2 /22 2a ,—a?/x? 2a ,—a2/z? 1
On the other hand, we have that ‘%[e —e H = =3e < Zge” /" € LH(0,00)
for a > ag > 0, since making t = 1/x we get that

| 5, 2 1
/ —26_%/3” dx:/ et dt < oo,
1 T 0

a2 .
because e~%"" is continuous on [0, 1], and

1 1 _2/2 > —a?t? oo —a?t
— e T dr = Yt dt < e” %" dt < 00,
0o 1 1

by problem 2.1.8. Hence, by the theorem on differentiation of parametric integrals, F' is derivable
with respect to a on (ag, 00) for all ag > 0 and so it is derivable on (0, 00). Besides,

8F:_/ 2(16_“2/I2d$:—2/ e_tht:_\/'TTa
0 0

Oa 2

where we have done the change of variable ¢t = a/x and we have used the problem 2.3.1. Hence,
F(a,b) = —y/ma+ C(b). But for a = b it is clear that F(a,a) =0 — —/7b+ C(b) = 0 and
so, C(b) = /mb and finally, we obtain that F(a,b) = /7 (b — a).
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Problem 3.1.8 Explain in the following cases why we can differentiate the parametric integral
and why they are well-defined. Obtain explicitly the function deriving with respect to the
parameter and integrating later with respect to it:

/2 1 d
i) F(s):/ 1og< +SC°S“’”) T with |s| < 1.
0 1—scosz /) cosx

00 2
ii) G(a) = / log <1 + a2> dz, with a € R.
0 T

Lar —1
iit) H(p) :/ ] dzx, with p > —1.
o logx

w/2 1 1 — \2gin2
i) I(\) :/ og( S g, with A < 1.
0

sinx

v) K(x) :/ e /P gt with x € R.
0

Hints: 1) ‘% [log (Ftecesz) ﬁ” < ﬁ € LY0,7/2) if |s| < sg < 1. ii) Since G is an even

l1—-scoszx 2 cos?zx
function, it is enough to consider the case a > 0; ‘% [log(l + g—z)]‘ = mf'f('ﬂ < z?ﬁg € LY0,00)
if |a| € [e, M]. iii) ‘8%[31”;;_;” = 2P € LY0,1) since p > —1. iv) |%[10g(1;)r\12msin2m)” _

Alsinzl o 2 LN0,m/2) if A < Ao < L. w) |2 [e )| < 2 (e Py, () +

1-A%sin’z — 1-A;sin’z

e*EQ/tZX(O’l)(t)) € L'(0,00) if |x| € [¢, M]. To compute K'(x) change variables to s = z/t and
prove that K'(z) = —2K(x). Note that K (z) is even and so it is enough to compute it for z > 0.
Solutions: 1) First of all, using L’Hopital rule,

) 1+ scosxy 1 . log(1+ scosz) —log(l — scosx)
lim log( ) = lim
) 1—scosz/cosx z—n/2 cos T
—ssinx _ _ssinz
— lim 14+scosx 1-scosz __ lim ( —S$ - S ) — _9g
z—m/2 —sinx z—n/2\1+scosx 1—scosx

and so, the integrand is continuous on [0, 7/2] and F(s) is well defined. On the other hand, as

‘8[1 <1+scosx) 1 ” H Ccos T —cosx] 1 ‘
- [e) — —
0s & 1—scosxz/ cosx 1+scosx 1—scosxlcosz
2 2
= < e LY(0,7/2),
1 — s2cos?z — 1—8(2)0082.%' (0,7/2)

for |s| < sp < 1. Hence, by the theorem on differentiation of parametric integrals, F(s) is
derivable on (—sg, sg) for all sgp < 1, and so F'(s) is derivable on (—1,1). Besides,

™2 9 1+ scosxy 1 /2 2
Fom [ () e 2
(5) /0 9s L 8 \1 " scosa/ cosad “* o 1 —s2cos?z “

and making the change of variable ¢t = tan x, and using the monotone convergence theorem, we
have that

& 2 dt & 2 2 0 dt
F/(S):/ 22:/ 5 th: 2/ —
0 1 S 1+t 0 1—5 "‘t 1_5 0 1+( t )

1442

R R S
= 11m = 11N ——— | arctan (| ——— —_—.
N%oo1—820 1+( t )2 N—oo v/1 — g2 1 —s2/1t=0 1— g2

1—

~

]
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Hence, F(s) = marcsins + ¢. But, from the definition of F(s) it is clear that F'(0) = 0, and so
¢ = 0. Therefore, F'(s) = marcsin s.

ii) Using the Taylor expansion of log(1 + t) around ¢t = 0 we get that log (1 + ;—Z) = g—i + o(x—lg)
as x — oo for each fixed a € R. Hence,

o0 CL2 © 1
log (1425 )dz<C | —dw < 0.
1 $ 1z

1 a2 1 1
/ log (14——2) dac:/ log(m2+a2)dm—2/ logz dx < oo
0 X 0 0

since log(z?+a?) is continuous on [0, 1] if a # 0, and integrating by parts and using the monotone
convergence theorem and L’Hopital rule:

Also,

1
/ logzdr = lim [xlogx—x]izi:—l— lim eloge = -1 > —o0.
0

e—0t e—0t

Hence, log(1 + a?/x?) € L'(0,00) and so, G(a) is well-defined. On the other hand, as

0 a? 2a 2M
20 (1 7)} _ < L0,
aa[Og +1:2 x2+a2_932+52€ (0,00)

for all a € [e, M] with 0 < ¢ < M < o0, using the theorem on differentiation of parametric
integrals we deduce that G(a) is derivable on (g, M) for all € and M and therefore, since G is
also even, is derivable on R\ {0} and

G'(a):/Oooéi[log@—l—iz)}dm:/omﬂdx.

e 2 =00
G/(CL):/ %dﬂC:Q[arctanz] ZQE:W
0o T°+a alz=0 2

Therefore,

This implies that G(a) = ma + ¢ for a > 0, where c¢ is a constant.
Since G is derivable on R \ {0}, it is a continuous function on R\ {0}. Let us prove that G is
also continuous at 0: Consider a with |a| < 1. If > 1, then

2 C
log (1 + %) dv < — € L'(1,%0).

If 0 <z <1, then
2

log (1—1—&—2) dr < log (1—1—
x

As @ is continuous on R, we deduce that G(0) = c¢. But, it is clear from the definition of G
that G(0) = 0. Hence, G(a) = ma for a > 0. Since G(a) is an even function, we conclude that
G(a) = 7|a| for a € R.

1
2) dz € LY(0,1).

X

iii) First of all, if p > 0 we have that lim,_,q+ % = 0 and so the integrand is continuous on
[0,1]. If -1 <p<0,let ¢g=—p € (0,1). Then

P_1 p7-1 1-—291 1
Tt - — <c=erL'1].
log = log = logz x4 x4
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Hence, in any case, H(p) is well defined for p > —1. On the other hand, as p > —1 we have that

P —1

‘879[ log

”:xpgxpoeLl(O,l) Vp>po>—1

and so, by the theorem on derivation of parametric integrals, we conclude that H (p) is derivable
n (po,00) Vpg > —1. Consequently, H(p) is derivable on (—1,00). Also, this same theorem

gives that
1 B pP_1 1 p+1 5 p=1 1
H’(p)—/ —[m ]dx—/xpdx_[x } -
o Opl logx 0 p+1lz=0 p+1

/de log(p+1)+c

H(0) = fo Odz = 0, we obtain that 0 = H(0) = logl + ¢ = 0+ ¢ = ¢ and therefore
=lo

( ) =log(p+1).
iv) First of all, applying L’Hopital rule, we have that

and therefore

—2X2sinz cosx

lim log(1 — A2 sin’z) _ iy X’

z—0+ sinx z—0+ CcoS T

and so W is continuous on [0, 7/2] and I()\) is well-defined. On the other hand,

e L'0,7/2), if A <)\, <1

log(1 — \? sin2x)] ) 2|\l sinz|

‘5[ sin z 1— A2sinz — 1— )\(2) sinx

2
1-A2 sin’z
metric integrals, we have that I(\) is derivable on (—\,,A,) for all A\, € (—1,1) and so it is
derivable on (—1,1). Besides,

/2 1 1 — \2sin2 w/2 I\ si
I’(A):/ i[og( .)\ sin :U)}dm:—/ Ln.gdx,
0 O sin x o 1—Xsin‘z

because is continuous on [0, 7/2]. Hence, by the theorem on differentiability of para-

Changing variables to t = cosz we obtain that

1 1 1
2A 2A 2\ dt
]’()\):_/ dt:—/ N = /
0 1—>\2(1—t2) 0 1—)\2+>\2t2 1—)\2 0 1+( 1)fA2)2

A =l
N )\Z]tzo N

arctan

- et

= —17)\2 [arctan

: - A _ A 2 0 _1 2 _ 2
But,lfa.—arctanm:tana—m:seca—m:cosa—l—)\ -
o = arcsin A and so I'(\) = ——2—arcsinA\ == I()\) = —(arcsin\)? + c¢. But, from the

7
>
)

definition of I(\), we have that 1(0) = 0. Hence, ¢ = 0 and so I(\) = —(arcsin \)2.

v) First of all e ¥ ~7*/f* < ¢ € [1(0,00) and so K (z) is well-defined and continuous on R.
Also, K(z) is even and therefore, it is enough to compute it for x > 0. Now, given 0 < e <z <
M, we have that

2M , 2 242
S 3 (e ' X11,00) (t)+e* /t X(O,l)(t)) € Ll(O,oo),

t27:p2/t2]

. 2x —12— 22 /42
= e
t2

5
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Hence, by the theorem on differentiation of parametric integrals, K (x) is derivable on (¢, M) for
all e, M > 0 and so it is derivable on (0,00). Besides,

oo oo 2 oo
K'(z) = / (;9 [e ==/ at = —/ T;E e gy = —2/ e s = 2K ().
0 €z 0 0

Hence, K'(x)/K(x) = —2 for x > 0 and so log K (z) = —2x +¢ = K(x) = C e~%*. But, from
the definition, we have that K(0) = [“e ~* dt = \/7/2 by problem 2.3.1. As K is continuous,
we conclude that C' = /7/2 and that K(x) = \/j 2% for x > 0 and, by symmetry, that
K(z) = @ e 2l for z € R.

Problem 3.1.9 Obtain explicitly the function F'(t) justifying all the steps:

- .
F(t):/ et M g Ve >0,
0 X

Hint: As |% [e‘t“i%] | <e7™ < e € L1(0,00) for t € (g,00), we have that F(t) is derivable
n (g,00) for all € > 0 and so it is derivable on (0, c0).

Solution: First of all, |e*t“i%‘ <e ™ ¢ L'(0,00) because |sinz/z| < 1 and by problem 2.1.8.
Hence, F'(t) is well defined. On the other hand,

smx] —tx sin

‘81?[ ‘—‘—x ‘< e < e e L10, 00)

for all ¢ € (g,00). Hence, by the theorem on differentiation of parametric integrals, F(t) is
derivable on (g, 00) for all € > 0 and so it is derivable on (0, 00). Besides,

F'(t) = / 9 [e_tx %} dr = —/ e Wsinzdr.
0 ot T 0

Integrating twice by parts and using the dominated convergence theorem we get that

N
F'(t) = lim [e”* cos:):] i + lim t/ e cosx dr
0

N—oo - N—oo

N
=—1+ lim t[e” ™ sinx] : + lim t2/ e Wsinzdr = -1 —t*F'(t).
N—oo - 0

N—oo

Hence, F'(t) = —# = F(t) = c—arctant. But, from the definition and using the dominated

convergence theorem, it is easy to check that lim;_,o, F'(t) = 0. Therefore, as lim;_,, arctant =
7/2, we conclude that ¢ = m/2 and so that F'(t) = § — arctant.

Problem 3.1.10 Prove that

2

© 1 _ 2
/ 1= o= vm
0

x2

Hint: Consider the function F(t) = [;° L % - da: for t > 0 and proceed in a similar way to the

previous problems.

o0 e—tac2 1 e_m2
Solution: Let F(t) := / ———dx fort >0 and f(r,t) = ——5—
0

T T
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7t12

First of all as lim,_,o+ 1= = t we have that f(z,t) is continuous on z € [0,1] and so

‘e da; < oo. Also [{°1=¢, dx < [°% < co. Hence, F(t) is well-defined. On the

0 2 2 T

other hand,
Jrl— eith —ta? —ex? 1
a[T]:e <e € L(0,00), forall t > ¢,
since e~**" is continuous and so integrable on [0,1] and, if € (1,00), then eme < e ¢

L'(1,00) by problem 2.1.8. Hence, by the theorem on differentiation of parametric integrals,
F(t) is derivable on (g, 00) for all € > 0, and so it is derivable on (0, c0). Besides,

N el R _/ e / 1 yr_ 1 [x
F(t)_/o 8t[ 22 }dx_o de =7 Vi 2 2\

where we have done the change of variable u = v/t z and we have used the problem 2.3.1. Hence,
F(t) = Vnt +c.

But, from the Taylor expansion of f(z,t) around = = 0 we have, for given € > 0, that there
exists 0 > 0 such that f(z,t) <t+e<1+¢ for z € (0,0) and ¢t € [0,1]. Hence, we have that

1
Flt) < () == (14) X+ 3 X5 € L1(0,00)
and so, by the theorem on continuity of parametric integrals, F'(t) is continuous on [0, 1]. Besides,

0=F(0)= lim F(t)= lim Vat+¢c=¢ = ¢=0

t—0t t—0t

and
2

/Oool_zxdszu):\/%.

X

o
d
Problem 3.1.11 Let FI(\) = / 5 i 3 Write the derivatives of F', and later prove that for
o T
all A > 0,
/°° dx 1-3---@2n-1) 7 (2n)!
o (224t T omnpl oNn+1/2 (n!)2(2v/X)2n+1 '

Hints: First of all, it is easy to calculate F(\) and then all its derivatives F(™()). Also,
5%[95214-/\” — (332-:1[->\)2 < ($2+1A0)2 € L'(0,00) for A > A9 > 0. Hence, F is derivable on (\g, o0)
for all A\g > 0 and so it is derivable on (0,00). Similarly, we can see that F' is infinitely
derivable on (0,00), and its derivatives can be calculated by parametric derivation: F(™(\) =
oo gn

0 ox lzzex) 4o
Solution: First of all,

1 1 1
A = < L0 for all A > Ao > 0.
oA [x2—|—)\” (2 + N2 = (224 N\)? € L' (0,00), or a > Ao >

Hence, by the theorem on differentiation of parametric integrals F ()\) is derivable on (\g, 00)

for all \p > 0 and so it is derivable on (0,00). Besides, F( fo (e Esw /\ > dx. Similarly,

| 2 1
o _ < L0 for all A > Ao > 0
6)\[(952—1—)\)2” @10 S @ goagp © L (00),  forallA> 20 >0,
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and F'(\) is again derivable on (0,00) and F"(\) = [ ﬁ . Proceeding by induction, it is
easy to obtain that F'(\) is C* on (0,00) and, for all n € N,
ee dz
FM(\) = (-1)" !/ ' :
A=t [ (1)
But using the monotone convergence theorem and integrating directly, we have
N _
dx 1 x Jr=N 7
F(\) = li L | [ . 7} _ T
( ) Ngnoo/o :L‘2—|—>\ \F)\Ngnoo are anﬁ =0 2\/X’

and proceeding again by induction, it is easy to obtain that, for all n € N,

1-3:5---(2n—1
FOO0) = (s L2 Bt )
2 Qn(\/X)ZnJrl
From (1) and (2) we obtain that
/°° dx (= FO () = (2n)!lm 1 B 2n)! T
o @2+l T ontlon(p))2 (VA )2t o (n!)2(2v/X)2n+1 '
Problem 3.1.12 Let )
* log(1 + 2xt
F(:U):/ Og(i—i—Qx)dt, x>0.
0 1+t
a) Check that F is derivable on (0, 00) and prove that
log(1 + 42?) dx
o) —
F'(z) = a2 + T 122 arctan 2z .
b) Using the previous part, prove that
F(z) =log\/1+ 422 arctan2z .
Hints: a) ‘8% [log(lﬁi"”)]| < (1+t2)(21t+2x0t) € LY(0,00), for x > z9 > 0. Hence, F is derivable on

(x0,00) for all zp > 0 and so it is derivable on (0, 00). To calculate F’(x) use decomposition on
simple fractions. b) Integrate by parts.

Solution: a) First of all,

9 [log(l + th)} 1 2t 2t

- = € L'(0,00),  foralle >y >0.
Ozl 1412 S T B+ 2zgn < 100 oral® = o

1421+ 2at

Hence, by the theorem on differentiation of parametric integrals, F'(x) is derivable on (xg, c0)
for all xy > 0 and so it is derivable on (0, 00). Besides, by part a) of problem 3.1.4

log(1 + 42?) /% 2t
Fliz)=2—2——"2" dt
(z) 11422 )y 0+ 200)

Decomposing into simple fractions, we have that

2t At+ B C 2 4x
= thA=-—~ _ B=C=—"2 .
Aro)(11200) 142 Ty2at 1+ 422’ 1+ 422
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Hence,
log(1 + 422 1 2w ot 4 2 dt 2 2 2xdt
Fl(z) = 21080 +407) / dt + —— / - / *
1+ 422 14422 J, 1+¢2 1+422 Jy 1+¢2 1+42% ), 1+ 2at
log(1 + 4x?) 1 9\7t=2z dx t=2z
=2 T 422 + T 12 [log(l +t )L:O + [ [arctant]tzo
=2 log(1+ 4z?) 4z
] [log(1+2xt)], _ " = T da? T 422 arctan 2z .
b) Integrating by parts with u = log(1 + 422) and v’ = 1/(1 + 422), we obtain that
log(1 + 42? 1 4
/W dr = 3 log(1 + 42%) arctan 22 — / TZ%’Q arctan 2z dz
and so
log(1 + 4a? 4
F(z) = / W dx + / 1 —I—Zﬂ arctan 2z dz = log /1 + 4z? arctan 2z + c.

But, from the definition of F'(x), we know that F'(0) = 0 and so, ¢ = 0.

Problem 3.1.13* Prove that

] 1 2
/ og(1 + cosx) dr =T ’
0 cosx 2

calculating first

Tlog(l+¢
F(t) ::/ log(1 +tcosz) o poy it <1.
0 cosx

Hints: ‘% [logu;;;o”)” = 1+tlcosx which is continuous for |¢t| < 1, and so it belongs to L(0, 7).
This means that F(t) is derivable on (—1,1). Compute F(¢) by using parametric derivation
and calculate F'(t) = w/v/1 — > (change variables to u = tan(z/2)). Now, if 0 <t < 1, we
have that f(z,t) = log(+teos®) yerifies, for o € [0,7/2), that f(z,t) < log(Ltcos®) which is

Cos T Ccosx

continuous at z = 7/2 and so it belongs to L'[0,7/2), and for z € (7/2,7) that f(x,t) <

g(z) = |Colsx| log 1_‘20”'. But g(x) is continuous at z = 7/2 and logm € L'r/2,)
since lim,_, .- % = 0 for each ¢ > 0. Hence, F(t) is continuous on [0,1] and F(1) =

hmt_>17 F(t)

Solution: F(t) = marcsent.

Problem 3.1.14* Let us consider the function

_ [ (og( —at))?
F(x) —/0 " dt.

a) Find the values of x such that F(z) is defined.
b) Calculate F'(x) justifying why you can derive. Evaluate the resulting integral.

¢) Study the increasing and decreasing intervals of F'.
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Hints: a) As lim,_,o+(log(l — 2))/z = 1 we have log(l — z) < Cz for 0 < z < §. As

lim, o+ 2logz = 0 we have |log 2| < z7cfor 0 < z < ¢’. b) If & < 29 < 1, then %(M) <

2171330 ; log 171% ; which is continuous for ¢ € [0, 1]. To evaluate F, integrate by parts.

Solution: a) F(x) < oo for © € (—o0,1]. b) F is derivable for x € (—o0,1) and F'(z) =
(log(1 — z))?/z. ¢) F decreases on (—00,0) and increases on (0, 1).

Problem 3.1.15"* Given a > 0, b > 0, prove that

o0

— b

/ cos ax 2cos xdx:z(b—a).

0 T 2

Hints: Consider the function f(z,t) = C‘)S“xz;zcom e . Then |%f(:c,t)‘ < Wwe_toz €
L'(0,00) for t > to > 0. Hence, F(t) = [~ f(x,t)dz is derivable on (0,00). Even more, as
—22 z,t)| < 2e % ¢ L1(0,00) for t > ty > 0, we also have that F(t) is twice derivable on
b

(0,00). Also, as |f(x,t)| < "m“";i;“’s’””' € L'(0,00) for t > 0, we have that F is continuous
on [0,00) and so, F(0) = lim;_,q+ F(t). To compute F"(t), integrate by parts and prove that
F'(t) = m#ag - @. Hence, F'(t) = log\/% + ¢1. By dominated convergence we have
that limyo, F'(t) = 0 and so we deduce that ¢; = 0. Integrate again by parts to obtain

F(t) = tlog gigi —+ aarctané — barctan% + co. Finally, again by dominated convergence

limg oo F'(t) = 0 and so ca = §(b — a), since lim; o t log % = 0 by L’Hopital Rule.



