Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure. Problems

Chapter 1: Measure theory

Section 1.3: Construction of measures

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

1 Measure Theory

1.3. Construction of measures

Problem 1.3.1 Let μ^* be an outer measure in X and let H be a μ^* -measurable set. Let us consider the restriction μ_0^* of μ^* to $\mathcal{P}(H)$: $\mu_0^*(A) = \mu^*(A \cap H)$ for all $A \subset X$.

- i) Check that μ_0^* is an outer measure on H.
- ii) Check that $M \subseteq H$ is μ_0^* -measurable if and only if it is μ^* -measurable.

Solution: i) a) $\mu_0^*(\varnothing) = \mu^*(\varnothing) = 0$. b) If $A \subseteq B$ then $A \cap H \subseteq B \cap H$ and $\mu_0^*(A) = \mu^*(A \cap H) \le \mu^*(B \cap H) = \mu_0^*(B)$. c) Let $\{A_j\}_{j=1}^{\infty}$ be a collection of subsets of X. Then, as μ^* is an outer measure,

$$\mu_0^* \Big(\bigcup_{j=1}^{\infty} A_j \Big) = \mu^* \Big(\Big(\bigcup_{j=1}^{\infty} A_j \Big) \cap H \Big) = \mu^* \Big(\bigcup_{j=1}^{\infty} (A_j \cap H) \Big) \le \sum_{j=1}^{\infty} \mu^* (A_j \cap H) = \sum_{j=1}^{\infty} \mu_0^* (A_j).$$

- ii) Let $\mathcal{M} \subset \mathcal{P}(\mathcal{X})$ be the σ -algebra of μ^* -measurable sets and $\mathcal{M}_0 \subset \mathcal{P}(H)$ be the σ -algebra of μ_0^* -measurable sets.
- (\Rightarrow) Let $M \in \mathcal{M}_0$, $M \subseteq H$ and let $A \subseteq X$. Then $\mu_0^*(A \cap M) + \mu_0^*(A \cap M^c) = \mu_0^*(A)$ and so

$$\mu^*(A \cap M \cap H) + \mu^*(A \cap M^c \cap H) = \mu^*(A \cap H).$$

As $M \subseteq H$, we have that $H \cap M^c = H \setminus M = (X \setminus M) \cap H$ and so

$$\mu^*(A \cap M) + \mu^*(A \cap (X \setminus M) \cap H) = \mu^*(A \cap H) \le \mu^*(A),$$

since $A \cap H \subseteq A$ and μ^* is an outer measure. But $A \cap (X \setminus M) = A \setminus M$ and so $\mu^*(A \cap M) + \mu^*(A \setminus M) \le \mu^*(A)$. Since μ^* is an outer measure and $(A \cap M) \cup (A \setminus M) = A$ the opposite inequality is trivial. Hence

$$\mu^*(A \cap M) + \mu^*(A \setminus M) = \mu^*(A), \quad \forall A \subseteq X \implies M \in \mathcal{M}.$$

 (\Leftarrow) Let $M \in \mathcal{M}$, $M \subseteq H$. If $A \subseteq H$, then $\mu^*(A \cap M) + \mu^*(A \cap (X \setminus M)) = \mu^*(A)$ and so

$$\mu^*(A \cap M \cap H) + \mu^*(A \cap (X \setminus M) \cap H) = \mu^*(A \cap H).$$

But this is equivalent to $\mu_0^*(A \cap M) + \mu_0^*(A \cap (H \setminus M)) = \mu_0^*(A)$, and therefore $M \in \mathcal{M}_0$.

Problem 1.3.2

- i) Let X be any set. Let us define $\mu^* : \mathcal{P}(X) : \longrightarrow [0,1]$ by $\mu^*(\emptyset) = 0$, $\mu^*(A) = 1$, if $A \neq \emptyset$, $A \subseteq X$. Check that μ^* is an outer measure and determine the σ -algebra \mathcal{M} of measurable sets.
- ii) Do the same if $\mu^*(\varnothing) = 0$, $\mu^*(A) = 1$, if $A \neq \varnothing$, $A \subsetneq X$, $\mu^*(X) = 2$.

Hints: i) If $\varnothing \subsetneq M \subsetneq X$, then the definition of μ^* -measurable set fails with E = X. ii) If $\operatorname{card}(X) > 2$ and $\{x,y\} \subset M \subsetneq X$ the definition fails with $E = M^c \cup \{x\}$; if $M = \{x\}$ the definition fails with $E = \{x,y\} \subsetneq X$.

Solution: i) a) By definition $\mu^*(\varnothing) = 0$. b) Let $A \subseteq B$ then, if $A = \varnothing$, we have $0 = \mu^*(A) \le \mu^*(B)$ and, if $A \ne \varnothing$, we have $\mu^*(A) = 1 = \mu^*(B)$. c) Let $\{A_j\}_{j=1}^{\infty}$ be a collection of subsets of X. Then

$$\mu^* \Big(\bigcup_{j=1}^{\infty} A_j \Big) = \begin{cases} 0, & \text{if } A_j = \emptyset \ \forall j \\ 1, & \text{otherwise} \end{cases} \le \sum_{j=1}^{\infty} \mu^* (A_j).$$

Hence μ^* is an outer measure. The σ -algebra of μ^* -measurable sets is

$$\mathcal{M} = \{ M \subset X : \ \mu^*(E) \ge \mu^*(E \cap M) + \mu^*(E \setminus M) \,, \ \forall E \subseteq X \} \,.$$

But, taking E = X, we have: $1 = \mu^*(X) < 1 + 1 = \mu^*(X \cap M) + \mu^*(X \setminus M)$ if $M \neq \emptyset, X$ and so only \emptyset and X can be μ^* - measurable. Trivially $\emptyset, X \in \mathcal{M}$. Hence $\mathcal{M} = \{\emptyset, X\}$.

ii) Like in i) parts a) and b) are trivial; c) Given a collection $\{A_i\}_{i=1}^{\infty}$ of subsets of X we have

$$\mu^* \Big(\bigcup_{j=1}^{\infty} A_j \Big) = \begin{cases} 0, & \text{if } A_j = \emptyset \ \forall j \\ 1, & \text{if } \emptyset \subsetneq \bigcup_{j=1}^{\infty} A_j \subsetneq X \end{cases} \leq \sum_{j=1}^{\infty} \mu^* (A_j).$$
2, otherwise

Hence μ^* is again an outer measure.

If card (X) = 2, $X = \{x, y\}$ and $M = \{x\}$ or $M = \{y\}$ it is easy to check that $\mu^*(E) \ge \mu^*(E \cap M) + \mu^*(E \cap M^c)$ with the four possibilities $E = \emptyset$, $E = \{x\}$, $E = \{y\}$ or E = X. Hence $M \in \mathcal{M}$ and $\mathcal{M} = \mathcal{P}(X)$ in this case.

Now, let us suppose that card (X) > 2 and $\emptyset \subseteq M \subseteq X$:

- If $M = \{x\}$, taking $E = \{x, y\}$ we have that $E \cap M = \{x\}$, $E \cap M^c = \{y\}$ and so $\mu^*(E \cap M) + \mu^*(E \cap M^c) = 1 + 1 = 2 > 1 = \mu^*(E)$. Hence $M \notin \mathcal{M}$.
- If $\{x,y\} \subseteq M \subseteq X$, taking $E = M^c \cup \{x\}$ we have, since $E \subseteq X$ (because $y \notin E$):

$$\mu^*(E \cap M) + \mu^*(E \cap M^c) = \mu^*(\{x\}) + \mu^*(M^c) = 1 + 1 = 2 > 1 = \mu^*(E)$$
.

Hence $M \notin \mathcal{M}$. Therefore $\mathcal{M} = \{\emptyset, X\}$ in this case.

Problem 1.3.3 Show that a finitely additive outer measure is countably additive.

Hint: $\bigcup_{j=1}^{n} A_j \subseteq \bigcup_{j=1}^{\infty} A_j$ for all n.

Solution: Let $\{A_j\}_{j=1}^{\infty}$ be a collection of disjoint subsets of X and $A = \bigcup_{j=1}^{\infty} A_j$. We must prove that $\mu^*(A) = \sum_{j=1}^{\infty} \mu^*(A_j)$. As μ^* is an outer measure, the inequality \leq holds. But, for any $N \in \mathbb{N}$, by monotonicity

$$\mu^*(A) \ge \mu^* \Big(\bigcup_{j=1}^N A_j\Big) = \sum_{j=1}^N \mu^*(A_j)$$

since μ^* is finitely additive. By letting $N \to \infty$ we obtain the \geq inequality.

Problem 1.3.4* Let μ^* be an outer measure on X and let \mathcal{M} be the collection of μ^* -measurable sets. Prove Caratheodory's theorem following the steps:

- a) If $\mu^*(M) = 0$ then $M \in \mathcal{M}$.
- b) If $M \in \mathcal{M}$ then also $M^c = X \setminus M \in \mathcal{M}$.
- c) If $M, N \in \mathcal{M}$ then $M \cup N, M \cap N, M \setminus N \in \mathcal{M}$.

d) If $\{M_j\}_{j=1}^{\infty}$ is a sequence of disjoints in \mathcal{M} , then prove by induction on n that

$$\mu^*(A \cap (\cup_1^n M_j)) = \sum_{j=1}^n \mu^*(A \cap M_j), \quad \forall A \subset X, \forall n \in \mathbb{N}.$$

e) If $\{M_j\}_{j=1}^{\infty}$ is a sequence of disjoints in \mathcal{M} and $M:=\bigcup_{n=1}^{\infty}M_j$ then

$$\mu^*(A \cap M) = \sum_{j=1}^{\infty} \mu^*(A \cap M_j), \quad \forall A \subset X.$$

- f) If $\{M_j\}_{j=1}^{\infty}$ is a sequence of disjoints in \mathcal{M} , them $M := \bigcup_{n=1}^{\infty} M_j \in \mathcal{M}$.
- g) \mathcal{M} is a σ -algebra and $\mu^*|_{\mathcal{M}}$ is a measure.
- h) (X, \mathcal{M}, μ^*) is a complete measure space.

Hints: c) $A \cap (M \cup N) = (A \cap M) \cup (A \cap M^c \cap N)$. d) By c) $\bigcup_{j=1}^n M_j \in \mathcal{M}$ and so $\mu^*(A \cap (\bigcup_{j=1}^{n+1} M_j)) = \mu^*(A \cap (\bigcup_{j=1}^{n+1} M_j) \cap (\bigcup_{j=1}^n M_j)) + \mu^*(A \cap (\bigcup_{j=1}^{n+1} M_j) \setminus (\bigcup_{j=1}^n M_j)) = \mu^*(A \cap (\bigcup_{j=1}^n M_j)) + \mu^*(A \cap M_{n+1})$. e) It is a consequence of a). f) Use that $\bigcup_{j=1}^n M_j \in \mathcal{M}$ by c), and so $\mu^*(A) = \mu^*(A \cap \bigcup_{j=1}^n M_j) + \mu^*(A \setminus (\bigcup_{j=1}^n M_j))$; use now parts d) and e). g) If $\{A_j\}$ is any collection of subsets in \mathcal{M} , then the sets $M_j = A_j \setminus (A_1 \cup \cdots \cup A_{n-1} \in \mathcal{M})$ are disjoints and $\bigcup_{j=1}^\infty A_j = \bigcup_{j=1}^\infty M_j$.

Problem 1.3.5* Let $\mathcal{E} \subset \mathcal{P}(X)$ be a semialgebra and let $\mu_0 : \mathcal{E} : \longrightarrow [0, \infty]$ be a countable additive set function.

- a) Prove that μ_0 is monotone: If $E, F \in \mathcal{E}$, $E \subseteq F$, then $\mu_0(E) \leq \mu_0(F)$.
- b) Prove that μ_0 is countably sub-additive: If $E = \bigcup_{i=1}^{\infty} E_i$ with $E_i, E \in \mathcal{E}$, then

$$\mu_0(E) \le \sum_{i=1}^{\infty} \mu_0(E_i)$$
.

c) Let us define, for all $A \subseteq X$,

$$\mu^*(A) = \inf \left\{ \sum_{i=1}^{\infty} \mu_0(E_i) : E_i \in \mathcal{E}, A \subseteq \bigcup_{i=1}^{\infty} E_i \right\}.$$

- d) Prove that μ^* is an outer measure (and so, by Caratheodory's Theorem, the collection \mathcal{A} of μ^* -measurable sets is a σ -algebra and $\mu = \mu^*|_{\mathcal{A}}$ is a complete measure).
- e) Prove that $\mathcal{E} \subseteq \mathcal{A}$ and that μ^* is an extension of μ_0 : $\mu^*(E) = \mu_0(E)$ for all $E \in \mathcal{E}$.

Hints: a) If $E_1 \subset E_2$ then, as \mathcal{E} is semialgebra, $E_2 = E_1 \cup E_1^c = E_1 \cup F_1 \cup \cdots F_n$ with $F_j \in \mathcal{E}$ and disjoint. b) Consider the disjoint sets $D_i := E_i \setminus (E_1 \cup \cdots \cup E_{i-1}) = E_i \cap (\bigcap_{i=1}^{n-1} E_i^c)$ and observe that, as \mathcal{E} is semialgebra, we have that $E_i^c = F_{i1} \cup \cdots \cup F_{ik(i)}$ with $F_{ij} \in \mathcal{E}$ and disjoint. c) Given $\varepsilon > 0$ and sets $\{A_i\}_{i=1}^{\infty}$ such that $\sum_{i=1}^{\infty} \mu^*(A_i) < \infty$, choose for each i a collection $\{E_{ij}\}_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty} \mu_0(E_{ij}) < \mu^*(A_i) + \varepsilon/2^i$. Then $A := \bigcup_i A_i \subseteq \bigcup_i \bigcup_j E_{ij}$ and $\mu^*(A) \leq \sum_i \mu^*(A_i) + \varepsilon$. e) Given $E \in \mathcal{E}$, $A \subset X$ with $\mu^*(A) < \infty$ and $\varepsilon > 0$ there exists $\{E_i\} \subset \mathcal{E}$ such that $A \subset \bigcup_i E_i$ and $\sum_i \mu_0(E_i) < \mu^*(A) + \varepsilon$; also $E^c = F_1 \cup \cdots \cup F_n$ with $F_j \in \mathcal{E}$ and disjoint. Hence, $E_i = (E_i \cap E) \cup (E_i \cap F_1) \cup \cdots \cup (E_i \cap F_n)$, a disjoint union of sets.

Problem 1.3.6 A semiopen interval in \mathbb{R} is an interval of type \emptyset , [a,b), $(-\infty,b)$, $[a,\infty)$ or $(-\infty,\infty)=\mathbb{R}$. A semiopen interval in \mathbb{R}^n is a set of type $I=I_1\times I_2\times\cdots\times I_n$, where each I_j is a semiopen interval in \mathbb{R} . Let \mathcal{E} be the collection of semiopen intervals in \mathbb{R}^n . Prove that \mathcal{E} is a semialgebra.

Solution: By definition $\emptyset \in \mathcal{E}$. Secondly, if $I = I_1 \times I_2 \times \cdots \times I_n \in \mathcal{E}$, $J = J_1 \times I_2 \times \cdots \times J_n \in \mathcal{E}$, then $I \cap J = (I_1 \cap J_1) \times (I_2 \cap J_2) \times \cdots \times (I_n \cap J_n) \in \mathcal{E}$ since it is easy to check that the intersection of two semiopen intervals in \mathbb{R} is again a semiopen interval.

Finally: In \mathbb{R} it is easy to check that if $I \in \mathcal{E}$, then $I^c = I' \cup I''$ with I', I'' disjoint semiopen intervals. In \mathbb{R}^n $(n \geq 2)$, if $I = I_1 \times \cdots \times I_n \in \mathcal{E}$, then

$$I^{c} = (I_{1}^{c} \times \mathbb{R} \times \cdots \times \mathbb{R}) \cup (\mathbb{R} \times I_{2}^{c} \times \cdots \times \mathbb{R}) \cup \cdots \cup (\mathbb{R} \times \cdots \times \mathbb{R} \times I_{n}^{c})$$

$$= ((I_{1}^{\prime} \cup I_{1}^{\prime\prime}) \times \mathbb{R} \times \cdots \times \mathbb{R}) \cup (\mathbb{R} \times (I_{2}^{\prime} \cup I_{2}^{\prime\prime}) \times \cdots \times \mathbb{R}) \cup \cdots \cup (\mathbb{R} \times \cdots \times \mathbb{R} \times (I_{n}^{\prime} \cup I_{n}^{\prime\prime}))$$

$$= (I_{1}^{\prime} \times \mathbb{R} \times \cdots \times \mathbb{R}) \cup (I_{1}^{\prime\prime} \times \mathbb{R} \cdots \times \mathbb{R}) \cup \cdots \cup (\mathbb{R} \times \cdots \times \mathbb{R} \times I_{n}^{\prime}) \cup (\mathbb{R} \times \cdots \times \mathbb{R} \times I_{n}^{\prime\prime}) = \bigcup_{\alpha=1}^{2n} I^{\alpha},$$

where the I^{α} 's are disjoint and $I^{\alpha} \in \mathcal{E}$, for all α .

Problem 1.3.7 Show that a subset $B \subseteq \mathbb{R}$ is Lebesgue-measurable if and only if

$$m^*(I) = m^*(I \cap B) + m^*(I \cap B^c)$$
,

for every open interval $I \subseteq \mathbb{R}$.

Hint: Given $E \subset \mathbb{R}$ with $m^*(E) < \infty$ and $\varepsilon > 0$, consider a sequence of intervals $\{I_n\}$ such that $E \subset \bigcup_n I_n$ and $\sum_n m(I_n) < m^*(E) + \varepsilon$ and observe that, as each I_n is Lebesgue-measurable, $m(I_n) = m^*(I_n) = m^*(B \cap I_n) + m^*(B^c \cap I_n)$.

Solution: If B is Lebesgue-measurable then the equality holds for all $E \subset \mathbb{R}$ and so also holds for any interval. Reciprocally, let us suppose that the inequality is true for any interval. We must prove that $m^*(E) \geq m^*(E \cap B) + m^*(E \cap B^c)$ for all $E \subseteq \mathbb{R}$ since the other inequality trivially holds since m^* is an outer measure. We may assume that $m^*(E) < \infty$ since in other case the inequality is obvious. Given $\varepsilon > 0$, let $\{I_n\}$ be a sequence of intervals such that $E \subset \bigcup_n I_n$ and $\sum_n m(I_n) < m^*(E) + \varepsilon$. Then, as the intervals I_n are Lebesgue-measurable, using our hypothesis, and the subadditivity and monotonicity of μ^* :

$$m^{*}(E) > -\varepsilon + \sum_{n=1}^{\infty} m(I_{n}) = -\varepsilon + \sum_{n=1}^{\infty} m^{*}(I_{n})$$

$$= -\varepsilon + \sum_{n=1}^{\infty} \left(m^{*}(B \cap I_{n}) + m^{*}(B^{c} \cap I_{n}) \right)$$

$$\geq -\varepsilon + m^{*}\left(\bigcup_{n=1}^{\infty} (B \cap I_{n}) \right) + m^{*}\left(\bigcup_{n=1}^{\infty} (B^{c} \cap I_{n}) \right)$$

$$= -\varepsilon + m^{*}\left(B \cap \left(\bigcup_{n=1}^{\infty} I_{n} \right) \right) + m^{*}\left(B^{c} \cap \left(\bigcup_{n=1}^{\infty} I_{n} \right) \right)$$

$$\geq -\varepsilon + m^{*}(B \cap E) + m^{*}(B^{c} \cap E).$$

By letting $\varepsilon \to 0^+$ we obtain that $m^*(E) \ge m^*(E \cap B) + m^*(E \cap B^c)$.

Problem 1.3.8*

a) Prove that $(\mathbb{R}^n, \mathcal{M}, m)$ is translations invariant:

$$A \in \mathcal{M}, \quad a \in \mathbb{R}^n \implies a + A \in \mathcal{M} \text{ and } m(a+A) = m(A).$$

b) Let $(\mathbb{R}^n, \mathcal{M}, \mu)$ be a translations invariant measure space with μ a Radon measure $(\mu(K) < \infty)$ for each compact set K). Prove that there exists $k \ge 0$ such that $\mu = km$.

Hints: a) Consider the measure $\mu(B) = m(a+B)$ for $B \in \mathcal{B}(\mathbb{R}^n)$ and observe that m(a+I) = m(I) for each semi-interval I. Hence $\mu(I) = m(I)$ for I semi-interval. Apply Caratheodory-Hopf's extension theorem. b) Let $k = \mu([0,1] \times \cdots \times [0,1])$ and prove that $\mu(I) = k m(I)$, for each semi-interval $I = [0, r_1/q_1] \times \cdots \times [0, r_n/q_n]$ with $r_i/q_i \in \mathbb{Q}$. Using now an approximation argument conclude that the same is true for any semi-interval in \mathbb{R}^n . Finally apply Caratheodory-Hopf's extension theorem.

Problem 1.3.9* Let $g: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be an isometry for the Euclidean norm. that is to say ||g(x) - g(y)|| = ||x - y|| for all $x, y \in \mathbb{R}^n$. It is known that any isometry is a composition of a translation and an orthogonal transformation. Recall that $U: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is orthogonal if U is linear and $UU^T = I$ where I is the identity matrix.

Prove that given any Lebesgue-measurable set M, then g(M) is also a Lebesgue-measurable set and m(g(M)) = m(M).

Hints: By problem 1 it suffices to prove it for an orthogonal transformation U. As U is an homeomorphism (bijective and continuous with continuous inverse) then U sends Borel sets into Borel sets. Define a measure μ by $\mu(A) = m(U(A))$ for $A \in \mathcal{B}(\mathbb{R}^n)$, where U is orthogonal, and prove that μ is translations invariant. Hence $\mu(A) = k m(A)$ for any $A \in \mathcal{B}(\mathbb{R}^n)$ and for some constant k. But, if $B = \{x : ||x|| < 1\}$ then prove that $\mu(B) = m(B)$ and so k = 1. Finally, if $M \in \mathcal{M}$ then $M = A \cup N$ with $A \in \mathcal{B}(\mathbb{R}^n)$ and $N \subset C \in \mathcal{B}(\mathbb{R}^n)$, m(C) = 0. Hence $U(M) = U(A) \cup U(N)$ with $U(A) \in \mathcal{B}(\mathbb{R}^n)$ and $U(N) \subset U(C) \in \mathcal{B}(\mathbb{R}^n)$, m(U(C)) = m(C) = 0.

Problem 1.3.10* Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation. Prove that given any Lebesgue-measurable set, then T(M) is also a Lebesgue-measurable set and

$$m(T(M)) = |\det T| m(M).$$

Hints: If det T=0 is trivial because in this case $T(\mathbb{R}^n)$ is contained in an (n-1)-dimensional hyperplane which has zero n-dimensional Lebesgue measure. If det $T \neq 0$, then T is bijective and can be decomposed as T=UDV with U,V orthogonal transformations and D a linear transformation whose matrix is diagonal. As orthogonal transformations are isometries, by problem 1.3.9, it suffices to prove it for D. Let $\lambda_1, \ldots, \lambda_n$ be the elements of the diagonal of D. If $I=[a_1,b_1)\times\cdots\times[a_n,b_n)$ is a semi-interval in \mathbb{R}^n , then $D(I)=[\lambda_1a_1,\lambda_1b_1)\times\cdots\times[\lambda_na_n,\lambda_nb_n)$ and so $m(D(I))=\lambda_1\cdots\lambda_n m(I)$. Define the measure $\mu(M)=\frac{1}{\lambda_1\cdots\lambda_n}m(D(M))$. By Caratheodory-Hopf's extension theorem we have that $\mu=m$. Finally, observe that det $T=\det D=\lambda_1\cdots\lambda_n$.

Problem 1.3.11* Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing function. Prove that there exists a unique Radon measure $\mu: \mathcal{B}(\mathbb{R}) \longrightarrow [0, \infty]$ such that

$$\mu([a,b)) = g(b^-) - g(a^-), \quad \forall [a,b) \in \mathcal{E}.$$

Here $g(x_0^-)$ denotes the left limit of g at the point x_0 . This measure $\mu = \mu_g$ is called the Borel-Stieltjes measure with distribution function g.

Hint: Prove that μ is countably additive on the semi-intervals: if $[a,b) = \bigcup_{j=1}^{\infty} [a_j,b_j)$ then $g(b^-) - g(a^-) = \sum_{j=1}^{\infty} g(b_j^-) - g(a_j^-)$. Then, apply Caratheodory-Hopf's extension theorem.

Problem 1.3.12 Let $\mu : \mathcal{B}(\mathbb{R}) \longrightarrow [0, \infty]$ be a Radon measure. Prove that there exists an increasing and left-continuous function $g : \mathbb{R} \longrightarrow \mathbb{R}$ such that $\mu = \mu_g$. Besides, g is unique unless by adding constants.

Hint: Define $g(t) = \mu([0,t])$ for $t \ge 0$ and $g(t) = -\mu([t,0])$ for t < 0 and apply Caratheodory-Hopf's extension theorem.

Solution: We define $g(t) = \mu([0,t])$ for $t \ge 0$ and $g(t) = -\mu([t,0))$ for t < 0. Then, g is increasing:

$$\begin{aligned} 0 &< t_1 < t_2 \implies [0,t_1) \subset [0,t_2) \implies g(t_1) \leq g(t_2) \,, \\ t_1 &< t_2 < 0 \implies [t_1,0) \supset [t_2,0) \implies -\mu([t_1,0)) \leq -\mu([t_2,0)) \implies g(t_1) \leq g(t_2) \,, \\ t_1 &< 0 < t_2 \implies g(t_1) \leq 0 \leq g(t_2) \,. \end{aligned}$$

Secondly, g is left-continuous: Given $t \in \mathbb{R}$, let $\{s_n\} \subset \mathbb{R}$ with $s_n \nearrow t$. If t > 0, then

$$g(t) = \mu([0, t)) = \mu\left(\bigcup_{n=1}^{\infty} [0, s_n)\right) = \lim_{n \to \infty} \mu([0, s_n)) = \lim_{n \to \infty} g(s_n),$$

and, if $t \leq 0$, since μ is a Radon measure (and so $\mu(s_n, 0) < \infty$):

$$g(t) = -\mu([t, 0)) = -\mu\Big(\bigcap_{n=1}^{\infty} [s_n, 0)\Big) = -\lim_{n \to \infty} \mu([s_n, 0)) = \lim_{n \to \infty} g(s_n).$$

Finally, let us see that $\mu = \mu_q$:

$$\begin{aligned} 0 &< a < b \implies \mu([a,b)) = \mu([0,b) \setminus [0,a)) = \mu([0,b)) - \mu([0,a)) = g(b) - g(a) = g(b^-) - g(a^-), \\ a &< b < 0 \implies \mu([a,b)) = \mu([a,0) \setminus [b,0)) = \mu([a,0)) - \mu([b,0)) = -g(a) + g(b) = g(b^-) - g(a^-), \\ a &< 0 < b \implies \mu([a,b)) = \mu([a,0) \cup [0,b)) = \mu([a,0)) + \mu([0,b)) = -g(a) + g(b) = g(b^-) - g(a^-). \end{aligned}$$

Therefore $\mu([a,b)) = \mu_g([a,b))$ for all semiopen interval and so $\mu = \mu_g$ by Caratheodory-Hopf's extension theorem. Finally, let us suppose that $g, h : \mathbb{R} \longrightarrow \mathbb{R}$ are increasing and left continuous and $\mu_g = \mu_h$: Let c = g(0) - h(0), then as $g(t) - g(0) = \mu_g([0,t)) = \mu_h([0,t)) = h(t) - h(0)$, we conclude that g(t) - h(t) = c and therefore, g is unique unless by adding constants.

Problem 1.3.13 Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing function and let μ_g be the corresponding Borel-Stieltjes measure with distribution function g. Prove that:

- a) $\mu_g(\{x\}) = g(x^+) g(x^-)$.
- b) $\mu_q(\lbrace x \rbrace) = 0$ if and only if g is continuous at x.
- c) $\mu_g([a,b]) = g(b^+) g(a^-).$
- d) $\mu_g((a,b)) = g(b^-) g(a^+).$
- e) $\mu_g((a,b]) = g(b^+) g(a^+).$
- f) If $I \subset \mathbb{R}$ is an open interval, then $\mu_g(I) = 0$ if and only if g is constant on I.

 $\begin{array}{l} Solution: \ {\rm a)} \ \mu_g(\{x\}) = \mu_g(\cap_n[x,x+\frac{1}{n})) = \lim_{n \to \infty} \mu_g([x,x+\frac{1}{n}))) = \lim_{n \to \infty} g((x+\frac{1}{n})^-) - g(x^-) = \lim_{n \to \infty} g(x+\frac{1}{n}) - g(x^-) = g(x^+) - g(x^-). \\ {\rm b)} \ \mu_g(\{x\}) = 0 \iff g(x^+) = g(x^-) \iff g \ {\rm is} \ {\rm continuous} \ {\rm at} \ x. \\ {\rm c)} \ \mu_g([a,b]) = \mu_g([a,b) \cup \{b\}) = \mu_g([a,b)) + \mu_g(\{b\}) = g(b^-) - g(a^-) + g(b^+) - g(b^-) = g(b^+) - g(a^-). \\ {\rm d)} \ \mu_g((a,b)) = \mu_g([a,b] \setminus \{a\}) = \mu_g([a,b]) - \mu_g(\{a\}) = g(b^-) - g(a^-) - g(a^+) + g(a^-) = g(b^-) - g(a^+). \\ {\rm e)} \ \mu_g((a,b]) = \mu_g([a,b] \setminus \{a\}) = \mu_g([a,b]) - \mu_g(\{a\}) = g(b^+) - g(a^-) - g(a^+) + g(a^-) = g(b^+) - g(a^+). \\ {\rm f)} \ (\Leftarrow) \ {\rm If} \ g(t) = {\rm const.}, \ \forall \ t \in I = (a,b), \ {\rm then} \ \mu_g(I) = g(b^-) - g(a^+) = {\rm const.}, \ {\rm const$

Problem 1.3.14

a) Let us consider the function

$$F(x) = \begin{cases} 0 & \text{if } x < 1 \\ x & \text{if } 1 \le x < 3 \\ 4 & \text{if } x \ge 3 \end{cases}.$$

Let μ_F be the Borel-Stieltjes measure with distribution function F. Calculate:

$$\mu_F(\{1\}), \quad \mu_F(\{2\}), \quad \mu_F(\{3\}), \quad \mu_F((1,3]), \quad \mu_F((1,3)), \quad \mu_F([1,3]), \quad \mu_F([1,3]).$$

b) Give an example of a distribution function F such that

$$\mu_F((a,b)) < F(b) - F(a) < \mu_F([a,b])$$
, for some a and b.

Solution: a) $\mu_F(\{1\}) = F(1^+) - F(1^-) = 1$, $\mu_F(\{2\}) = F(2^+) - F(2^-) = 0$, $\mu_F(\{3\}) = F(3^+) - F(3^-) = 1$, $\mu_F(\{1,3]) = F(3^+) - F(1^+) = 3$, $\mu_F(\{1,3\}) = F(3^-) - F(1^+) = 2$, $\mu_F(\{1,3\}) = F(3^+) - F(1^-) = 4$, $\mu_F(\{1,3\}) = F(3^-) - F(1^-) = 3$. b) It holds for the function F in a), since F(3) - F(1) = 4 - 1 = 3.

Problem 1.3.15 Let F(x) be the distribution function on \mathbb{R} given by

$$F(x) = \begin{cases} 0 & \text{if } x \in (-\infty, -1) \\ 1 + x & \text{if } x \in [-1, 0) \\ 2 + x^2 & \text{if } x \in [0, 2) \\ 9 & \text{if } x \in [2, \infty) \,. \end{cases}$$

If μ_F is the Borel-Stieltjes measure with distribution function F, calculate the measure μ_F of the following sets: $\{2\}$, [-1/2,3), $(-1,0] \cup (1,2)$, $[0,1/2) \cup (1,2]$, $A = \{x \in \mathbb{R} : |x| + 2x^2 > 1\}$.

Solution: $\mu_F(\{2\}) = F(2^+) - F(2^-) = 3$, $\mu_F([-1/2,3)) = F(3^-) - F(-1/2^-) = 17/2$, $\mu_F((-1,0] \cup (1,2)) = F(0^+) - F(-1^+) + F(2^-) - F(1^+) = 5$, $\mu_F([0,1/2) \cup (1,2]) = F(1/2^-) - F(0^-) + F(2^+) - F(1^+) = 29/4$, $\mu_F(A) = \mu_F((-\infty,-1/2) \cup (1/2,\infty)) = F(-1/2^-) - F(-\infty) + F(+\infty) - F(1/2^+) = 29/4$.

Problem 1.3.16 Let μ be the counting measure on \mathbb{R} . Let us fix $A \subset \mathbb{R}$, and let us define $\nu(B) = \mu(B \cap A)$ for all $B \subset \mathbb{R}$.

- a) If $A = \{1, 2, 3, \dots, n, \dots\}$ is ν a Borel-Stieltjes measure? If the answer is affirmative, find the distribution function.
- b) And if $A = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$?

Solution: a) Yes, since μ is a Radon measure because $\mu([a,b]) = \#\{n \in \mathbb{N} : a \le n \le b\} < \infty$; F(x) = 0 if x < 0, F(x) = [x] if $x \ge 0$.

b) No, since μ gives infinite measure to some compact intervals: $\mu([0,\varepsilon]) = \#\{n \in \mathbb{N} : 1/n \le \varepsilon\} = \infty$, for all $\varepsilon > 0$.

Problem 1.3.17 Let (X, \mathcal{A}, μ) be a measure space and let $\Phi : X \longrightarrow Y$ be a mapping. We define the *image space measure* (Y, \mathcal{B}, ν) as

$$\mathcal{B} = \Phi(\mathcal{A}) := \{ B \subseteq Y : \Phi^{-1}(B) \in \mathcal{A} \}$$

and $\nu = \Phi(\mu) : \mathcal{B} \longrightarrow [0, \infty]$ given by $\nu(B) = \mu(\Phi^{-1}(B))$ for all $B \in \mathcal{B}$. Prove that (Y, \mathcal{B}, ν) is a measure space and it is complete when (X, \mathcal{A}, μ) is.

Solution: a) $\nu(\varnothing) = \mu(\Phi^{-1}(\varnothing)) = \mu(\varnothing) = 0.$

b) If $\{B_j\}_{j=1}^{\infty} \subset \mathcal{B}$ is a collection of disjoint subsets of Y, then $\{\Phi^{-1}(B_j)\}_{j=1}^{\infty} \subset \mathcal{A}$ is a collection of disjoint subsets of X and as μ is a measure:

$$\nu\Big(\bigcup_{j=1}^{\infty} B_j\Big) = \mu\Big(\Phi^{-1}\Big(\bigcup_{j=1}^{\infty} B_j\Big)\Big) = \mu\Big(\bigcup_{j=1}^{\infty} \Phi^{-1}(B_j)\Big) = \sum_{j=1}^{\infty} \mu(\Phi^{-1}(B_j)) = \sum_{j=1}^{\infty} \nu(B_j).$$

Finally, if (X, \mathcal{A}, μ) is complete and $N \subseteq B \in \mathcal{B}$ with $\nu(B) = 0$ then $\Phi^{-1}(N) \subseteq \Phi^{-1}(B) \in \mathcal{A}$ and $\mu(\Phi^{-1}(B)) = \nu(B) = 0$ and so $\Phi^{-1}(N) \in \mathcal{A}$ and $\mu(\Phi^{-1}(N)) = 0$. Hence $N \in \mathcal{B}$ and $\nu(N) = \mu(\Phi^{-1}(N)) = 0$. Hence (Y, \mathcal{B}, ν) is also complete.

Problem 1.3.18

- a) Let $g: I \longrightarrow \mathbb{R}$ be a continuous and strictly increasing function. As g is injective it has a continuous inverse g^{-1} . Prove that $\mu_g = g^{-1}(m)$, that is to say that the Borel-Stieltjes measure with distribution function g coincides with the image measure of Lebesgue measure under g^{-1} .
- b) Let $g:(0,\infty) \longrightarrow \mathbb{R}$ be the function $g(t) = \log t$. Prove that $\mu_g = g^{-1}(m) = e^m$ is invariant under dilations.

Hints: a) Prove that both measures coincide for semi-intervals [a, b) and apply Caratheodory-Hopf's extension theorem. b) Use part a) and the fact that Lebesgue measure is translation invariant. Alternatively, it can be also proved by using Caratheodory-Hopf's extension theorem. Solution: a) Let $[a, b) \in \mathcal{E}$, the semialgebra of semiopen intervals in \mathbb{R} . Then, as g is increasing, g([a, b)) = [g(a), g(b)) and so,

$$g^{-1}(m)([a,b))) = m(g([a,b))) = m([g(a),g(b))) = g(a) - g(b) = \mu_g([a,b)),$$

since g is continuous. By Caratheodory-Hopf's extension theorem we obtain that $\mu_g = g^{-1}(m)$. b) Let E be a borelian set in $(0, \infty)$ and let $\lambda > 0$. Then, using a) and the fact that Lebesgue measure is translation invariant:

$$\mu_g(\lambda E) = g^{-1}(m)(\lambda E) = m(g(\lambda E)) = m(\log(\lambda E))$$

= $m(\log \lambda + \log E) = m(\log E) = m(g(E)) = g^{-1}(m)(E) = \mu_g(E).$

Problem 1.3.19 Let $B_n = \{x \in \mathbb{R}^n : ||x|| < 1\}$ be the unit ball of \mathbb{R}^n and $S_{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$ be the unit sphere. Let us consider the projection $\pi : B_n \setminus \{0\} \longrightarrow S_{n-1}$ given by

 $\pi(x) = x/\|x\|$. The (n-1)-dimensional Lebesgue measure on S_{n-1} is defined as $\sigma = n \cdot \pi(m)$, that is to say

$$\sigma(U) = n \cdot m(\pi^{-1}(U)), \quad \text{for all } U \in \mathcal{B}(S_{n-1}).$$

Prove that σ is invariant under rotations.

Hint: Use problem 1.3.9.

Solution: That σ is invariant under rotations means that $\sigma(T(U)) = \sigma(U)$ for any orthogonal transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$. But using problem 1.3.9, we have that

$$\sigma(T(U)) = n \cdot m(\pi^{-1}(T(U))) = n \cdot m(T(\pi^{-1}(U))) = n \cdot m(\pi^{-1}(U)) = \sigma(U).$$

Problem 1.3.20 Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ -finite measure spaces. Let us consider the product set $X \times Y = \{(x, y) : x \in X, y \in Y\}$. The product σ -algebra $\mathcal{A} \otimes \mathcal{B}$ is the σ -algebra generated by the set $\mathcal{E} = \{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\}$. Prove that there exists a unique measure $\mu \otimes \nu : \mathcal{A} \otimes \mathcal{B} \longrightarrow [0, \infty]$ such that

$$(\mu \otimes \nu)(A \times B) = \mu(A) \nu(B)$$
, for all $A \in \mathcal{A}$, $B \in \mathcal{B}$.

Hint: Prove that \mathcal{E} is a semi-algebra and that $\mu \otimes \nu$ is countably additive on \mathcal{E} . Then apply Caratheodory-Hopf's extension theorem.

Solution: Let us check first that \mathcal{E} is a semialgebra: a) $\varnothing = \varnothing \times \varnothing \in \mathcal{E}$. b) Let $A \times B, A' \times B' \in \mathcal{E}$. Then $A, A' \in \mathcal{A}$ and $B, B' \in \mathcal{B}$ and, since \mathcal{A} and \mathcal{B} are σ -algebras, $A \cap A' \in \mathcal{A}$ and $B \cap B' \in \mathcal{B}$. Hence $(A \times B) \cap (A' \times B') = (A \cap A') \times (B \cap B') \in \mathcal{E}$. c) Let $A \times B \in \mathcal{E}$. Then $(A \times B)^c = (A^c \times Y) \cup (A \times B^c)$ and $A^c \times Y, A \times B^c \in \mathcal{E}$ (since \mathcal{A} and \mathcal{B} are σ -algebras) and they are disjoint. Let us define now the set-function $\alpha : \mathcal{E} \longrightarrow [0, \infty]$ given by $\alpha(A \times B) = \mu(A) \nu(B)$. It is not difficult to check that α is countably additive. Besides, as μ and ν are σ -finite we have that: $X = \cup_n X_n$ with $\mu(X_n) < \infty, X_1 \subseteq X_2 \subseteq \cdots$ and $Y = \cup_n Y_n$ with $\nu(Y_n) < \infty, Y_1 \subseteq Y_2 \subseteq \cdots$. Hence $X \times Y = \cup_n (X_n \times Y_n)$ with $\alpha(X_n \times Y_n) = \mu(X_n) \nu(Y_n) < \infty$ and so α is also σ -finite. As a consequence of Caratheodory-Hopf's extension theorem we deduce that there exists a unique measure $\mu \otimes \nu$ defined on the product σ -algebra $\mathcal{A} \otimes \mathcal{B} := \sigma(\mathcal{E})$ such that $\mu \otimes \nu|_{\mathcal{E}} = \alpha$, that is to say such that $(\mu \otimes \nu)(A \times B) = \mu(A) \nu(B)$ for all $A \in \mathcal{A}$ and $B \in \mathcal{B}$.