
INTEGRATION AND MEASURE TEST 1 - SOLUTIONS

Problem 1 (2,5 points) Let (X,A, µ) be a measure space, let f, g : X −→ [0,∞] be
measurable positive functions, E ∈ A and λ ≥ 0.

a) Define the integral of f . By using this definition:

b) Prove that
∫
E
λf dµ = λ

∫
E
f dµ.

c) Prove that
∫
E
f dµ =

∫
X
fχ

E
dµ.

d) Prove that f ≤ g =⇒
∫
E
f dµ ≤

∫
E
g dµ.

a) If s =
∑n

j=1 cjχAj
is a simple function with cj ∈ R and Aj ∈ A, then we define∫

X

s dµ =
n∑
j=1

cj µ(Aj)

and if E ∈ A: ∫
E

s dµ =
n∑
j=1

cj µ(Aj ∩ E) .

Now if f is a positive function we define∫
E

f dµ = sup
0≤s≤f
s simple

∫
E

s dµ .

b) Let us observe that s is a simple function if and only if s̃ = s/λ is also a simple function.
Hence ∫

E

λf dµ = sup
0≤s≤λf
s simple

∫
E

s dµ = sup
0≤s/λ≤f
s simple

λ

∫
E

s

λ
dµ = λ sup

0≤s̃≤f
s̃ simple

∫
E

s̃ dµ = λ

∫
E

f dµ .

c) We have that ∫
E

f dµ = sup
0≤s≤f
s simple

∫
E

s dµ = sup
0≤s≤f

s=
∑

j cjχAj

∑
j

cj µ(Aj ∩ E) .

Now, it is easy to check that∫
X

f χ
E
dµ = sup

0≤s̃≤f χ
E

s̃=
∑

j cjχAj∩E

∫
X

s̃ dµ = sup
0≤s≤f

s=
∑

j cjχAj

∑
j

cj µ(Aj ∩ E) =

∫
E

f dµ .

d) As f ≤ g we have that

{s simple : 0 ≤ s ≤ f} ⊆ {s simple : 0 ≤ s ≤ g}



and so ∫
E

f dµ = sup
0≤s≤f

∫
E

s dµ ≤ sup
0≤s≤g

∫
E

s dµ =

∫
E

g dµ .

Problem 2 (2,5 points) Consider a > 0.

a) Prove that for each x ≥ a the function

v(t) =
t

1 + t2x2

decreases for t ≥ 1/a.

b) Find an upper bound of
n

1 + n2x2

for every x ≥ a and n ≥ 1/a, by a function which just depends on x and a.

c) Calculate

L = lim
n→∞

∫ ∞
a

n

1 + n2x2
dx ,

and say what theorem you used.

a) We have that

v′(t) =
1− t2x2

(1 + t2x2)2
= 0 ⇔ t2 =

1

x2

and therefore, since x ≥ a > 0,

t ≥ 1

a
=⇒ t ≥ 1

x
=⇒ t2 ≥ 1

x2
=⇒ 1− x2t2 ≤ 0 =⇒ v′(t) ≤ 0 .

Hence v(t) decreases in the interval [1/a,∞).

b) As a consequence of a)

v(t) ≤ v(1/a) =
a

a2 + x2
if t ≥ 1/a .

Therefore, if n ≥ 1/a,
n

1 + n2x2
= v(n) ≤ v(1/a) =

a

a2 + x2
.

c) As F (x) =
a

a2 + x2
∈ L1(a,∞), by the dominated convergence theorem:

lim
n→∞

∫ ∞
a

n

1 + n2x2
dx =

∫ ∞
a

lim
n→∞

n

1 + n2x2
dx =

∫ ∞
a

0 dx = 0 .



Problem 3 (2,5 points) Consider a ∈ R.

a) Explain why we can derive the parametric integral G(a) =

∫ ∞
0

log

(
1 +

a2

x2

)
dx when

a 6= 0.

b) Obtain explicitly G(a) by deriving with respect to the parameter and integrating later
with respect to it. You can use, without a proof, that G is a continuous function on R.

Hint: Since G is a continuous even function, it suffices to consider the case a > 0; if we consider
two constants 0 < ε < M and a ∈ [ε,M ], find a bound of

∣∣ ∂
∂a

[
log(1+ a2

x2
)
]∣∣ by a function (which

just depends on x, ε and M) in L1(0,∞).

a) As
∂

∂a

[
log
(

1 +
a2

x2

)]
=

2a

x2 + a2
≤ 2M

x2 + ε2
∈ L1(0,∞)

for all a ∈ [ε,M ] with 0 < ε < M < ∞, using the theorem on differentiation of parametric
integrals we deduce that G(a) is derivable in (ε,M) for all ε and M and therefore, since G is
also even, is derivable in R \ {0} and

G′(a) =

∫ ∞
0

∂

∂a

[
log
(

1 +
a2

x2

)]
dx =

∫ ∞
0

2a

x2 + a2
dx .

b) Therefore

G′(a) =

∫ ∞
0

2a

x2 + a2
dx = 2

[
arctan

x

a

]x=∞
x=0

= 2
π

2
= π .

This implies that G(a) = πa + c for a > 0, where c is a constant. As G is continuous in R,
we deduce that G(0) = c. But, it is clear from the definition of G that G(0) = 0. Hence,
G(a) = πa for a ≥ 0. Since G(a) is an even function, we conclude that G(a) = π|a| for a ∈ R.

Problem 4 (2,5 points) Find a solution of the initial value problem for the heat equation:{
∂
∂t
u(x, t) = ∂2

∂x2
u(x, t) , if x ∈ R , t > 0 ,

u(x, 0) = e−x
2
, if x ∈ R .

Hint: The solution of the differential equation d
dt
y(t) = ay(t) is y(t) = Ceat, where C is a

constant (it does not depend on t).

Applying the Fourier transform to the PDE equation we obtain:

ut = uxx =⇒ ût = −ω2û .

For each fixed w ∈ R this last equation is an ordinary differential equation whose solution is
û(ω, t) = C(ω) e−ω

2t where ω ∈ R and t > 0. From this equation we deduce that C(ω) = û(ω, 0),



But using now the initial condition u(x, 0) = e−x
2

we deduce taking again Fourier transforms
that C(ω) = û(ω, 0) = F [e−x

2
](ω) = 1√

4π
e−ω

2/4.
Hence,

û(ω, t) =
1√
4π

e−ω
2/4e−ω

2t =
1√
4π

e−ω
2(t+1/4)

and taking now the inverse Fourier transform, we obtain that

u(x, t) =
1√
4π
F−1[e−ω2(t+1/4)](x) =

1√
4π

√
π

t+ 1/4
e−x

2/[4(t+1/4)] =
1√

4t+ 1
e−x

2/(4t+1) .


