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2 Integration Theory

2.5. LP-spaces

Problem 2.5.1 Let @1, @9, ..., @k be functions such that
. 1 1 1 1
QDiELpZ(X7A7/'L)7 7:7+7++7S1
p p P2 Pk

Then @12+ € LP(X, A, p) and [[p102 - @illp < lo1llp, l02lps - [lokllpy -
Hint: If a1,--- ,a > 0and A\ +--- A = 1, then ai‘1a§‘2~~a2k < Map+ Xas + -+ Apag .

Problem 2.5.2 Let 0 <p<r<g<ooandlet p € LP(X, A u)NLIUX, A, pn).
a) Prove that p € L"(X, A, u) and

1 6 1-6
0 1-6
ellr < lellplle , where — = — + —— .
el < leligll =il
b) Prove also that L"(u) C LP(u) + L9(p).
c) Prove that lim, , [|¢|lr = ||¢]]co-
Hints: a) If ¢ = oo, then |¢|" = |o|"P|plP < |l¢|5”|¢P and + = %. If ¢ < oo, then [
and ﬁ are conjugate exponents and |¢|” = || |17, Apply Holder’s inequality. b) If

A={zr e X: |p(z)| <1}, then ¢ = px, + YX .- ¢) By letting r — oo in |||, < ng”ﬁ”gp”ége

deduce that limsup,_, o, [|¢|lr < ||¢|leo- Also, we can suppose that ||¢||s > a > 0. Use Markov’s
inequality to deduce that ||¢||, > a p({z : |o(x)| > a})*/" and by letting 7 — 0o and @ — ||¢]|ee
deduce that liminf, o [|o]lr > [|¢||cc-

Problem 2.5.3 Let (X, A, 1) be a measure space. For some measures the relation p < ¢ implies
LP C LA. For others the relationship is reversed and there are some measures for which LP does

no contain L? for p # q. Give examples of these situations:

3=
Q=

a) T 4(X) < 0o and 1< p < ¢ < oo, then I2(u) > L9(s2) and |y < [/l u(X)
b) If 0 < p < ¢ < oo, then # C £ and ||z,]lq < ||zn]lp -
c¢) Show that LP(R, B(R),m) € LY(R, B(R), m) for p # q.

Hints: a) Use Holder’s inequality. b) Use part a) of problem 2.5.2. ¢) Consider the function
f(x) = |z(log? |z| + 1) V77

Problem 2.5.4 Let (X, A, 1) be a measure space.
i) Prove that Holder’s inequality holds for the exponents p = 1 and ¢ = oo: If f and g are
measurable functions on X, then || fg|li < [|f]l1]|9]]co-

ii) If f € L'(n) and g € L*(u), prove that || fglli = [[fl1llglle iff 9(z)] = [lglloc a.e. on the
set where f(z) # 0.

iii) Prove that if f € LP(p) and g € L*(u), then fg € LP(p) and || fgllp < || fllpllglloc. When
equality holds in this inequality?
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iv) Prove that || - ||~ is a norm on L(u).

v) Prove that if u(X) < oo and f € L*(u), then f € Np>1LP(p). Prove that the reverse
statement is false.

vi) Let f € L*®(u) and {f,} be a sequence in L*°(u). Prove that || f, — f|lcc — 0 if and only
if there exists E € A such that u(E¢) =0 and f,, — f uniformly on E.

vii) The simple functions are dense in L if u(X) < oo: Each f € L® can be approximated
by a sequence of simple functions {s,} C L*(u).

Hint: v) Consider the function f(z) =logz on X = (0, 1].

Problem 2.5.5 Let 1 < p < oc.

a) Show that if ¢ € LP(RY) and ¢ is uniformly continuous, then lim,| o0 p(z) = 0.

b) Show that this is false if one only assumes that ¢ is continuous.

Hint: a) Prove it by contradiction: if {z,}3%; C RY is such that |z,| — oo and |p(z,)| >
& > 0 for every n, then the uniform continuity of ¢ implies the existence of R > 0 such that
lo(x)] > §/2 in B(x,,R). Show that this yields [;n [p|Pdz = co. b) Consider the function

o(z) = 22021 fn(x —n), where

nr+1, if —1/n<z<0,
fa@)=<1—nx, f0<z<1/n,
0, ifx ¢ (—=1/n,1/n).

Problem 2.5.6 Suppose that f, € LP(u), for n =1,2,3,... and ||f,, — fll, = 0and f, = g
a.e., as n — 0o. What relation exists between f and g7

Problem 2.5.7 Suppose pu(X) =1, and suppose f and g are positive measurable functions on

X such that fg > 1. Prove that
/fdu : /gduzl.
X X

Hint: Use Cauchy-Schwarz ineguality.
Problem 2.5.8 Suppose x(X) =1 and h: X — [0, 00] is measurable. If A := [, hdpu, prove

that
\/1+A2§/ V1+h2dpu<1+A.
X

If u is Lebesgue measure on [0,1] and h is continuous, h = f’, the above inequalities have a
simple geometric interpretation. From this, conjecture (for general X) under what conditions
on h equality can hold in either of the above inequalities, and prove your conjecture.

Hint: The first inequality follows from Jensen’s inequality. The second one follows from the
inequality v1 + 22 <1+ x for x > 0.

Problem 2.5.9 Let f be a complex function, f # 0. Let us define the function ¢(p) = || f||b
for0<p<ooandlet E={p: p(p) <oo} ={p: fe€ LP(n)}. Prove that
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a) Ifr<p<sandr,s€E, thenp¢€ E.
b) log ¢ is convex in E.

c) Part a) implies that E is connected. Is E necessarily open? and closed? Can E be
constituted by a single point? Can E be a any connected subset of (0,00)?

d) Ifr <p <s, then |[fll, <max{|[fll-[[f]ls}-

Hints: a) t? < max(t",t%) < t" 4+ t°. b) If p = A+ (1 — A)s with 0 < A < 1, apply Hélder’s
inequality (with the conjugate exponents & = 1/A and = 1/(1 — X)) to bound ¢(p) in terms
of ¢(r) and ¢(s). d) Apply part b).

Problem 2.5.10* Let (X, A, 1) be a probability space, i.e. u(X) = 1.

a) Prove that if ¢ is strictly convex: o(Az + (1 — A)y) < Ap(z) + (1 — N)p(y) for 0 < A < 1,
then equality holds in Jensen’s inequality,

sO(/deu)S/X(sOOf)du, for f € L'(p),

if and only if f is constant almost everywhere.
b) If 0 < p < g < oo prove that || f[l, < [|fllq-
c) Use part a) to prove that ||f||, = |/ f]|; if and only if f is constant almost everywhere.

d) Assume that || f]|, < oo for some r > 0, and prove that

ti 171, = exp ([ 1og1 1)

if exp (—o0) is defined to be 0.

Hints: a) If f # 0 a.e., then there exists ¢ € R such that A = {z : |f(z)| > ¢} has 0 < u(A4) < 1.
Take A\ = u(A), x = %fA fdu, y= ﬁ J4e f dp and apply Jensen’s inequality. To bound ¢(x)
and ¢(y) apply again Jensen’s inequality. Finally, deduce that Jensen’s inequality for this f is
strict. b) Apply Jensen’s inequality to the convex function ¢(z) = ! with t = ¢/p > 1. «¢)
o(x) = at is strictly convex. d) Apply Jensen’s inequality with ¢(z) = —logx and use that
logz <x —1 for x € (0,00) and that (¥ — 1)/t — logt as p — 0. Use a convergence theorem.

Problem 2.5.11** Suppose 1 < p < oo, f € LP((0,00), B, m) and let us define

F(m):i/oxf(t)dt (0 <z < o0).

a) Prove that the mapping f — F carries L? into LP and more concretely, prove Hardy’s
inequality:
p
Fl, <—— .
I1E1, < 2 1

b) Prove that equality holds in Hardy’s inequality iff f = 0 almost everywhere.
c) Prove that the constant p/(p — 1) cannot be replaced by a smaller one.
d) If f >0and f € L', prove that F' ¢ L'.
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Hints: a) Assume first that f > 0 and f € C.((0,00)). Integration by parts gives
/ FP(z)dx = —p/ FPY(z)zF' (z) dx .
0 0

Note that 2F" = f — F and apply Holder’s inequality to [ F P=1f Then derive the general case.
b) If equality holds for f > 0 deduce that we must have equality in

| @ = [T s@rrtas <ais( [

and therefore that 3 @ > 0 such that af? = FP, and from this that f is constant a.e. c¢) Take
f(z) =z7YP on [1, A], f(x) = 0 elsewhere, for large A. d) If f € L' and f # 0 a.e., then 3 x
such that [ f(t)dt > 0.

o)

FP(x) da:) H

Problem 2.5.12 Let (X, A, 1) be a measure space, 1 < p < oo and let {f,}>2; be a sequence
of functions in LP(u) such that f,, — f almost everywhere, as n — oo.

a) If, for some M >0, || fn||p < M for all n € N, then f € LP(u) and

I f1lp < lin inf | ]

b) If, for some F € LP(u), |fn(z)|] < |F(x)| for all n € N and almost every = € X, then
feLP(p) and ||fn — fll, = 0 as n — oo.

c) Prove that b) is false for p = co.

Hints: a) Use Fatou’s lemma. b) Use dominated convergence theorem. c) Consider the sequence
fTL = X(O,l/n) ln (07 1)
Problem 2.5.13" Let 0 < p < oo and f, f, € LP(X, A, u).

a) If 1 <p<ooand|f,— fll, = 0asn— oo, prove that || f|l, = || f|lp-
b) Let ¢, = max{1,2P~1}. Prove that

ja = 0" < ¢ (|af” + [b[")

for arbitrary complex numbers a and b.

c) If f, = fae. and ||fu|l, = || fllp as n — oo prove that lim,, o || fn — fllp = 0.

d) Prove that the conclusion of c) is false if the hypothesis || f||, = || f|l, is removed, even if
pu(X) < oo.

e) Prove that the conclusion of ¢) is false if p = oo

Hint: a) Prove that ||| fll, — llglls| < If — gllp for f,g € LP(1). b) Prove the cases 0 < p < 1
and 1 < p < oo separately. For the first one, consider the function ¢(x) = (x + y)P — 2P — P
for x > 0 and fixed y > 0 and prove that ¢ is decreasing. For the second case, consider the
function ¢ (z) = 2P~ 1(aP + yP) — (x + y)P for & > 0 and fixed y > 0 and prove that ¢ has an
absolute minimum when z = y. ¢) Consider the function hy, = ¢, (|f[P + |ful?) — |f — ful|P and
use Fatou’s lemma as in the proof of the dominated convergence theorem.



