uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems
Chapter 1: Measure theory
Section 1.2: Measure spaces

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

1 Measure Theory

1.2. Measure spaces

Problem 1.2.1 Let X be a set and $\mathcal{A}=\mathcal{P}(X)$. Let us also consider a function $p: X \longrightarrow[0, \infty]$. Now, we define for $A \subseteq X$ the set function

$$
\mu(A):=\sum_{x \in A} p(x)=\sup _{\left\{x_{1}, \ldots, x_{n}\right\} \subseteq A} \sum_{j=1}^{n} p\left(x_{j}\right) .
$$

Prove that μ is a measure on X. In the particular case that $p(x)=1$ for all $x \in X$, this measure is known as the counting measure in X, since in this case $\mu(A)=\sum_{x \in A} 1=\# A$, the number of elements of A.

Solution: First $\mu(\varnothing)=0$ since for \varnothing the sum is empty. Now, if $\left\{A_{j}\right\}_{j=1}^{\infty}$ is a sequence of disjoint subsets of X, and $B=\cup_{j=1}^{\infty} A_{j}$ then, if $x \in B, x$ only belongs to a unique A_{j}. Also, if E, F are contained in $[0, \infty)$ it is easy to check that $\sup (A+B)=\sup A+\sup B$. Hence

$$
\mu(B)=\sum_{x \in B} p(x)=\sum_{j=1}^{\infty} \sum_{x \in A_{j}} p(x)=\sum_{j=1}^{\infty} \mu\left(A_{j}\right) .
$$

Problem 1.2.2 Let (X, \mathcal{A}) be a measurable space and define the function $\delta_{x_{0}}: \mathcal{A} \longrightarrow[0, \infty]$ by

$$
\delta_{x_{0}}(A)= \begin{cases}1, & \text { if } x_{0} \in A \\ 0, & \text { otherwise }\end{cases}
$$

Prove that $\delta_{x_{0}}$ is a measure on (X, \mathcal{A}) (it is called the δ-Dirac measure concentrated at x_{0}).
Solution: $\delta_{x_{0}}$ is a particular case of the measure defined in problem 1.2.1. Here $p(x)=1$ if $x=x_{0}$ and $p(x)=0$ otherwise.

Problem 1.2.3 Let (X, \mathcal{A}) be a measurable space and let $\mu: \mathcal{A} \longrightarrow[0, \infty]$ be a countably additive function on the σ-algebra \mathcal{A}.
a) Show that if μ satisfies that $\mu(A)<\infty$ for some $A \in \mathcal{A}$, then $\mu(\varnothing)=0$ (and therefore μ is a measure).
b) Find an example for which $\mu(\varnothing) \neq 0$ (and therefore the countably subadditivity property does not imply that μ is a measure).

Hint: b) Take $\mu(A)=\infty$ for any set A.
Solution: a) If $\mu(A)<\infty$, then $\mu(A)=\mu(A \cup \varnothing)=\mu(A)+\mu(\varnothing)$ and so $\mu(\varnothing)=0$. b) It is easy to check that μ defined as $\mu(A)=\infty$ for any set A is countably additive: let $\left\{A_{j}\right\}_{j=1}^{\infty} \subseteq \mathcal{A}$ be a sequence of disjoint measurable sets and let $B=\cup_{j=1}^{\infty} A_{j}$. Then $\mu(B)=\infty=\sum_{j} \mu\left(A_{j}\right)$.

Problem 1.2.4 Let (X, \mathcal{M}, μ) be a measure space. Show that if $E, F \in \mathcal{M}$, then

$$
\mu(E)+\mu(F)=\mu(E \cup F)+\mu(E \cap F) .
$$

Solution: If $\mu(E)=\infty$ or $\mu(F)=\infty$ then $\mu(E \cup F)=\infty$ and the equality trivially holds. If $\mu(E)<\infty$ and $\mu(F)<\infty$, then $\mu(E \cap F)<\infty$ and so, as $E=(E \backslash F) \cup(E \cap F)$ and this
union is disjoint, we deduce that $\mu(E)=\mu(E \backslash F)+\mu(E \cap F) \Rightarrow \mu(E \backslash F)=\mu(E)-\mu(E \cap F)$. Similarly, $\mu(F \backslash E)=\mu(F)-\mu(E \cap F)$. Also, $E \cup F=(E \backslash F) \cup(E \cap F) \cup(F \backslash E)$ and this union is also disjoint. So,

$$
\begin{aligned}
\mu(E \cup F) & =\mu(E \backslash F)+\mu(E \cap F)+\mu(F \backslash E) \\
& =\mu(E)-\mu(E \cap F)+\mu(E \cap F)+\mu(F)-\mu(E \cap F)=\mu(E)+\mu(F)-\mu(E \cap F) .
\end{aligned}
$$

Problem 1.2.5 Let (X, \mathcal{M}, μ) be a measure space. Given $E \in \mathcal{M}$ we define

$$
\mu_{E}(A)=\mu(A \cap E), \quad \text { for all } A \in X .
$$

Prove that que μ_{E} is also a measure on (X, \mathcal{M}). We say that μ_{E} is concentrated at E because $\mu_{E}(A)=0$ when $A \subseteq E^{c}$.
Solution: a) Since μ is a measure: $\mu_{E}(\varnothing)=\mu(\varnothing \cap E)=\mu(\varnothing)=0$;
b) Let $\left\{A_{j}\right\}_{j=1}^{\infty}$ be a disjoint countable collection for sets in \mathcal{A}. Then the collection $\left\{A_{j} \cap E\right\}_{j=1}^{\infty}$ is also disjoint and, as μ is a measure,

$$
\mu_{E}\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\mu\left(\left(\bigcup_{j=1}^{\infty} A_{j}\right) \cap E\right)=\mu\left(\bigcup_{j=1}^{\infty}\left(A_{j} \cap E\right)\right)=\sum_{j=1}^{\infty} \mu\left(A_{j} \cap E\right)=\sum_{j=1}^{\infty} \mu_{E}\left(A_{j}\right)
$$

Problem 1.2.6 Let X be an infinite countable set. Let us consider the σ-algebra $\mathcal{M}=\mathcal{P}(X)$ and let us define for $A \in \mathcal{M}$:

$$
\mu(A)= \begin{cases}0, & \text { if } A \text { is finite } \\ \infty, & \text { if } A \text { is infinite }\end{cases}
$$

a) Prove that μ is finitely additive, but not countably additive.
b) Prove that $X=\lim _{n \rightarrow \infty} A_{n}$, being $\left\{A_{n}\right\}_{n=1}^{\infty}$ an increasing sequence of sets such that $\mu\left(A_{n}\right)=0$ for all $n \in \mathbb{N}$.

Solution: a) μ is finitely additive: Let A_{1}, \ldots, A_{n} be disjoint measurable sets. If of all them are finite them $\cup_{j} A_{j}$ is also finite and so $\mu\left(\cup_{j} A_{j}\right)=0=\sum_{j} \mu\left(A_{j}\right)$. If $\exists A_{j}$ infinite then $\cup_{j} A_{j}$ is also infinite ad so $\mu\left(\cup_{j} A_{j}\right)=\infty=\sum_{j} \mu\left(A_{j}\right)$. On the other hand, if $X=\left\{x_{n}\right\}_{n=1}^{\infty}$ then $X=\cup_{j=1}^{\infty}\left\{x_{j}\right\}$ and $\mu(X)=\infty \neq \sum_{j=1}^{\infty} \mu\left(\left\{x_{j}\right\}\right)=\sum_{j=1}^{\infty} 0=0$. Hence μ is not countably additive.
b) If $X=\left\{x_{n}\right\}_{n=1}^{\infty}$ take $A_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$. Then $X=\cup_{n=1}^{\infty} A_{n}, A_{n} \subset A_{n+1}$ and $\mu\left(A_{n}\right)=0$ for all n.
Problem 1.2.7 Let $X=\mathbb{N}, \mathcal{M}=\mathcal{P}(\mathbb{N})$ and μ be the counting measure on X. Construct a decreasing sequence of subsets $A_{n} \in \mathcal{P}(\mathbb{N})$ such that $\cap_{n} A_{n}=\varnothing$, but $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right) \neq 0$.
Solution: Take $A_{n}=\{n, n+1, \ldots\}$. Then $A_{n+1} \subset A_{n}, \mu\left(A_{n}\right)=\infty$ for all $n, \cap_{n=1}^{\infty} A_{n}=\varnothing$ and so $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\infty \neq 0$.
Problem 1.2.8* Let (X, \mathcal{A}) be a measurable space. Let $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ be a sequence of measures on (X, \mathcal{A}).
a) Prove that if $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ is increasing, that is to say that

$$
\mu_{n}(A) \leq \mu_{n+1}(A), \quad \forall A \in \mathcal{A},
$$

then

$$
\mu(A):=\lim _{n \rightarrow \infty} \mu_{n}(A)
$$

defines a measure on (X, \mathcal{A}).
b) Prove that for any sequence of measures $\left\{\mu_{n}\right\}_{n=1}^{\infty}$

$$
\mu(A)=\sum_{n=1}^{\infty} \mu_{n}(A)
$$

defines a measure on (X, \mathcal{A}).
Hints: a) Consider a countable disjoint family $\left\{A_{j}\right\} \subset \mathcal{A}$ and let $A=\cup_{j} A_{j}$. If $\mu(A)=\infty$, then for all $M \in \mathbb{N}, \exists N=N(M)$ such that $\mu_{n}(A)>M$ for all $n \geq N$. Prove that then $\exists K \in \mathbb{N}$ such that $\sum_{j=1}^{K} \mu\left(A_{j}\right)>M-1$. If $\mu(A)<\infty$, then $\mu_{n}(A)=\sum_{j=1}^{\infty} \mu_{n}\left(A_{j}\right) \leq \sum_{j=1}^{\infty} \mu\left(A_{j}\right)$ and so, $\mu(A) \leq \sum_{j=1}^{\infty} \mu\left(A_{j}\right)$. Also, $\mu_{n}(A)=\sum_{j=1}^{\infty} \mu_{n}\left(A_{j}\right) \geq \sum_{j=1}^{K} \mu_{n}\left(A_{j}\right)$ and so, $\mu(A) \geq \sum_{j=1}^{K} \mu\left(A_{j}\right)$ for every K. Hence, $\mu(A) \geq \sum_{j=1}^{\infty} \mu\left(A_{j}\right)$. b) Take $\nu_{n}=\sum_{j=1}^{n} \mu_{j}$ and apply a).

Problem 1.2.9 Let (X, \mathcal{M}, μ) be a measure space such that for all $E \in \mathcal{M}$ with $\mu(E)=\infty$ there exists $F \in \mathcal{M}$ such that $F \subset E$ and $0<\mu(F)<\infty$. A measure space or a measure with this property is called semifinite.
a) Show that a σ-finite measure is semifinite.
b) Let X be a non countable set. Let $\mathcal{M}=\mathcal{P}(X)$. Let μ be the counting measure. Prove that μ is semifinite but it is not σ-finite.

Solution: a) That X is σ-finite means that $X=\cup_{n=1}^{\infty} X_{n}$ with X_{n} disjoint subsets and $\mu\left(X_{n}\right)<\infty$. Let $E \in \mathcal{M}$ with $\mu(E)=\infty$. We have that $E=E \cap X=\cup_{n=1}^{\infty} E_{n}$ with $E_{n}=E \cap X_{n}$ and $\mu\left(E_{n_{0}}\right)>0$ for some n_{0}, since on the contrary if $\mu\left(E_{n}\right)=0$ for all n, then $\mu(E)=\sum_{n} \mu\left(E_{n}\right)=0$, a contradiction. As $0<\mu\left(E_{n_{0}}\right) \leq \mu\left(X_{n_{0}}\right)<\infty$ we see that we can choose $F=E_{n_{0}}$ and so, X is semifinite.
b) μ can not be σ-finite because if $X=\cup_{n=1}^{\infty} X_{n}$ with X_{n} disjoint subsets and $\mu\left(X_{n}\right)<\infty$ then, as μ is the counting measure, the subsets X_{n} must be finite. But then, X should be a countable union of finite sets, and so X should be countable, a contradiction. Finally, μ is semifinite because if E is a subset with $\mu(E)=\infty$ then $E \neq \varnothing$ and so $\exists x_{0} \in E$ and by taking $F=\left\{x_{0}\right\}$ we have $F \subset E$ and $\mu(E)=1<\infty$.
Problem 1.2.10 Let (X, \mathcal{M}, μ) be a semifinite measure space and let $E \in \mathcal{M}$ be a set with $\mu(E)=\infty$.
a) Prove that

$$
\sup \{\mu(F): F \in \mathcal{M}, F \subset E, \mu(F)<\infty\}=\infty
$$

b) Prove that if c is a positive real number, then there exists a set $F \subset E$ such that $F \in \mathcal{M}$ and $c<\mu(F)<\infty$.

Hint: a) Denote by s the supremum and suppose that $s<\infty$. Show that there exists $F \subset E$ with $\mu(F)=s$. But then if $E^{\prime}=E \backslash F$ then $\mu\left(E^{\prime}\right)=\infty$ and $\exists F^{\prime} \subset E^{\prime}$ with $0<\mu\left(E^{\prime}\right)<\infty$. Get a contradiction with the set $F \cup F^{\prime}$.
Solution: a) Let us suppose that $s<\infty$. Then, from the definition of a supremum, we obtain that there exists a sequence $\left\{F_{n}\right\}_{n=1}^{\infty} \subset \mathcal{M}$ with $F_{n} \subset E$ and $\mu\left(F_{n}\right) \nearrow s$ as $n \rightarrow \infty$. The sequence F_{n} can be even chosen increasing by substituting, if necessary, F_{n} by $F_{n}^{\prime}=F_{1} \cup \cdots \cup F_{n}$. Hence we have found a subset $F=\cup_{n=1}^{\infty} F_{n} \subset E$ with $\mu(F)=\lim _{n \rightarrow \infty} \mu\left(F_{n}\right)=s<\infty$ and so $E \subsetneq F$. Since $\mu(E)=\infty$ the subset $E^{\prime}=E \backslash F$ must have $\mu\left(E^{\prime}\right)=\infty$. As μ is semifinite this implies
that $\exists F^{\prime} \subset E^{\prime}$ with $0<\mu\left(F^{\prime}\right)<\infty$. But then $F \cup F^{\prime} \subset E$ and $\mu\left(F \cup F^{\prime}\right)=\mu(F)+\mu\left(F^{\prime}\right)=$ $s+\mu\left(F^{\prime}\right)>s$, a contradiction with the definition of s. Hence, $s=\infty$.
b) If $c>0$, then $\exists F \in \mathcal{M}, F \subset E$ with $c<\mu(F)<\infty$ because if there not exists such an F, then $s \leq c$ which is impossible since $s=\infty$.
Problem 1.2.11 Let $\left\{A_{n}\right\}$ be measurable sets such that $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty$. Prove that x belongs to only a finite number of A_{n} 's for a.e. $x \in X$. Alternatively, the set A of points x belonging to an infinite number of A_{n} 's, has zero measure (Borel-Cantelli Lemma).
Hint: $A=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} A_{n}$.
Solution: Let $A=\left\{x \in X: x \in A_{n}\right.$ for infinitely many n 's $\}$. Then, $x \in A \Longleftrightarrow x \in \bigcup_{n=N}^{\infty} A_{n}$ for all $N \in \mathbb{N}$ and so $A=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} A_{n}$. But then, for all $N \in \mathbb{N}$,

$$
\mu(A) \leq \mu\left(\bigcup_{n=N}^{\infty} A_{n}\right) \leq \sum_{n=N}^{\infty} \mu\left(A_{n}\right) \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

since $\sum_{n=N}^{\infty} \mu\left(A_{n}\right)$ are the tails of the convergent series $\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$. Therefore $\mu(A) \leq 0$ and so, as μ is a measure, $\mu(A)=0$.

Problem 1.2.12* Let (X, \mathcal{A}, μ) be a measure space, and let

$$
\mathcal{N}=\{N \subseteq X: N \subseteq B \in \mathcal{A}, \mu(B)=0\}
$$

Prove that
i) $\overline{\mathcal{A}}=\{A \cup N: A \in \mathcal{A}, N \in \mathcal{N}\}$ is a σ-algebra. In fact, $\overline{\mathcal{A}}$ is the σ-algebra generated by $\mathcal{A} \cup \mathcal{N}$.
ii) $\bar{\mu}: \overline{\mathcal{A}} \longrightarrow[0, \infty]$ given by $\bar{\mu}(A \cup N)=\mu(A)$ is a well-defined measure and extends μ.
iii) $(X, \overline{\mathcal{A}}, \bar{\mu})$ is a complete measure space.

Solution: i) a) $\varnothing \in \overline{\mathcal{A}}$ since $\varnothing \in \mathcal{N}, \varnothing=\varnothing \cup \varnothing$ and $\varnothing \in \mathcal{A} \cap \mathcal{N}$. b) Let $E \in \mathcal{A}, E=A \cup N$ with $A \in \mathcal{A}, N \subseteq B$ and $\mu(B)=0$. Let $M=B \backslash N$. Then $B=M \cup N$ and $E^{c}=A^{c} \cap N^{c}=$ $\left(A^{c} \backslash B\right) \cap\left(A^{c} \cap M\right) \in \overline{\mathcal{A}}$ because $A^{c} \backslash B \in \mathcal{A}$ and $A^{c} \cap M \in \mathcal{N}$. c) Let $\left\{E_{j}\right\}_{j=1}^{\infty} \subset \overline{\mathcal{A}}, E_{j}=A_{j} \cup N_{j}$, $A_{j} \in \mathcal{A}, N_{j} \subseteq B_{j}, \mu\left(B_{j}\right)=0$. Then

$$
\bigcup_{j=1}^{\infty} E_{j}=\bigcup_{j=1}^{\infty}\left(A_{j} \cup N_{j}\right)=\left(\bigcup_{j=1}^{\infty} A_{j}\right) \bigcup\left(\bigcup_{j=1}^{\infty} N_{j}\right) \in \overline{\mathcal{A}}
$$

since $\bigcup_{j=1}^{\infty} A_{j} \in \mathcal{A}$ and $\bigcup_{j=1}^{\infty} N_{j} \in \mathcal{N}$ because $\bigcup_{j=1}^{\infty} N_{j} \subset \bigcup_{j=1}^{\infty} B_{j}, \mu\left(\bigcup_{j=1}^{\infty} B_{j}\right) \leq \sum_{j=1}^{\infty} \mu\left(B_{j}\right)=0$.
d) $\overline{\mathcal{A}}=\sigma(\mathcal{A} \cup \mathcal{N})$ since clearly $\mathcal{A} \cup \mathcal{N} \subset \overline{\mathcal{A}}$ and if \mathcal{B} is any σ-algebra containing $\mathcal{A} \cup \mathcal{N}$ then $\forall A \in \mathcal{A}, \forall N \in \mathcal{N}$, in particular, $A, N \in \mathcal{B}$ and so $A \cup N \in \mathcal{B}$.
ii) a) $\bar{\mu}$ is well-defined: Let us suppose that $E=A \cup N=A^{\prime} \cup N^{\prime} \in \overline{\mathcal{A}}$ with $A, A^{\prime} \in \mathcal{A}, N \subseteq B$, $N^{\prime} \subseteq B^{\prime}, \mu(B)=\mu\left(B^{\prime}\right)=0$. Then: $A \subseteq A^{\prime} \cup B^{\prime} \Rightarrow \mu(A) \leq \mu\left(A^{\prime}\right)+\mu\left(B^{\prime}\right)=\mu\left(A^{\prime}\right)$ and $A^{\prime} \subseteq A \cup B \Rightarrow \mu\left(A^{\prime}\right) \leq \mu(A)+\mu(B)=\mu(A)$. Hence $\mu(A)=\mu\left(A^{\prime}\right)$. b) $\bar{\mu}$ is a measure:

- $\varnothing=\varnothing \cup \varnothing \Rightarrow \bar{\mu}(\varnothing)=\mu(\varnothing)=0$.
- Let $\left\{E_{j}\right\}_{j=1}^{\infty} \subset \overline{\mathcal{A}}, E_{j}=A_{j} \cup N_{j}, A_{j} \in \mathcal{A}, N_{j} \in \mathcal{N}$. Then

$$
E:=\bigcup_{j=1}^{\infty} E_{j}=\left(\bigcup_{j=1}^{\infty} A_{j}\right) \bigcup\left(\bigcup_{j=1}^{\infty} N_{j}\right) \quad \text { with } \bigcup_{j=1}^{\infty} A_{j} \in \mathcal{A}, \bigcup_{j=1}^{\infty} N_{j} \in \mathcal{N}
$$

and so $\bar{\mu}(E)=\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} \mu\left(A_{j}\right)=\sum_{j=1}^{\infty} \bar{\mu}\left(E_{j}\right)$.
iii) Let $F \subseteq E \in \overline{\mathcal{A}}$ with $\bar{\mu}(E)=0$. Let $E=A \cup N$ with $A \in \mathcal{A}, N \in \mathcal{N}, N \subseteq B$ and $\mu(B)=0$. Then $\mu(A)=\bar{\mu}(E)=0$ and so $E \subseteq A \cup B, \mu(A \cup B) \leq \mu(A)+\mu(B)=0$. Hence as $F \subseteq E \subseteq A \cup B$ and $\mu(A \cup B)=0$ we conclude that $F \in \mathcal{N} \subset \overline{\mathcal{A}}$ and $\bar{\mu}(F)=0$.

