uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems
Chapter 1: Measure theory
Section 1.3: Construction of measures

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

1 Measure Theory

1.3. Construction of measures

Problem 1.3.1 Let μ^{*} be an outer measure in X and let H be a μ^{*}-measurable set. Let us consider the restriction μ_{0}^{*} of μ^{*} to $\mathcal{P}(H): \mu_{0}^{*}(A)=\mu^{*}(A \cap H)$ for all $A \subset X$.
i) Check that μ_{0}^{*} is an outer measure on H.
ii) Check that $M \subseteq H$ is μ_{0}^{*}-measurable if and only if it is μ^{*}-measurable.

Solution: i) a) $\mu_{0}^{*}(\varnothing)=\mu^{*}(\varnothing)=0$. b) If $A \subseteq B$ then $A \cap H \subseteq B \cap H$ and $\mu_{0}^{*}(A)=\mu^{*}(A \cap H) \leq$ $\mu^{*}(B \cap H)=\mu_{0}^{*}(B)$. c) Let $\left\{A_{j}\right\}_{j=1}^{\infty}$ be a collection of subsets of X. Then, as μ^{*} is an outer measure,

$$
\mu_{0}^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\mu^{*}\left(\left(\bigcup_{j=1}^{\infty} A_{j}\right) \cap H\right)=\mu^{*}\left(\bigcup_{j=1}^{\infty}\left(A_{j} \cap H\right)\right) \leq \sum_{j=1}^{\infty} \mu^{*}\left(A_{j} \cap H\right)=\sum_{j=1}^{\infty} \mu_{0}^{*}\left(A_{j}\right) .
$$

ii) Let $\mathcal{M} \subset \mathcal{P}(\mathcal{X})$ be the σ-algebra of μ^{*}-measurable sets and $\mathcal{M}_{0} \subset \mathcal{P}(H)$ be the σ-algebra of μ_{0}^{*}-measurable sets.
(\Rightarrow) Let $M \in \mathcal{M}_{0}, M \subseteq H$ and let $A \subseteq X$. Then $\mu_{0}^{*}(A \cap M)+\mu_{0}^{*}\left(A \cap M^{c}\right)=\mu_{0}^{*}(A)$ and so

$$
\mu^{*}(A \cap M \cap H)+\mu^{*}\left(A \cap M^{c} \cap H\right)=\mu^{*}(A \cap H) .
$$

As $M \subseteq H$, we have that $H \cap M^{c}=H \backslash M=(X \backslash M) \cap H$ and so

$$
\mu^{*}(A \cap M)+\mu^{*}(A \cap(X \backslash M) \cap H)=\mu^{*}(A \cap H) \leq \mu^{*}(A),
$$

since $A \cap H \subseteq A$ and μ^{*} is an outer measure. But $A \cap(X \backslash M)=A \backslash M$ and so $\mu^{*}(A \cap M)+$ $\mu^{*}(A \backslash M) \leq \mu^{*}(A)$. Since μ^{*} is an outer measure and $(A \cap M) \cup(A \backslash M)=A$ the opposite inequality is trivial. Hence

$$
\mu^{*}(A \cap M)+\mu^{*}(A \backslash M)=\mu^{*}(A), \quad \forall A \subseteq X \quad \Longrightarrow \quad M \in \mathcal{M}
$$

(\Leftarrow) Let $M \in \mathcal{M}, M \subseteq H$. If $A \subseteq H$, then $\mu^{*}(A \cap M)+\mu^{*}(A \cap(X \backslash M))=\mu^{*}(A)$ and so

$$
\mu^{*}(A \cap M \cap H)+\mu^{*}(A \cap(X \backslash M) \cap H)=\mu^{*}(A \cap H) .
$$

But this is equivalent to $\mu_{0}^{*}(A \cap M)+\mu_{0}^{*}(A \cap(H \backslash M))=\mu_{0}^{*}(A)$, and therefore $M \in \mathcal{M}_{0}$.

Problem 1.3.2

i) Let X be any set. Let us define $\mu^{*}: \mathcal{P}(X): \longrightarrow[0,1]$ by $\mu^{*}(\varnothing)=0, \mu^{*}(A)=1$, if $A \neq \varnothing$, $A \subseteq X$. Check that μ^{*} is an outer measure and determine the σ-algebra \mathcal{M} of measurable sets.
ii) Do the same if $\mu^{*}(\varnothing)=0, \mu^{*}(A)=1$, if $A \neq \varnothing, A \subsetneq X, \mu^{*}(X)=2$.

Hints: i) If $\varnothing \subsetneq M \subsetneq X$, then the definition of μ^{*}-measurable set fails with $E=X$. ii) If $\operatorname{card}(X)>2$ and $\{x, y\} \subset M \subsetneq X$ the definition fails with $E=M^{c} \cup\{x\}$; if $M=\{x\}$ the definition fails with $E=\{x, y\} \subsetneq X$.

Solution: i) a) By definition $\mu^{*}(\varnothing)=0$. b) Let $A \subseteq B$ then, if $A=\varnothing$, we have $0=\mu^{*}(A) \leq$ $\mu^{*}(B)$ and, if $A \neq \varnothing$, we have $\mu^{*}(A)=1=\mu^{*}(B)$. c) Let $\left\{A_{j}\right\}_{j=1}^{\infty}$ be a collection of subsets of X. Then

$$
\mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\left\{\begin{array}{ll}
0, & \text { if } A_{j}=\varnothing \forall j \\
1, & \text { otherwise }
\end{array} \leq \sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)\right.
$$

Hence μ^{*} is an outer measure. The σ-algebra of μ^{*}-measurable sets is

$$
\mathcal{M}=\left\{M \subset X: \mu^{*}(E) \geq \mu^{*}(E \cap M)+\mu^{*}(E \backslash M), \forall E \subseteq X\right\}
$$

But, taking $E=X$, we have: $1=\mu^{*}(X)<1+1=\mu^{*}(X \cap M)+\mu^{*}(X \backslash M)$ if $M \neq \varnothing, X$ and so only \varnothing and X can be μ^{*} - measurable. Trivially $\varnothing, X \in \mathcal{M}$. Hence $\mathcal{M}=\{\varnothing, X\}$.
ii) Like in i) parts a) and b) are trivial; c) Given a collection $\left\{A_{j}\right\}_{j=1}^{\infty}$ of subsets of X we have

$$
\mu^{*}\left(\bigcup_{j=1}^{\infty} A_{j}\right)= \begin{cases}0, & \text { if } A_{j}=\varnothing \forall j \\ 1, & \text { if } \varnothing \subsetneq \cup_{j=1}^{\infty} A_{j} \subsetneq X \quad \leq \sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right) . \\ 2, & \text { otherwise }\end{cases}
$$

Hence μ^{*} is again an outer measure.
If $\operatorname{card}(X)=2, X=\{x, y\}$ and $M=\{x\}$ or $M=\{y\}$ it is easy to check that $\mu^{*}(E) \geq$ $\mu^{*}(E \cap M)+\mu^{*}\left(E \cap M^{c}\right)$ with the four possibilities $E=\varnothing, E=\{x\}, E=\{y\}$ or $E=X$. Hence $M \in \mathcal{M}$ and $\mathcal{M}=\mathcal{P}(X)$ in this case.
Now, let us suppose that $\operatorname{card}(X)>2$ and $\varnothing \subsetneq M \subsetneq X$:

- If $M=\{x\}$, taking $E=\{x, y\}$ we have that $E \cap M=\{x\}, E \cap M^{c}=\{y\}$ and so $\mu^{*}(E \cap M)+$ $\mu^{*}\left(E \cap M^{c}\right)=1+1=2>1=\mu^{*}(E)$. Hence $M \notin \mathcal{M}$.
- If $\{x, y\} \subseteq M \subsetneq X$, taking $E=M^{c} \cup\{x\}$ we have, since $E \subsetneq X$ (because $y \notin E$):

$$
\mu^{*}(E \cap M)+\mu^{*}\left(E \cap M^{c}\right)=\mu^{*}(\{x\})+\mu^{*}\left(M^{c}\right)=1+1=2>1=\mu^{*}(E) .
$$

Hence $M \notin \mathcal{M}$. Therefore $\mathcal{M}=\{\varnothing, X\}$ in this case.
Problem 1.3.3 Show that a finitely additive outer measure is countably additive.
Hint: $\bigcup_{j=1}^{n} A_{j} \subseteq \bigcup_{j=1}^{\infty} A_{j}$ for all n.
Solution: Let $\left\{A_{j}\right\}_{j=1}^{\infty}$ be a collection of disjoint subsets of X and $A=\bigcup_{j=1}^{\infty} A_{j}$. We must prove that $\mu^{*}(A)=\sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)$. As μ^{*} is an outer measure, the inequality \leq holds. But, for any $N \in \mathbb{N}$, by monotonicity

$$
\mu^{*}(A) \geq \mu^{*}\left(\bigcup_{j=1}^{N} A_{j}\right)=\sum_{j=1}^{N} \mu^{*}\left(A_{j}\right)
$$

since μ^{*} is finitely additive. By letting $N \rightarrow \infty$ we obtain the \geq inequality.
Problem 1.3.4* Let μ^{*} be an outer measure on X and let \mathcal{M} be the collection of μ^{*}-measurable sets. Prove Caratheodory's theorem following the steps:
a) If $\mu^{*}(M)=0$ then $M \in \mathcal{M}$.
b) If $M \in \mathcal{M}$ then also $M^{c}=X \backslash M \in \mathcal{M}$.
c) If $M, N \in \mathcal{M}$ then $M \cup N, M \cap N, M \backslash N \in \mathcal{M}$.
d) If $\left\{M_{j}\right\}_{j=1}^{\infty}$ is a sequence of disjoints in \mathcal{M}, then prove by induction on n that

$$
\mu^{*}\left(A \cap\left(\cup_{1}^{n} M_{j}\right)\right)=\sum_{j=1}^{n} \mu^{*}\left(A \cap M_{j}\right), \quad \forall A \subset X, \forall n \in \mathbb{N} .
$$

e) If $\left\{M_{j}\right\}_{j=1}^{\infty}$ is a sequence of disjoints in \mathcal{M} and $M:=\cup_{n=1}^{\infty} M_{j}$ then

$$
\mu^{*}(A \cap M)=\sum_{j=1}^{\infty} \mu^{*}\left(A \cap M_{j}\right), \quad \forall A \subset X
$$

f) If $\left\{M_{j}\right\}_{j=1}^{\infty}$ is a sequence of disjoints in \mathcal{M}, them $M:=\cup_{n=1}^{\infty} M_{j} \in \mathcal{M}$.
g) \mathcal{M} is a σ-algebra and $\left.\mu^{*}\right|_{\mathcal{M}}$ is a measure.
h) $\left(X, \mathcal{M}, \mu^{*}\right)$ is a complete measure space.

Hints: c) $A \cap(M \cup N)=(A \cap M) \cup\left(A \cap M^{c} \cap N\right)$. d) By c) $\cup_{j=1}^{n} M_{j} \in \mathcal{M}$ and so $\mu^{*}\left(A \cap\left(\cup_{j=1}^{n+1} M_{j}\right)\right)=$ $\mu^{*}\left(A \cap\left(\cup_{j=1}^{n+1} M_{j}\right) \cap\left(\cup_{j=1}^{n} M_{j}\right)\right)+\mu^{*}\left(A \cap\left(\cup_{j=1}^{n+1} M_{j}\right) \backslash\left(\cup_{j=1}^{n} M_{j}\right)\right)=\mu^{*}\left(A \cap\left(\cup_{j=1}^{n} M_{j}\right)\right)+\mu^{*}\left(A \cap M_{n+1}\right)$. e) It is a consequence of a). f) Use that $\cup_{j=1}^{n} M_{j} \in \mathcal{M}$ by c), and so $\mu^{*}(A)=\mu^{*}\left(A \cap \cup\left(\cup_{j=1}^{n} M_{j}\right)\right)+$ $\mu^{*}\left(A \backslash\left(\cup_{j=1}^{n} M_{j}\right)\right)$; use now parts d) and e). g) If $\left\{A_{j}\right\}$ is any collection of subsets in \mathcal{M}, then the sets $M_{j}=A_{j} \backslash\left(A_{1} \cup \cdots \cup A_{n-1} \in \mathcal{M}\right.$ are disjoints and $\cup_{j=1}^{\infty} A_{j}=\cup_{j=1}^{\infty} M_{j}$.

Problem 1.3.5* Let $\mathcal{E} \subset \mathcal{P}(X)$ be a semialgebra and let $\mu_{0}: \mathcal{E}: \longrightarrow[0, \infty]$ be a countable additive set function.
a) Prove that μ_{0} is monotone: If $E, F \in \mathcal{E}, E \subseteq F$, then $\mu_{0}(E) \leq \mu_{0}(F)$.
b) Prove that μ_{0} is countably sub-additive: If $E=\cup_{i=1}^{\infty} E_{i}$ with $E_{i}, E \in \mathcal{E}$, then

$$
\mu_{0}(E) \leq \sum_{i=1}^{\infty} \mu_{0}\left(E_{i}\right)
$$

c) Let us define, for all $A \subseteq X$,

$$
\mu^{*}(A)=\inf \left\{\sum_{i=1}^{\infty} \mu_{0}\left(E_{i}\right): E_{i} \in \mathcal{E}, A \subseteq \cup_{i=1}^{\infty} E_{i}\right\}
$$

d) Prove that μ^{*} is an outer measure (and so, by Caratheodory's Theorem, the collection \mathcal{A} of μ^{*}-measurable sets is a σ-algebra and $\mu=\left.\mu^{*}\right|_{\mathcal{A}}$ is a complete measure).
e) Prove that $\mathcal{E} \subseteq \mathcal{A}$ and that μ^{*} is an extension of $\mu_{0}: \mu^{*}(E)=\mu_{0}(E)$ for all $E \in \mathcal{E}$.

Hints: a) If $E_{1} \subset E_{2}$ then, as \mathcal{E} is semialgebra, $E_{2}=E_{1} \cup E_{1}^{c}=E_{1} \cup F_{1} \cup \cdots F_{n}$ with $F_{j} \in \mathcal{E}$ and disjoint. b) Consider the disjoint sets $D_{i}:=E_{i} \backslash\left(E_{1} \cup \cdots \cup E_{i-1}\right)=E_{i} \cap\left(\cap_{i=1}^{n-1} E_{i}^{c}\right)$ and observe that, as \mathcal{E} is semialgebra, we have that $E_{i}^{c}=F_{i 1} \cup \cdots \cup F_{i k(i)}$ with $F_{i j} \in \mathcal{E}$ and disjoint. c) Given $\varepsilon>0$ and sets $\left\{A_{i}\right\}_{i=1}^{\infty}$ such that $\sum_{i=1}^{\infty} \mu^{*}\left(A_{i}\right)<\infty$, choose for each i a collection $\left\{E_{i j}\right\}_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty} \mu_{0}\left(E_{i j}\right)<\mu^{*}\left(A_{i}\right)+\varepsilon / 2^{i}$. Then $A:=\cup_{i} A_{i} \subseteq \cup_{i} \cup_{j} E_{i j}$ and $\mu^{*}(A) \leq \sum_{i} \mu^{*}\left(A_{i}\right)+\varepsilon$. e) Given $E \in \mathcal{E}, A \subset X$ with $\mu^{*}(A)<\infty$ and $\varepsilon>0$ there exists $\left\{E_{i}\right\} \subset \mathcal{E}$ such that $A \subset \cup_{i} E_{i}$ and $\sum_{i} \mu_{0}\left(E_{i}\right)<\mu^{*}(A)+\varepsilon ;$ also $E^{c}=F_{1} \cup \cdots \cup F_{n}$ with $F_{j} \in \mathcal{E}$ and disjoint. Hence, $E_{i}=\left(E_{i} \cap E\right) \cup\left(E_{i} \cap F_{1}\right) \cup \cdots \cup\left(E_{i} \cap F_{n}\right)$, a disjoint union of sets.

Problem 1.3.6 A semiopen interval in \mathbb{R} is an interval of type $\varnothing,[a, b),(-\infty, b),[a, \infty)$ or $(-\infty, \infty)=\mathbb{R}$. A semiopen interval in \mathbb{R}^{n} is a set of type $I=I_{1} \times I_{2} \times \cdots \times I_{n}$, where each I_{j} is a semiopen interval in \mathbb{R}. Let \mathcal{E} be the collection of semiopen intervals in \mathbb{R}^{n}. Prove that \mathcal{E} is a semialgebra.
Solution: By definition $\varnothing \in \mathcal{E}$. Secondly, if $I=I_{1} \times I_{2} \times \cdots \times I_{n} \in \mathcal{E}, J=J_{1} \times I_{2} \times \cdots \times J_{n} \in \mathcal{E}$, then $I \cap J=\left(I_{1} \cap J_{1}\right) \times\left(I_{2} \cap J_{2}\right) \times \cdots \times\left(I_{n} \cap J_{n}\right) \in \mathcal{E}$ since it is easy to check that the intersection of two semiopen intervals in \mathbb{R} is again a semiopen interval.
Finally: In \mathbb{R} it is easy to check that if $I \in \mathcal{E}$, then $I^{c}=I^{\prime} \cup I^{\prime \prime}$ with $I^{\prime}, I^{\prime \prime}$ disjoint semiopen intervals. In $\mathbb{R}^{n}(n \geq 2)$, if $I=I_{1} \times \cdots \times I_{n} \in \mathcal{E}$, then

$$
\begin{aligned}
I^{c} & =\left(I_{1}^{c} \times \mathbb{R} \times \cdots \times \mathbb{R}\right) \cup\left(\mathbb{R} \times I_{2}^{c} \times \cdots \times \mathbb{R}\right) \cup \cdots \cup\left(\mathbb{R} \times \cdots \times \mathbb{R} \times I_{n}^{c}\right) \\
& =\left(\left(I_{1}^{\prime} \cup I_{1}^{\prime \prime}\right) \times \mathbb{R} \times \cdots \times \mathbb{R}\right) \cup\left(\mathbb{R} \times\left(I_{2}^{\prime} \cup I_{2}^{\prime \prime}\right) \times \cdots \times \mathbb{R}\right) \cup \cdots \cup\left(\mathbb{R} \times \cdots \times \mathbb{R} \times\left(I_{n}^{\prime} \cup I_{n}^{\prime \prime}\right)\right) \\
& =\left(I_{1}^{\prime} \times \mathbb{R} \times \cdots \times \mathbb{R}\right) \cup\left(I_{1}^{\prime \prime} \times \mathbb{R} \cdots \times \mathbb{R}\right) \cup \cdots \cup\left(\mathbb{R} \times \cdots \mathbb{R} \times I_{n}^{\prime}\right) \cup\left(\mathbb{R} \times \cdots \times \mathbb{R} \times I_{n}^{\prime \prime}\right)=\cup_{\alpha=1}^{2 n} I^{\alpha},
\end{aligned}
$$

where the I^{α} s are disjoint and $I^{\alpha} \in \mathcal{E}$, for all α.
Problem 1.3.7 Show that a subset $B \subseteq \mathbb{R}$ is Lebesgue-measurable if and only if

$$
m^{*}(I)=m^{*}(I \cap B)+m^{*}\left(I \cap B^{c}\right),
$$

for every open interval $I \subseteq \mathbb{R}$.
Hint: Given $E \subset \mathbb{R}$ with $m^{*}(E)<\infty$ and $\varepsilon>0$, consider a sequence of intervals $\left\{I_{n}\right\}$ such that $E \subset \cup_{n} I_{n}$ and $\sum_{n} m\left(I_{n}\right)<m^{*}(E)+\varepsilon$ and observe that, as each I_{n} is Lebesgue-measurable, $m\left(I_{n}\right)=m^{*}\left(I_{n}\right)=m^{*}\left(B \cap I_{n}\right)+m^{*}\left(B^{c} \cap I_{n}\right)$.
Solution: If B is Lebesgue-measurable then the equality holds for all $E \subset \mathbb{R}$ and so also holds for any interval. Reciprocally, let us suppose that the inequality is true for any interval. We must prove that $m^{*}(E) \geq m^{*}(E \cap B)+m^{*}\left(E \cap B^{c}\right)$ for all $E \subseteq \mathbb{R}$ since the other inequality trivially holds since m^{*} is an outer measure. We may assume that $m^{*}(E)<\infty$ since in other case the inequality is obvious. Given $\varepsilon>0$, let $\left\{I_{n}\right\}$ be a sequence of intervals such that $E \subset \cup_{n} I_{n}$ and $\sum_{n} m\left(I_{n}\right)<m^{*}(E)+\varepsilon$. Then, as the intervals I_{n} are Lebesgue-measurable, using our hypothesis, and the subadditivity and monotonicity of μ^{*} :

$$
\begin{aligned}
m^{*}(E) & >-\varepsilon+\sum_{n=1}^{\infty} m\left(I_{n}\right)=-\varepsilon+\sum_{n=1}^{\infty} m^{*}\left(I_{n}\right) \\
& =-\varepsilon+\sum_{n=1}^{\infty}\left(m^{*}\left(B \cap I_{n}\right)+m^{*}\left(B^{c} \cap I_{n}\right)\right) \\
& \geq-\varepsilon+m^{*}\left(\bigcup_{n=1}^{\infty}\left(B \cap I_{n}\right)\right)+m^{*}\left(\bigcup_{n=1}^{\infty}\left(B^{c} \cap I_{n}\right)\right) \\
& =-\varepsilon+m^{*}\left(B \cap\left(\bigcup_{n=1}^{\infty} I_{n}\right)\right)+m^{*}\left(B^{c} \cap\left(\bigcup_{n=1}^{\infty} I_{n}\right)\right) \\
& \geq-\varepsilon+m^{*}(B \cap E)+m^{*}\left(B^{c} \cap E\right) .
\end{aligned}
$$

By letting $\varepsilon \rightarrow 0^{+}$we obtain that $m^{*}(E) \geq m^{*}(E \cap B)+m^{*}\left(E \cap B^{c}\right)$.

Problem 1.3.8*

a) Prove that $\left(\mathbb{R}^{n}, \mathcal{M}, m\right)$ is translations invariant:

$$
A \in \mathcal{M}, \quad a \in \mathbb{R}^{n} \quad \Longrightarrow \quad a+A \in \mathcal{M} \quad \text { and } \quad m(a+A)=m(A)
$$

b) Let $\left(\mathbb{R}^{n}, \mathcal{M}, \mu\right)$ be a translations invariant measure space with μ a Radon measure $(\mu(K)<$ ∞ for each compact set K). Prove that there exists $k \geq 0$ such that $\mu=k m$.

Hints: a) Consider the measure $\mu(B)=m(a+B)$ for $B \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and observe that $m(a+I)=$ $m(I)$ for each semi-interval I. Hence $\mu(I)=m(I)$ for I semi-interval. Apply CaratheodoryHopf's extension theorem. b) Let $k=\mu([0,1] \times \cdots \times[0,1])$ and prove that $\mu(I)=k m(I)$, for each semi-interval $I=\left[0, r_{1} / q_{1}\right] \times \cdots \times\left[0, r_{n} / q_{n}\right]$ with $r_{i} / q_{i} \in \mathbb{Q}$. Using now an approximation argument conclude that the same is true for any semi-interval in \mathbb{R}^{n}. Finally apply CaratheodoryHopf's extension theorem.
Problem 1.3.9* Let $g: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be an isometry for the Euclidean norm. that is to say $\|g(x)-g(y)\|=\|x-y\|$ for all $x, y \in \mathbb{R}^{n}$. It is known that any isometry is a composition of a translation and an orthogonal transformation. Recall that $U: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is orthogonal if U is linear and $U U^{T}=I$ where I is the identity matrix.
Prove that given any Lebesgue-measurable set M, then $g(M)$ is also a Lebesgue-measurable set and $m(g(M))=m(M)$.
Hints: By problem 1 it suffices to prove it for an orthogonal transformation U. As U is an homeomorphism (bijective and continuous with continuous inverse) then U sends Borel sets into Borel sets. Define a measure μ by $\mu(A)=m(U(A))$ for $A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$, where U is orthogonal, and prove that μ is translations invariant. Hence $\mu(A)=k m(A)$ for any $A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and for some constant k. But, if $B=\{x:\|x\|<1\}$ then prove that $\mu(B)=m(B)$ and so $k=1$. Finally, if $M \in \mathcal{M}$ then $M=A \cup N$ with $A \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and $N \subset C \in \mathcal{B}\left(\mathbb{R}^{n}\right), m(C)=0$. Hence $U(M)=U(A) \cup U(N)$ with $U(A) \in \mathcal{B}\left(\mathbb{R}^{n}\right)$ and $U(N) \subset U(C) \in \mathcal{B}\left(\mathbb{R}^{n}\right), m(U(C))=m(C)=0$.
Problem 1.3.10* Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear transformation. Prove that given any Lebesgue-measurable set, then $T(M)$ is also a Lebesgue-measurable set and

$$
m(T(M))=|\operatorname{det} T| m(M) .
$$

Hints: If $\operatorname{det} T=0$ is trivial because in this case $T\left(\mathbb{R}^{n}\right)$ is contained in an $(n-1)$-dimensional hyperplane which has zero n-dimensional Lebesgue measure. If $\operatorname{det} T \neq 0$, then T is bijective and can be decomposed as $T=U D V$ with U, V orthogonal transformations and D a linear transformation whose matrix is diagonal. As orthogonal transformations are isometries, by problem 1.3.9, it suffices to prove it for D. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the elements of the diagonal of D. If $I=\left[a_{1}, b_{1}\right) \times \cdots \times\left[a_{n}, b_{n}\right)$ is a semi-interval in \mathbb{R}^{n}, then $D(I)=\left[\lambda_{1} a_{1}, \lambda_{1} b_{1}\right) \times \cdots \times\left[\lambda_{n} a_{n}, \lambda_{n} b_{n}\right)$ and so $m(D(I))=\lambda_{1} \cdots \lambda_{n} m(I)$. Define the measure $\mu(M)=\frac{1}{\lambda_{1} \cdots \lambda_{n}} m(D(M))$. By CaratheodoryHopf's extension theorem we have that $\mu=m$. Finally, observe that $\operatorname{det} T=\operatorname{det} D=\lambda_{1} \cdots \lambda_{n}$.
Problem 1.3.11* Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing function. Prove that there exists a unique Radon measure $\mu: \mathcal{B}(\mathbb{R}) \longrightarrow[0, \infty]$ such that

$$
\mu([a, b))=g\left(b^{-}\right)-g\left(a^{-}\right), \quad \forall[a, b) \in \mathcal{E}
$$

Here $g\left(x_{0}^{-}\right)$denotes the left limit of g at the point x_{0}. This measure $\mu=\mu_{g}$ is called the Borel-Stieltjes measure with distribution function g.

Hint: Prove that μ is countably additive on the semi-intervals: if $[a, b)=\cup_{j=1}^{\infty}\left[a_{j}, b_{j}\right)$ then $g\left(b^{-}\right)-g\left(a^{-}\right)=\sum_{j=1}^{\infty} g\left(b_{j}^{-}\right)-g\left(a_{j}^{-}\right)$. Then, apply Caratheodory-Hopf's extension theorem.

Problem 1.3.12 Let $\mu: \mathcal{B}(\mathbb{R}) \longrightarrow[0, \infty]$ be a Radon measure. Prove that there exists an increasing and left-continuous function $g: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\mu=\mu_{g}$. Besides, g is unique unless by adding constants.

Hint: Define $g(t)=\mu([0, t])$ for $t \geq 0$ and $g(t)=-\mu([t, 0))$ for $t<0$ and apply CaratheodoryHopf's extension theorem.
Solution: We define $g(t)=\mu([0, t])$ for $t \geq 0$ and $g(t)=-\mu([t, 0))$ for $t<0$. Then, g is increasing:

$$
\begin{aligned}
& 0<t_{1}<t_{2} \Longrightarrow\left[0, t_{1}\right) \subset\left[0, t_{2}\right) \Longrightarrow g\left(t_{1}\right) \leq g\left(t_{2}\right) \\
& t_{1}<t_{2}<0 \Longrightarrow\left[t_{1}, 0\right) \supset\left[t_{2}, 0\right) \Longrightarrow-\mu\left(\left[t_{1}, 0\right)\right) \leq-\mu\left(\left[t_{2}, 0\right)\right) \Longrightarrow g\left(t_{1}\right) \leq g\left(t_{2}\right), \\
& t_{1}<0<t_{2} \Longrightarrow g\left(t_{1}\right) \leq 0 \leq g\left(t_{2}\right) .
\end{aligned}
$$

Secondly, g is left-continuous: Given $t \in \mathbb{R}$, let $\left\{s_{n}\right\} \subset \mathbb{R}$ with $s_{n} \nearrow t$. If $t>0$, then

$$
g(t)=\mu([0, t))=\mu\left(\bigcup_{n=1}^{\infty}\left[0, s_{n}\right)\right)=\lim _{n \rightarrow \infty} \mu\left(\left[0, s_{n}\right)\right)=\lim _{n \rightarrow \infty} g\left(s_{n}\right),
$$

and, if $t \leq 0$, since μ is a Radon measure (and so $\mu\left(\left[s_{n}, 0\right)\right)<\infty$):

$$
g(t)=-\mu([t, 0))=-\mu\left(\bigcap_{n=1}^{\infty}\left[s_{n}, 0\right)\right)=-\lim _{n \rightarrow \infty} \mu\left(\left[s_{n}, 0\right)\right)=\lim _{n \rightarrow \infty} g\left(s_{n}\right)
$$

Finally, let us see that $\mu=\mu_{g}$:
$0<a<b \Longrightarrow \mu([a, b))=\mu([0, b) \backslash[0, a))=\mu([0, b))-\mu([0, a))=g(b)-g(a)=g\left(b^{-}\right)-g\left(a^{-}\right)$,
$a<b<0 \Longrightarrow \mu([a, b))=\mu([a, 0) \backslash[b, 0))=\mu([a, 0))-\mu([b, 0))=-g(a)+g(b)=g\left(b^{-}\right)-g\left(a^{-}\right)$,
$a<0<b \Longrightarrow \mu([a, b))=\mu([a, 0) \cup[0, b))=\mu([a, 0))+\mu([0, b))=-g(a)+g(b)=g\left(b^{-}\right)-g\left(a^{-}\right)$.
Therefore $\mu([a, b))=\mu_{g}([a, b))$ for all semiopen interval and so $\mu=\mu_{g}$ by Caratheodory-Hopf's extension theorem. Finally, let us suppose that $g, h: \mathbb{R} \longrightarrow \mathbb{R}$ are increasing and left continuous and $\mu_{g}=\mu_{h}$: Let $c=g(0)-h(0)$, then as $g(t)-g(0)=\mu_{g}([0, t))=\mu_{h}([0, t))=h(t)-h(0)$, we conclude that $g(t)-h(t)=c$ and therefore, g is unique unless by adding constants.
Problem 1.3.13 Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing function and let μ_{g} be the corresponding Borel-Stieltjes measure with distribution function g. Prove that:
a) $\mu_{g}(\{x\})=g\left(x^{+}\right)-g\left(x^{-}\right)$.
b) $\mu_{g}(\{x\})=0$ if and only if g is continuous at x.
c) $\mu_{g}([a, b])=g\left(b^{+}\right)-g\left(a^{-}\right)$.
d) $\mu_{g}((a, b))=g\left(b^{-}\right)-g\left(a^{+}\right)$.
e) $\mu_{g}((a, b])=g\left(b^{+}\right)-g\left(a^{+}\right)$.
f) If $I \subset \mathbb{R}$ is an open interval, then $\mu_{g}(I)=0$ if and only if g is constant on I.

Solution: a) $\left.\mu_{g}(\{x\})=\mu_{g}\left(\cap_{n}\left[x, x+\frac{1}{n}\right)\right)=\lim _{n \rightarrow \infty} \mu_{g}\left(\left[x, x+\frac{1}{n}\right)\right)\right)=\lim _{n \rightarrow \infty} g\left(\left(x+\frac{1}{n}\right)^{-}\right)-$ $g\left(x^{-}\right)=\lim _{n \rightarrow \infty} g\left(x+\frac{1}{n}\right)-g\left(x^{-}\right)=g\left(x^{+}\right)-g\left(x^{-}\right)$.
b) $\mu_{g}(\{x\})=0 \Longleftrightarrow g\left(x^{+}\right)=g\left(x^{-}\right) \Longleftrightarrow g$ is continuous at x.
c) $\mu_{g}([a, b])=\mu_{g}([a, b) \cup\{b\})=\mu_{g}([a, b))+\mu_{g}(\{b\})=g\left(b^{-}\right)-g\left(a^{-}\right)+g\left(b^{+}\right)-g\left(b^{-}\right)=g\left(b^{+}\right)-g\left(a^{-}\right)$.
d) $\mu_{g}((a, b))=\mu_{g}([a, b) \backslash\{a\})=\mu_{g}([a, b))-\mu_{g}(\{a\})=g\left(b^{-}\right)-g\left(a^{-}\right)-g\left(a^{+}\right)+g\left(a^{-}\right)=g\left(b^{-}\right)-g\left(a^{+}\right)$.
e) $\mu_{g}((a, b])=\mu_{g}([a, b] \backslash\{a\})=\mu_{g}([a, b])-\mu_{g}(\{a\})=g\left(b^{+}\right)-g\left(a^{-}\right)-g\left(a^{+}\right)+g\left(a^{-}\right)=g\left(b^{+}\right)-g\left(a^{+}\right)$.
f) (\Leftarrow) If $g(t)=$ const. $\forall t \in I=(a, b)$, then $\mu_{g}(I)=g\left(b^{-}\right)-g\left(a^{+}\right)=$const. - const. $=0$.
(\Rightarrow) If $g(t) \neq$ const., then $\exists s, t \in I$ with $g(s)<g(t)$ and so $g\left(a^{+}\right) \leq g(s)<g(t) \leq g\left(b^{-}\right) \Rightarrow$ $\mu_{g}((a, b))>0$.

Problem 1.3.14

a) Let us consider the function

$$
F(x)=\left\{\begin{array}{lll}
0 & \text { if } & x<1 \\
x & \text { if } & 1 \leq x<3 \\
4 & \text { if } & x \geq 3
\end{array}\right.
$$

Let μ_{F} be the Borel-Stieltjes measure with distribution function F. Calculate:

$$
\mu_{F}(\{1\}), \quad \mu_{F}(\{2\}), \quad \mu_{F}(\{3\}), \quad \mu_{F}((1,3]), \quad \mu_{F}((1,3)), \quad \mu_{F}([1,3]), \quad \mu_{F}([1,3)) .
$$

b) Give an example of a distribution function F such that

$$
\mu_{F}((a, b))<F(b)-F(a)<\mu_{F}([a, b]), \quad \text { for some } a \text { and } b .
$$

Solution: a) $\mu_{F}(\{1\})=F\left(1^{+}\right)-F\left(1^{-}\right)=1, \mu_{F}(\{2\})=F\left(2^{+}\right)-F\left(2^{-}\right)=0, \mu_{F}(\{3\})=$ $F\left(3^{+}\right)-F\left(3^{-}\right)=1, \mu_{F}((1,3])=F\left(3^{+}\right)-F\left(1^{+}\right)=3, \mu_{F}((1,3))=F\left(3^{-}\right)-F\left(1^{+}\right)=2$, $\mu_{F}([1,3])=F\left(3^{+}\right)-F\left(1^{-}\right)=4, \mu_{F}([1,3))=F\left(3^{-}\right)-F\left(1^{-}\right)=3$. b) It holds for the function F in a), since $F(3)-F(1)=4-1=3$.
Problem 1.3.15 Let $F(x)$ be the distribution function on \mathbb{R} given by

$$
F(x)=\left\{\begin{array}{lll}
0 & \text { if } & x \in(-\infty,-1) \\
1+x & \text { if } & x \in[-1,0) \\
2+x^{2} & \text { if } & x \in[0,2) \\
9 & \text { if } & x \in[2, \infty)
\end{array}\right.
$$

If μ_{F} is the Borel-Stieltjes measure with distribution function F, calculate the measure μ_{F} of the following sets: $\{2\},[-1 / 2,3),(-1,0] \cup(1,2),[0,1 / 2) \cup(1,2], A=\left\{x \in \mathbb{R}:|x|+2 x^{2}>1\right\}$. Solution: $\mu_{F}(\{2\})=F\left(2^{+}\right)-F\left(2^{-}\right)=3, \mu_{F}([-1 / 2,3))=F\left(3^{-}\right)-F\left(-1 / 2^{-}\right)=17 / 2$, $\mu_{F}((-1,0] \cup(1,2))=F\left(0^{+}\right)-F\left(-1^{+}\right)+F\left(2^{-}\right)-F\left(1^{+}\right)=5, \mu_{F}([0,1 / 2) \cup(1,2])=F\left(1 / 2^{-}\right)-$ $F\left(0^{-}\right)+F\left(2^{+}\right)-F\left(1^{+}\right)=29 / 4, \mu_{F}(A)=\mu_{F}((-\infty,-1 / 2) \cup(1 / 2, \infty))=F\left(-1 / 2^{-}\right)-F(-\infty)+$ $F(+\infty)-F\left(1 / 2^{+}\right)=29 / 4$.
Problem 1.3.16 Let μ be the counting measure on \mathbb{R}. Let us fix $A \subset \mathbb{R}$, and let us define $\nu(B)=\mu(B \cap A)$ for all $B \subset \mathbb{R}$.
a) If $A=\{1,2,3, \ldots, n, \ldots\}$ is ν a Borel-Stieltjes measure? If the answer is affirmative, find the distribution function.
b) And if $A=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\}$?

Solution: a) Yes, since μ is a Radon measure because $\mu([a, b])=\#\{n \in \mathbb{N}: a \leq n \leq b\}<\infty$; $F(x)=0$ if $x<0, F(x)=[x]$ if $x \geq 0$.
b) No, since μ gives infinite measure to some compact intervals: $\mu([0, \varepsilon])=\#\{n \in \mathbb{N}: 1 / n \leq$ $\varepsilon\}=\infty$, for all $\varepsilon>0$.
Problem 1.3.17 Let (X, \mathcal{A}, μ) be a measure space and let $\Phi: X \longrightarrow Y$ be a mapping. We define the image space measure (Y, \mathcal{B}, ν) as

$$
\mathcal{B}=\Phi(\mathcal{A}):=\left\{B \subseteq Y: \Phi^{-1}(B) \in \mathcal{A}\right\}
$$

and $\nu=\Phi(\mu): \mathcal{B} \longrightarrow[0, \infty]$ given by $\nu(B)=\mu\left(\Phi^{-1}(B)\right)$ for all $B \in \mathcal{B}$.
Prove that (Y, \mathcal{B}, ν) is a measure space and it is complete when (X, \mathcal{A}, μ) is.
Solution: a) $\nu(\varnothing)=\mu\left(\Phi^{-1}(\varnothing)\right)=\mu(\varnothing)=0$.
b) If $\left\{B_{j}\right\}_{j=1}^{\infty} \subset \mathcal{B}$ is a collection of disjoint subsets of Y, then $\left\{\Phi^{-1}\left(B_{j}\right)\right\}_{j=1}^{\infty} \subset \mathcal{A}$ is a collection of disjoint subsets of X and as μ is a measure:

$$
\nu\left(\bigcup_{j=1}^{\infty} B_{j}\right)=\mu\left(\Phi^{-1}\left(\bigcup_{j=1}^{\infty} B_{j}\right)\right)=\mu\left(\bigcup_{j=1}^{\infty} \Phi^{-1}\left(B_{j}\right)\right)=\sum_{j=1}^{\infty} \mu\left(\Phi^{-1}\left(B_{j}\right)\right)=\sum_{j=1}^{\infty} \nu\left(B_{j}\right) .
$$

Finally, if (X, \mathcal{A}, μ) is complete and $N \subseteq B \in \mathcal{B}$ with $\nu(B)=0$ then $\Phi^{-1}(N) \subseteq \Phi^{-1}(B) \in \mathcal{A}$ and $\mu\left(\Phi^{-1}(B)\right)=\nu(B)=0$ and so $\Phi^{-1}(N) \in \mathcal{A}$ and $\mu\left(\Phi^{-1}(N)\right)=0$. Hence $N \in \mathcal{B}$ and $\nu(N)=\mu\left(\Phi^{-1}(N)\right)=0$. Hence (Y, \mathcal{B}, ν) is also complete.

Problem 1.3.18

a) Let $g: I \longrightarrow \mathbb{R}$ be a continuous and strictly increasing function. As g is injective it has a continuous inverse g^{-1}. Prove that $\mu_{g}=g^{-1}(m)$, that is to say that the BorelStieltjes measure with distribution function g coincides with the image measure of Lebesgue measure under g^{-1}.
b) Let $g:(0, \infty) \longrightarrow \mathbb{R}$ be the function $g(t)=\log t$. Prove that $\mu_{g}=g^{-1}(m)=e^{m}$ is invariant under dilations.

Hints: a) Prove that both measures coincide for semi-intervals $[a, b)$ and apply CaratheodoryHopf's extension theorem. b) Use part a) and the fact that Lebesgue measure is translation invariant. Alternatively, it can be also proved by using Caratheodory-Hopf's extension theorem. Solution: a) Let $[a, b) \in \mathcal{E}$, the semialgebra of semiopen intervals in \mathbb{R}. Then, as g is increasing, $g([a, b))=[g(a), g(b))$ and so,

$$
\left.g^{-1}(m)([a, b))\right)=m(g([a, b)))=m([g(a), g(b)))=g(a)-g(b)=\mu_{g}([a, b)),
$$

since g is continuous. By Caratheodory-Hopf's extension theorem we obtain that $\mu_{g}=g^{-1}(m)$. b) Let E be a borelian set in $(0, \infty)$ and let $\lambda>0$. Then, using a) and the fact that Lebesgue measure is translation invariant:

$$
\begin{aligned}
\mu_{g}(\lambda E) & =g^{-1}(m)(\lambda E)=m(g(\lambda E))=m(\log (\lambda E)) \\
& =m(\log \lambda+\log E)=m(\log E)=m(g(E))=g^{-1}(m)(E)=\mu_{g}(E)
\end{aligned}
$$

Problem 1.3.19 Let $B_{n}=\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$ be the unit ball of \mathbb{R}^{n} and $S_{n-1}=\left\{x \in \mathbb{R}^{n}\right.$: $\|x\|=1\}$ be the unit sphere. Let us consider the projection $\pi: B_{n} \backslash\{0\} \longrightarrow S_{n-1}$ given by
$\pi(x)=x /\|x\|$. The $(n-1)$-dimensional Lebesgue measure on S_{n-1} is defined as $\sigma=n \cdot \pi(m)$, that is to say

$$
\sigma(U)=n \cdot m\left(\pi^{-1}(U)\right), \quad \text { for all } U \in \mathcal{B}\left(S_{n-1}\right)
$$

Prove that σ is invariant under rotations.
Hint: Use problem 1.3.9.
Solution: That σ is invariant under rotations means that $\sigma(T(U))=\sigma(U)$ for any orthogonal transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$. But using problem 1.3.9, we have that

$$
\sigma(T(U))=n \cdot m\left(\pi^{-1}(T(U))\right)=n \cdot m\left(T\left(\pi^{-1}(U)\right)\right)=n \cdot m\left(\pi^{-1}(U)\right)=\sigma(U)
$$

Problem 1.3.20 Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ-finite measure spaces. Let us consider the product set $X \times Y=\{(x, y): x \in X, y \in Y\}$. The product σ-algebra $\mathcal{A} \otimes \mathcal{B}$ is the σ-algebra generated by the set $\mathcal{E}=\{A \times B: A \in \mathcal{A}, B \in \mathcal{B}\}$. Prove that there exists a unique measure $\mu \otimes \nu: \mathcal{A} \otimes \mathcal{B} \longrightarrow[0, \infty]$ such that

$$
(\mu \otimes \nu)(A \times B)=\mu(A) \nu(B), \quad \text { for all } A \in \mathcal{A}, B \in \mathcal{B}
$$

Hint: Prove that \mathcal{E} is a semi-algebra and that $\mu \otimes \nu$ is countably additive on \mathcal{E}. Then apply Caratheodory-Hopf's extension theorem.
Solution: Let us check first that \mathcal{E} is a semialgebra: a) $\varnothing=\varnothing \times \varnothing \in \mathcal{E}$. b) Let $A \times B, A^{\prime} \times B^{\prime} \in \mathcal{E}$. Then $A, A^{\prime} \in \mathcal{A}$ and $B, B^{\prime} \in \mathcal{B}$ and, since \mathcal{A} and \mathcal{B} are σ-algebras, $A \cap A^{\prime} \in \mathcal{A}$ and $B \cap B^{\prime} \in \mathcal{B}$. Hence $(A \times B) \cap\left(A^{\prime} \times B^{\prime}\right)=\left(A \cap A^{\prime}\right) \times\left(B \cap B^{\prime}\right) \in \mathcal{E}$. c) Let $A \times B \in \mathcal{E}$. Then $(A \times B)^{c}=$ $\left(A^{c} \times Y\right) \cup\left(A \times B^{c}\right)$ and $A^{c} \times Y, A \times B^{c} \in \mathcal{E}$ (since \mathcal{A} and \mathcal{B} are σ-algebras) and they are disjoint. Let us define now the set-function $\alpha: \mathcal{E} \longrightarrow[0, \infty]$ given by $\alpha(A \times B)=\mu(A) \nu(B)$. It is not difficult to check that α is countably additive. Besides, as μ and ν are σ-finite we have that: $X=\cup_{n} X_{n}$ with $\mu\left(X_{n}\right)<\infty, X_{1} \subseteq X_{2} \subseteq \cdots$ and $Y=\cup_{n} Y_{n}$ with $\nu\left(Y_{n}\right)<\infty, Y_{1} \subseteq Y_{2} \subseteq \cdots$. Hence $X \times Y=\cup_{n}\left(X_{n} \times Y_{n}\right)$ with $\alpha\left(X_{n} \times Y_{n}\right)=\mu\left(X_{n}\right) \nu\left(Y_{n}\right)<\infty$ and so α is also σ-finite. As a consequence of Caratheodory-Hopf's extension theorem we deduce that there exists a unique measure $\mu \otimes \nu$ defined on the product σ-algebra $\mathcal{A} \otimes \mathcal{B}:=\sigma(\mathcal{E})$ such that $\left.\mu \otimes \nu\right|_{\mathcal{E}}=\alpha$, that is to say such that $(\mu \otimes \nu)(A \times B)=\mu(A) \nu(B)$ for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

