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1 Measure Theory

1.2. Measure spaces

Problem 1.2.1 Let X be a set and A = P(X). Let us also consider a function p : X −→ [0,∞].
Now, we define for A ⊆ X the set function

µ(A) :=
∑
x∈A

p(x) = sup
{x1,...,xn}⊆A

n∑
j=1

p(xj) .

Prove that µ is a measure on X. In the particular case that p(x) = 1 for all x ∈ X, this measure
is known as the counting measure in X, since in this case µ(A) =

∑
x∈A 1 = #A, the number of

elements of A.

Solution: First µ(∅) = 0 since for ∅ the sum is empty. Now, if {Aj}∞j=1 is a sequence of disjoint
subsets of X, and B = ∪∞j=1Aj then, if x ∈ B, x only belongs to a unique Aj . Also, if E,F are
contained in [0,∞) it is easy to check that sup(A+B) = supA+ supB. Hence

µ(B) =
∑
x∈B

p(x) =
∞∑
j=1

∑
x∈Aj

p(x) =
∞∑
j=1

µ(Aj) .

Problem 1.2.2 Let (X,A) be a measurable space and define the function δx0 : A −→ [0,∞]
by

δx0(A) =

{
1 , if x0 ∈ A ,
0, otherwise .

Prove that δx0 is a measure on (X,A) (it is called the δ-Dirac measure concentrated at x0).

Solution: δx0 is a particular case of the measure defined in problem 1.2.1. Here p(x) = 1 if
x = x0 and p(x) = 0 otherwise.

Problem 1.2.3 Let (X,A) be a measurable space and let µ : A −→ [0,∞] be a countably
additive function on the σ-algebra A.

a) Show that if µ satisfies that µ(A) < ∞ for some A ∈ A, then µ(∅) = 0 (and therefore µ
is a measure).

b) Find an example for which µ(∅) 6= 0 (and therefore the countably subadditivity property
does not imply that µ is a measure).

Hint: b) Take µ(A) =∞ for any set A.

Solution: a) If µ(A) <∞, then µ(A) = µ(A ∪∅) = µ(A) + µ(∅) and so µ(∅) = 0. b) It is easy
to check that µ defined as µ(A) =∞ for any set A is countably additive: let {Aj}∞j=1 ⊆ A be a
sequence of disjoint measurable sets and let B = ∪∞j=1Aj . Then µ(B) =∞ =

∑
j µ(Aj).

Problem 1.2.4 Let (X,M, µ) be a measure space. Show that if E,F ∈M, then

µ(E) + µ(F ) = µ(E ∪ F ) + µ(E ∩ F ) .

Solution: If µ(E) = ∞ or µ(F ) = ∞ then µ(E ∪ F ) = ∞ and the equality trivially holds. If
µ(E) < ∞ and µ(F ) < ∞, then µ(E ∩ F ) < ∞ and so, as E = (E \ F ) ∪ (E ∩ F ) and this
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union is disjoint, we deduce that µ(E) = µ(E \ F ) + µ(E ∩ F )⇒ µ(E \ F ) = µ(E)− µ(E ∩ F ).
Similarly, µ(F \ E) = µ(F ) − µ(E ∩ F ). Also, E ∪ F = (E \ F ) ∪ (E ∩ F ) ∪ (F \ E) and this
union is also disjoint. So,

µ(E ∪ F ) = µ(E \ F ) + µ(E ∩ F ) + µ(F \ E)

= µ(E)− µ(E ∩ F ) + µ(E ∩ F ) + µ(F )− µ(E ∩ F ) = µ(E) + µ(F )− µ(E ∩ F ).

Problem 1.2.5 Let (X,M, µ) be a measure space. Given E ∈M we define

µE(A) = µ(A ∩ E) , for all A ∈ X .

Prove that que µE is also a measure on (X,M). We say that µE is concentrated at E because
µE(A) = 0 when A ⊆ Ec.

Solution: a) Since µ is a measure: µE(∅) = µ(∅ ∩ E) = µ(∅) = 0;
b) Let {Aj}∞j=1 be a disjoint countable collection for sets in A. Then the collection {Aj ∩E}∞j=1

is also disjoint and, as µ is a measure,

µE

( ∞⋃
j=1

Aj

)
= µ

(( ∞⋃
j=1

Aj

)
∩ E

)
= µ

( ∞⋃
j=1

(Aj ∩ E)
)

=
∞∑
j=1

µ(Aj ∩ E) =
∞∑
j=1

µE(Aj) .

Problem 1.2.6 Let X be an infinite countable set. Let us consider the σ-algebra M = P(X)
and let us define for A ∈M:

µ(A) =

{
0 , if A is finite,
∞ , if A is infinite.

a) Prove that µ is finitely additive, but not countably additive.

b) Prove that X = limn→∞An, being {An}∞n=1 an increasing sequence of sets such that
µ(An) = 0 for all n ∈ N.

Solution: a) µ is finitely additive: Let A1, . . . , An be disjoint measurable sets. If of all them
are finite them ∪jAj is also finite and so µ(∪jAj) = 0 =

∑
j µ(Aj). If ∃Aj infinite then ∪jAj

is also infinite ad so µ(∪jAj) = ∞ =
∑

j µ(Aj). On the other hand, if X = {xn}∞n=1 then
X = ∪∞j=1{xj} and µ(X) = ∞ 6=

∑∞
j=1 µ({xj}) =

∑∞
j=1 0 = 0. Hence µ is not countably

additive.
b) If X = {xn}∞n=1 take An = {x1, . . . , xn}. Then X = ∪∞n=1An, An ⊂ An+1 and µ(An) = 0 for
all n.

Problem 1.2.7 Let X = N, M = P(N) and µ be the counting measure on X. Construct a
decreasing sequence of subsets An ∈ P(N) such that ∩nAn = ∅, but limn→∞ µ(An) 6= 0.

Solution: Take An = {n, n + 1, . . .}. Then An+1 ⊂ An, µ(An) = ∞ for all n, ∩∞n=1An = ∅ and
so limn→∞ µ(An) =∞ 6= 0.

Problem 1.2.8∗ Let (X,A) be a measurable space. Let {µn}∞n=1 be a sequence of measures
on (X,A).

a) Prove that if {µn}∞n=1 is increasing, that is to say that

µn(A) ≤ µn+1(A) , ∀A ∈ A,

then
µ(A) := lim

n→∞
µn(A)

defines a measure on (X,A).
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b) Prove that for any sequence of measures {µn}∞n=1

µ(A) =

∞∑
n=1

µn(A)

defines a measure on (X,A).

Hints: a) Consider a countable disjoint family {Aj} ⊂ A and let A = ∪jAj . If µ(A) =∞, then
for all M ∈ N, ∃N = N(M) such that µn(A) > M for all n ≥ N . Prove that then ∃K ∈ N such
that

∑K
j=1 µ(Aj) > M − 1. If µ(A) < ∞, then µn(A) =

∑∞
j=1 µn(Aj) ≤

∑∞
j=1 µ(Aj) and so,

µ(A) ≤
∑∞

j=1 µ(Aj). Also, µn(A) =
∑∞

j=1 µn(Aj) ≥
∑K

j=1 µn(Aj) and so, µ(A) ≥
∑K

j=1 µ(Aj)
for every K. Hence, µ(A) ≥

∑∞
j=1 µ(Aj). b) Take νn =

∑n
j=1 µj and apply a).

Problem 1.2.9 Let (X,M, µ) be a measure space such that for all E ∈ M with µ(E) = ∞
there exists F ∈ M such that F ⊂ E and 0 < µ(F ) < ∞. A measure space or a measure with
this property is called semifinite.

a) Show that a σ-finite measure is semifinite.

b) Let X be a non countable set. Let M = P(X). Let µ be the counting measure. Prove
that µ is semifinite but it is not σ-finite.

Solution: a) ThatX is σ-finite means thatX=∪∞n=1Xn withXn disjoint subsets and µ(Xn) <∞.
Let E ∈ M with µ(E) = ∞. We have that E = E ∩ X = ∪∞n=1En with En = E ∩ Xn and
µ(En0) > 0 for some n0, since on the contrary if µ(En) = 0 for all n, then µ(E) =

∑
n µ(En) = 0,

a contradiction. As 0 < µ(En0) ≤ µ(Xn0) < ∞ we see that we can choose F = En0 and so, X
is semifinite.
b) µ can not be σ-finite because if X=∪∞n=1Xn with Xn disjoint subsets and µ(Xn) <∞ then,
as µ is the counting measure, the subsets Xn must be finite. But then, X should be a countable
union of finite sets, and so X should be countable, a contradiction. Finally, µ is semifinite
because if E is a subset with µ(E) = ∞ then E 6= ∅ and so ∃x0 ∈ E and by taking F = {x0}
we have F ⊂ E and µ(E) = 1 <∞.

Problem 1.2.10 Let (X,M, µ) be a semifinite measure space and let E ∈ M be a set with
µ(E) =∞.

a) Prove that
sup{µ(F ) : F ∈M, F ⊂ E,µ(F ) <∞} =∞ .

b) Prove that if c is a positive real number, then there exists a set F ⊂ E such that F ∈ M
and c < µ(F ) <∞.

Hint: a) Denote by s the supremum and suppose that s < ∞. Show that there exists F ⊂ E
with µ(F ) = s. But then if E′ = E \ F then µ(E′) = ∞ and ∃F ′ ⊂ E′ with 0 < µ(E′) < ∞.
Get a contradiction with the set F ∪ F ′.
Solution: a) Let us suppose that s < ∞. Then, from the definition of a supremum, we obtain
that there exists a sequence {Fn}∞n=1 ⊂M with Fn ⊂ E and µ(Fn)↗ s as n→∞. The sequence
Fn can be even chosen increasing by substituting, if necessary, Fn by F ′n = F1 ∪ · · · ∪Fn. Hence
we have found a subset F = ∪∞n=1Fn ⊂ E with µ(F ) = limn→∞ µ(Fn) = s < ∞ and so E ( F .
Since µ(E) = ∞ the subset E′ = E \ F must have µ(E′) = ∞. As µ is semifinite this implies
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that ∃F ′ ⊂ E′ with 0 < µ(F ′) < ∞. But then F ∪ F ′ ⊂ E and µ(F ∪ F ′) = µ(F ) + µ(F ′) =
s+ µ(F ′) > s, a contradiction with the definition of s. Hence, s =∞.
b) If c > 0, then ∃F ∈ M, F ⊂ E with c < µ(F ) < ∞ because if there not exists such an F ,
then s ≤ c which is impossible since s =∞.

Problem 1.2.11 Let {An} be measurable sets such that
∑∞

n=1 µ(An) < ∞. Prove that x
belongs to only a finite number of An’s for a.e. x ∈ X. Alternatively, the set A of points x
belonging to an infinite number of An’s, has zero measure (Borel-Cantelli Lemma).

Hint: A =

∞⋂
N=1

∞⋃
n=N

An.

Solution: Let A = {x ∈ X : x ∈ An for infinitely many n’s}. Then, x ∈ A ⇐⇒ x ∈
⋃∞

n=N An

for all N ∈ N and so A =
⋂∞

N=1

⋃∞
n=N An. But then, for all N ∈ N,

µ(A) ≤ µ
( ∞⋃

n=N

An

)
≤
∞∑

n=N

µ(An)→ 0 as N →∞,

since
∑∞

n=N µ(An) are the tails of the convergent series
∑∞

n=1 µ(An). Therefore µ(A) ≤ 0 and
so, as µ is a measure, µ(A) = 0.

Problem 1.2.12∗ Let (X,A, µ) be a measure space, and let

N = {N ⊆ X : N ⊆ B ∈ A, µ(B) = 0} .

Prove that

i) A = {A ∪ N : A ∈ A, N ∈ N } is a σ-algebra. In fact, A is the σ-algebra generated by
A ∪N .

ii) µ : A −→ [0,∞] given by µ(A ∪N) = µ(A) is a well-defined measure and extends µ.

iii) (X,A, µ) is a complete measure space.

Solution: i) a) ∅ ∈ A since ∅ ∈ N , ∅ = ∅ ∪ ∅ and ∅ ∈ A ∩ N . b) Let E ∈ A, E = A ∪ N
with A ∈ A, N ⊆ B and µ(B) = 0. Let M = B \N . Then B = M ∪N and Ec = Ac ∩N c =
(Ac\B)∩(Ac∩M) ∈ A because Ac\B ∈ A and Ac∩M ∈ N . c) Let {Ej}∞j=1 ⊂ A, Ej = Aj∪Nj ,
Aj ∈ A, Nj ⊆ Bj , µ(Bj) = 0. Then

∞⋃
j=1

Ej =

∞⋃
j=1

(Aj ∪Nj) =
( ∞⋃

j=1

Aj

)⋃( ∞⋃
j=1

Nj

)
∈ A

since
⋃∞

j=1Aj∈A and
⋃∞

j=1Nj∈N because
⋃∞

j=1Nj ⊂
⋃∞

j=1Bj , µ
(⋃∞

j=1Bj

)
≤
∑∞

j=1 µ(Bj) = 0.

d) A = σ(A ∪ N ) since clearly A ∪ N ⊂ A and if B is any σ-algebra containing A ∪ N then
∀A ∈ A, ∀N ∈ N , in particular, A,N ∈ B and so A ∪N ∈ B.

ii) a) µ is well-defined: Let us suppose that E = A ∪N = A′ ∪N ′ ∈ A with A,A′ ∈ A, N ⊆ B,
N ′ ⊆ B′, µ(B) = µ(B′) = 0. Then: A ⊆ A′ ∪ B′ ⇒ µ(A) ≤ µ(A′) + µ(B′) = µ(A′) and
A′ ⊆ A ∪B ⇒ µ(A′) ≤ µ(A) + µ(B) = µ(A). Hence µ(A) = µ(A′). b) µ is a measure:
• ∅ = ∅ ∪∅⇒ µ(∅) = µ(∅) = 0.
• Let {Ej}∞j=1 ⊂ A, Ej = Aj ∪Nj , Aj ∈ A, Nj ∈ N . Then

E :=

∞⋃
j=1

Ej =
( ∞⋃

j=1

Aj

)⋃( ∞⋃
j=1

Nj

)
with

∞⋃
j=1

Aj ∈ A ,
∞⋃
j=1

Nj ∈ N
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and so µ(E) = µ
(⋃∞

j=1Aj

)
=
∑∞

j=1 µ(Aj) =
∑∞

j=1 µ(Ej) .

iii) Let F ⊆ E ∈ A with µ(E) = 0. Let E = A ∪ N with A ∈ A, N ∈ N , N ⊆ B and
µ(B) = 0. Then µ(A) = µ(E) = 0 and so E ⊆ A ∪ B, µ(A ∪ B) ≤ µ(A) + µ(B) = 0. Hence as
F ⊆ E ⊆ A ∪B and µ(A ∪B) = 0 we conclude that F ∈ N ⊂ A and µ(F ) = 0.


