## **uc3m** Universidad Carlos III de Madrid Departamento de Matemáticas

## **Integration and Measure. Problems**

**Chapter 1: Measure theory** Section 1.2: Measure spaces

**Professors:** 

Domingo Pestana Galván

José Manuel Rodríguez García



## 1 Measure Theory

## **1.2.** Measure spaces

**Problem 1.2.1** Let X be a set and  $\mathcal{A} = \mathcal{P}(X)$ . Let us also consider a function  $p: X \longrightarrow [0, \infty]$ . Now, we define for  $A \subseteq X$  the set function

$$\mu(A) := \sum_{x \in A} p(x) = \sup_{\{x_1, \dots, x_n\} \subseteq A} \sum_{j=1}^n p(x_j) \, .$$

Prove that  $\mu$  is a measure on X. In the particular case that p(x) = 1 for all  $x \in X$ , this measure is known as the *counting measure* in X, since in this case  $\mu(A) = \sum_{x \in A} 1 = \#A$ , the number of elements of A.

Solution: First  $\mu(\emptyset) = 0$  since for  $\emptyset$  the sum is empty. Now, if  $\{A_j\}_{j=1}^{\infty}$  is a sequence of disjoint subsets of X, and  $B = \bigcup_{j=1}^{\infty} A_j$  then, if  $x \in B$ , x only belongs to a unique  $A_j$ . Also, if E, F are contained in  $[0, \infty)$  it is easy to check that  $\sup(A + B) = \sup A + \sup B$ . Hence

$$\mu(B) = \sum_{x \in B} p(x) = \sum_{j=1}^{\infty} \sum_{x \in A_j} p(x) = \sum_{j=1}^{\infty} \mu(A_j).$$

**Problem 1.2.2** Let  $(X, \mathcal{A})$  be a measurable space and define the function  $\delta_{x_0} : \mathcal{A} \longrightarrow [0, \infty]$  by

$$\delta_{x_0}(A) = \begin{cases} 1, & \text{if } x_0 \in A, \\ 0, & \text{otherwise.} \end{cases}$$

Prove that  $\delta_{x_0}$  is a measure on  $(X, \mathcal{A})$  (it is called the  $\delta$ -Dirac measure concentrated at  $x_0$ ).

Solution:  $\delta_{x_0}$  is a particular case of the measure defined in problem 1.2.1. Here p(x) = 1 if  $x = x_0$  and p(x) = 0 otherwise.

**Problem 1.2.3** Let  $(X, \mathcal{A})$  be a measurable space and let  $\mu : \mathcal{A} \longrightarrow [0, \infty]$  be a countably additive function on the  $\sigma$ -algebra  $\mathcal{A}$ .

- a) Show that if  $\mu$  satisfies that  $\mu(A) < \infty$  for some  $A \in \mathcal{A}$ , then  $\mu(\emptyset) = 0$  (and therefore  $\mu$  is a measure).
- b) Find an example for which  $\mu(\emptyset) \neq 0$  (and therefore the countably subadditivity property does not imply that  $\mu$  is a measure).

*Hint:* b) Take  $\mu(A) = \infty$  for any set A.

Solution: a) If  $\mu(A) < \infty$ , then  $\mu(A) = \mu(A \cup \emptyset) = \mu(A) + \mu(\emptyset)$  and so  $\mu(\emptyset) = 0$ . b) It is easy to check that  $\mu$  defined as  $\mu(A) = \infty$  for any set A is countably additive: let  $\{A_j\}_{j=1}^{\infty} \subseteq A$  be a sequence of disjoint measurable sets and let  $B = \bigcup_{j=1}^{\infty} A_j$ . Then  $\mu(B) = \infty = \sum_j \mu(A_j)$ .

**Problem 1.2.4** Let  $(X, \mathcal{M}, \mu)$  be a measure space. Show that if  $E, F \in \mathcal{M}$ , then

$$\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F).$$

Solution: If  $\mu(E) = \infty$  or  $\mu(F) = \infty$  then  $\mu(E \cup F) = \infty$  and the equality trivially holds. If  $\mu(E) < \infty$  and  $\mu(F) < \infty$ , then  $\mu(E \cap F) < \infty$  and so, as  $E = (E \setminus F) \cup (E \cap F)$  and this

union is disjoint, we deduce that  $\mu(E) = \mu(E \setminus F) + \mu(E \cap F) \Rightarrow \mu(E \setminus F) = \mu(E) - \mu(E \cap F)$ . Similarly,  $\mu(F \setminus E) = \mu(F) - \mu(E \cap F)$ . Also,  $E \cup F = (E \setminus F) \cup (E \cap F) \cup (F \setminus E)$  and this union is also disjoint. So,

$$\mu(E \cup F) = \mu(E \setminus F) + \mu(E \cap F) + \mu(F \setminus E)$$
  
=  $\mu(E) - \mu(E \cap F) + \mu(E \cap F) + \mu(F) - \mu(E \cap F) = \mu(E) + \mu(F) - \mu(E \cap F).$ 

**Problem 1.2.5** Let  $(X, \mathcal{M}, \mu)$  be a measure space. Given  $E \in \mathcal{M}$  we define

 $\mu_E(A) = \mu(A \cap E)$ , for all  $A \in X$ .

Prove that que  $\mu_E$  is also a measure on  $(X, \mathcal{M})$ . We say that  $\mu_E$  is *concentrated* at E because  $\mu_E(A) = 0$  when  $A \subseteq E^c$ .

Solution: a) Since  $\mu$  is a measure:  $\mu_E(\emptyset) = \mu(\emptyset \cap E) = \mu(\emptyset) = 0$ ; b) Let  $\{A_j\}_{j=1}^{\infty}$  be a disjoint countable collection for sets in  $\mathcal{A}$ . Then the collection  $\{A_j \cap E\}_{j=1}^{\infty}$  is also disjoint and, as  $\mu$  is a measure,

$$\mu_E\Big(\bigcup_{j=1}^{\infty} A_j\Big) = \mu\Big(\Big(\bigcup_{j=1}^{\infty} A_j\Big) \cap E\Big) = \mu\Big(\bigcup_{j=1}^{\infty} (A_j \cap E)\Big) = \sum_{j=1}^{\infty} \mu(A_j \cap E) = \sum_{j=1}^{\infty} \mu_E(A_j).$$

**Problem 1.2.6** Let X be an infinite countable set. Let us consider the  $\sigma$ -algebra  $\mathcal{M} = \mathcal{P}(X)$  and let us define for  $A \in \mathcal{M}$ :

$$\mu(A) = \begin{cases} 0, & \text{if } A \text{ is finite,} \\ \infty, & \text{if } A \text{ is infinite.} \end{cases}$$

- a) Prove that  $\mu$  is finitely additive, but not countably additive.
- b) Prove that  $X = \lim_{n \to \infty} A_n$ , being  $\{A_n\}_{n=1}^{\infty}$  an increasing sequence of sets such that  $\mu(A_n) = 0$  for all  $n \in \mathbb{N}$ .

Solution: a)  $\mu$  is finitely additive: Let  $A_1, \ldots, A_n$  be disjoint measurable sets. If of all them are finite them  $\cup_j A_j$  is also finite and so  $\mu(\cup_j A_j) = 0 = \sum_j \mu(A_j)$ . If  $\exists A_j$  infinite then  $\cup_j A_j$ is also infinite ad so  $\mu(\cup_j A_j) = \infty = \sum_j \mu(A_j)$ . On the other hand, if  $X = \{x_n\}_{n=1}^{\infty}$  then  $X = \bigcup_{j=1}^{\infty} \{x_j\}$  and  $\mu(X) = \infty \neq \sum_{j=1}^{\infty} \mu(\{x_j\}) = \sum_{j=1}^{\infty} 0 = 0$ . Hence  $\mu$  is not countably additive. b) If  $X = \{x_n\}_{n=1}^{\infty}$  take  $A_n = \{x_1, \ldots, x_n\}$ . Then  $X = \bigcup_{n=1}^{\infty} A_n$ ,  $A_n \subset A_{n+1}$  and  $\mu(A_n) = 0$  for all n.

**Problem 1.2.7** Let  $X = \mathbb{N}$ ,  $\mathcal{M} = \mathcal{P}(\mathbb{N})$  and  $\mu$  be the counting measure on X. Construct a decreasing sequence of subsets  $A_n \in \mathcal{P}(\mathbb{N})$  such that  $\bigcap_n A_n = \emptyset$ , but  $\lim_{n \to \infty} \mu(A_n) \neq 0$ .

Solution: Take  $A_n = \{n, n+1, \ldots\}$ . Then  $A_{n+1} \subset A_n$ ,  $\mu(A_n) = \infty$  for all  $n, \bigcap_{n=1}^{\infty} A_n = \emptyset$  and so  $\lim_{n \to \infty} \mu(A_n) = \infty \neq 0$ .

**Problem 1.2.8**<sup>\*</sup> Let  $(X, \mathcal{A})$  be a measurable space. Let  $\{\mu_n\}_{n=1}^{\infty}$  be a sequence of measures on  $(X, \mathcal{A})$ .

a) Prove that if  $\{\mu_n\}_{n=1}^{\infty}$  is increasing, that is to say that

$$\mu_n(A) \le \mu_{n+1}(A), \qquad \forall A \in \mathcal{A},$$

then

$$\mu(A) := \lim_{n \to \infty} \mu_n(A)$$

defines a measure on  $(X, \mathcal{A})$ .

b) Prove that for any sequence of measures  $\{\mu_n\}_{n=1}^{\infty}$ 

$$\mu(A) = \sum_{n=1}^{\infty} \mu_n(A)$$

defines a measure on  $(X, \mathcal{A})$ .

*Hints:* a) Consider a countable disjoint family  $\{A_j\} \subset \mathcal{A}$  and let  $A = \bigcup_j A_j$ . If  $\mu(A) = \infty$ , then for all  $M \in \mathbb{N}$ ,  $\exists N = N(M)$  such that  $\mu_n(A) > M$  for all  $n \ge N$ . Prove that then  $\exists K \in \mathbb{N}$  such that  $\sum_{j=1}^{K} \mu(A_j) > M - 1$ . If  $\mu(A) < \infty$ , then  $\mu_n(A) = \sum_{j=1}^{\infty} \mu_n(A_j) \le \sum_{j=1}^{\infty} \mu(A_j)$  and so,  $\mu(A) \le \sum_{j=1}^{\infty} \mu(A_j)$ . Also,  $\mu_n(A) = \sum_{j=1}^{\infty} \mu_n(A_j) \ge \sum_{j=1}^{K} \mu_n(A_j)$  and so,  $\mu(A) \ge \sum_{j=1}^{K} \mu(A_j)$ for every K. Hence,  $\mu(A) \ge \sum_{j=1}^{\infty} \mu(A_j)$ . b) Take  $\nu_n = \sum_{j=1}^{n} \mu_j$  and apply a).

**Problem 1.2.9** Let  $(X, \mathcal{M}, \mu)$  be a measure space such that for all  $E \in \mathcal{M}$  with  $\mu(E) = \infty$  there exists  $F \in \mathcal{M}$  such that  $F \subset E$  and  $0 < \mu(F) < \infty$ . A measure space or a measure with this property is called *semifinite*.

- a) Show that a  $\sigma$ -finite measure is semifinite.
- b) Let X be a non countable set. Let  $\mathcal{M} = \mathcal{P}(X)$ . Let  $\mu$  be the counting measure. Prove that  $\mu$  is semifinite but it is not  $\sigma$ -finite.

Solution: a) That X is  $\sigma$ -finite means that  $X = \bigcup_{n=1}^{\infty} X_n$  with  $X_n$  disjoint subsets and  $\mu(X_n) < \infty$ . Let  $E \in \mathcal{M}$  with  $\mu(E) = \infty$ . We have that  $E = E \cap X = \bigcup_{n=1}^{\infty} E_n$  with  $E_n = E \cap X_n$  and  $\mu(E_{n_0}) > 0$  for some  $n_0$ , since on the contrary if  $\mu(E_n) = 0$  for all n, then  $\mu(E) = \sum_n \mu(E_n) = 0$ , a contradiction. As  $0 < \mu(E_{n_0}) \le \mu(X_{n_0}) < \infty$  we see that we can choose  $F = E_{n_0}$  and so, X is semifinite.

b)  $\mu$  can not be  $\sigma$ -finite because if  $X = \bigcup_{n=1}^{\infty} X_n$  with  $X_n$  disjoint subsets and  $\mu(X_n) < \infty$  then, as  $\mu$  is the counting measure, the subsets  $X_n$  must be finite. But then, X should be a countable union of finite sets, and so X should be countable, a contradiction. Finally,  $\mu$  is semifinite because if E is a subset with  $\mu(E) = \infty$  then  $E \neq \emptyset$  and so  $\exists x_0 \in E$  and by taking  $F = \{x_0\}$ we have  $F \subset E$  and  $\mu(E) = 1 < \infty$ .

**Problem 1.2.10** Let  $(X, \mathcal{M}, \mu)$  be a semifinite measure space and let  $E \in \mathcal{M}$  be a set with  $\mu(E) = \infty$ .

a) Prove that

$$\sup\{\mu(F): F \in \mathcal{M}, F \subset E, \mu(F) < \infty\} = \infty.$$

b) Prove that if c is a positive real number, then there exists a set  $F \subset E$  such that  $F \in \mathcal{M}$ and  $c < \mu(F) < \infty$ .

*Hint:* a) Denote by s the supremum and suppose that  $s < \infty$ . Show that there exists  $F \subset E$  with  $\mu(F) = s$ . But then if  $E' = E \setminus F$  then  $\mu(E') = \infty$  and  $\exists F' \subset E'$  with  $0 < \mu(E') < \infty$ . Get a contradiction with the set  $F \cup F'$ .

Solution: a) Let us suppose that  $s < \infty$ . Then, from the definition of a supremum, we obtain that there exists a sequence  $\{F_n\}_{n=1}^{\infty} \subset \mathcal{M}$  with  $F_n \subset E$  and  $\mu(F_n) \nearrow s$  as  $n \to \infty$ . The sequence  $F_n$  can be even chosen increasing by substituting, if necessary,  $F_n$  by  $F'_n = F_1 \cup \cdots \cup F_n$ . Hence we have found a subset  $F = \bigcup_{n=1}^{\infty} F_n \subset E$  with  $\mu(F) = \lim_{n \to \infty} \mu(F_n) = s < \infty$  and so  $E \subsetneq F$ . Since  $\mu(E) = \infty$  the subset  $E' = E \setminus F$  must have  $\mu(E') = \infty$ . As  $\mu$  is semifinite this implies that  $\exists F' \subset E'$  with  $0 < \mu(F') < \infty$ . But then  $F \cup F' \subset E$  and  $\mu(F \cup F') = \mu(F) + \mu(F') = s + \mu(F') > s$ , a contradiction with the definition of s. Hence,  $s = \infty$ .

b) If c > 0, then  $\exists F \in \mathcal{M}, F \subset E$  with  $c < \mu(F) < \infty$  because if there not exists such an F, then  $s \leq c$  which is impossible since  $s = \infty$ .

**Problem 1.2.11** Let  $\{A_n\}$  be measurable sets such that  $\sum_{n=1}^{\infty} \mu(A_n) < \infty$ . Prove that x belongs to only a finite number of  $A_n$ 's for a.e.  $x \in X$ . Alternatively, the set A of points x belonging to an infinite number of  $A_n$ 's, has zero measure (Borel-Cantelli Lemma).

*Hint:*  $A = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} A_n.$ 

Solution: Let  $A = \{x \in X : x \in A_n \text{ for infinitely many } n\text{'s}\}$ . Then,  $x \in A \iff x \in \bigcup_{n=N}^{\infty} A_n$  for all  $N \in \mathbb{N}$  and so  $A = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} A_n$ . But then, for all  $N \in \mathbb{N}$ ,

$$\mu(A) \le \mu\left(\bigcup_{n=N}^{\infty} A_n\right) \le \sum_{n=N}^{\infty} \mu(A_n) \to 0 \quad \text{as } N \to \infty,$$

since  $\sum_{n=N}^{\infty} \mu(A_n)$  are the tails of the convergent series  $\sum_{n=1}^{\infty} \mu(A_n)$ . Therefore  $\mu(A) \leq 0$  and so, as  $\mu$  is a measure,  $\mu(A) = 0$ .

**Problem 1.2.12**<sup>\*</sup> Let  $(X, \mathcal{A}, \mu)$  be a measure space, and let

$$\mathcal{N} = \{ N \subseteq X : N \subseteq B \in \mathcal{A}, \, \mu(B) = 0 \} \,.$$

Prove that

- i)  $\overline{\mathcal{A}} = \{A \cup N : A \in \mathcal{A}, N \in \mathcal{N}\}$  is a  $\sigma$ -algebra. In fact,  $\overline{\mathcal{A}}$  is the  $\sigma$ -algebra generated by  $\mathcal{A} \cup \mathcal{N}$ .
- ii)  $\overline{\mu}: \overline{\mathcal{A}} \longrightarrow [0, \infty]$  given by  $\overline{\mu}(A \cup N) = \mu(A)$  is a well-defined measure and extends  $\mu$ .
- iii)  $(X, \overline{\mathcal{A}}, \overline{\mu})$  is a complete measure space.

Solution: i) a)  $\emptyset \in \overline{\mathcal{A}}$  since  $\emptyset \in \mathcal{N}$ ,  $\emptyset = \emptyset \cup \emptyset$  and  $\emptyset \in \mathcal{A} \cap \mathcal{N}$ . b) Let  $E \in \mathcal{A}$ ,  $E = A \cup N$ with  $A \in \mathcal{A}$ ,  $N \subseteq B$  and  $\mu(B) = 0$ . Let  $M = B \setminus N$ . Then  $B = M \cup N$  and  $E^c = A^c \cap N^c = (A^c \setminus B) \cap (A^c \cap M) \in \overline{\mathcal{A}}$  because  $A^c \setminus B \in \mathcal{A}$  and  $A^c \cap M \in \mathcal{N}$ . c) Let  $\{E_j\}_{j=1}^{\infty} \subset \overline{\mathcal{A}}$ ,  $E_j = A_j \cup N_j$ ,  $A_j \in \mathcal{A}$ ,  $N_j \subseteq B_j$ ,  $\mu(B_j) = 0$ . Then

$$\bigcup_{j=1}^{\infty} E_j = \bigcup_{j=1}^{\infty} (A_j \cup N_j) = \left(\bigcup_{j=1}^{\infty} A_j\right) \bigcup \left(\bigcup_{j=1}^{\infty} N_j\right) \in \overline{\mathcal{A}}$$

since  $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$  and  $\bigcup_{j=1}^{\infty} N_j \in \mathcal{N}$  because  $\bigcup_{j=1}^{\infty} N_j \subset \bigcup_{j=1}^{\infty} B_j$ ,  $\mu \left( \bigcup_{j=1}^{\infty} B_j \right) \leq \sum_{j=1}^{\infty} \mu(B_j) = 0$ . d)  $\overline{\mathcal{A}} = \sigma(\mathcal{A} \cup \mathcal{N})$  since clearly  $\mathcal{A} \cup \mathcal{N} \subset \overline{\mathcal{A}}$  and if  $\mathcal{B}$  is any  $\sigma$ -algebra containing  $\mathcal{A} \cup \mathcal{N}$  then  $\forall A \in \mathcal{A}, \forall N \in \mathcal{N}$ , in particular,  $A, N \in \mathcal{B}$  and so  $A \cup N \in \mathcal{B}$ .

ii) a)  $\overline{\mu}$  is well-defined: Let us suppose that  $E = A \cup N = A' \cup N' \in \overline{A}$  with  $A, A' \in A, N \subseteq B$ ,  $N' \subseteq B', \ \mu(B) = \mu(B') = 0$ . Then:  $A \subseteq A' \cup B' \Rightarrow \mu(A) \leq \mu(A') + \mu(B') = \mu(A')$  and  $A' \subseteq A \cup B \Rightarrow \mu(A') \leq \mu(A) + \mu(B) = \mu(A)$ . Hence  $\mu(A) = \mu(A')$ . b)  $\overline{\mu}$  is a measure:

- $\varnothing = \varnothing \cup \varnothing \Rightarrow \overline{\mu}(\varnothing) = \mu(\varnothing) = 0.$
- Let  $\{E_j\}_{j=1}^{\infty} \subset \overline{\mathcal{A}}, E_j = A_j \cup N_j, A_j \in \mathcal{A}, N_j \in \mathcal{N}$ . Then

$$E := \bigcup_{j=1}^{\infty} E_j = \left(\bigcup_{j=1}^{\infty} A_j\right) \bigcup \left(\bigcup_{j=1}^{\infty} N_j\right) \quad \text{with } \bigcup_{j=1}^{\infty} A_j \in \mathcal{A}, \bigcup_{j=1}^{\infty} N_j \in \mathcal{N}$$

and so  $\overline{\mu}(E) = \mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} \mu(A_j) = \sum_{j=1}^{\infty} \overline{\mu}(E_j)$ . iii) Let  $F \subseteq E \in \overline{\mathcal{A}}$  with  $\overline{\mu}(E) = 0$ . Let  $E = A \cup N$  with  $A \in \mathcal{A}, N \in \mathcal{N}, N \subseteq B$  and  $\mu(B) = 0$ . Then  $\mu(A) = \overline{\mu}(E) = 0$  and so  $E \subseteq A \cup B, \ \mu(A \cup B) \leq \mu(A) + \mu(B) = 0$ . Hence as  $F \subseteq E \subseteq A \cup B$  and  $\mu(A \cup B) = 0$  we conclude that  $F \in \mathcal{N} \subset \overline{\mathcal{A}}$  and  $\overline{\mu}(F) = 0$ .