uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems

 Chapter 2: Integration theory Section 2.1: Integration of positive functionsProfessors: Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.1 Integration of positive functions

Problem 2.1.1 Let (X, \mathcal{A}, μ) be a measure space and let $f, g: X \longrightarrow[0, \infty]$ be measurable positive functions and $A, B, E \in \mathcal{A}, \lambda \geq 0$. Prove that:

$$
\begin{aligned}
& \text { i) } \int_{E} \lambda f d \mu=\lambda \int_{E} f d \mu \text {. } \\
& \text { ii) } \int_{E} f d \mu=\int_{X} f \chi_{E} d \mu \text {. } \\
& \text { iii) } f \leq g \Longrightarrow \int_{E} f d \mu \leq \int_{E} g d \mu \text {. } \\
& \text { iv) } A \subseteq B \Longrightarrow \int_{A} f d \mu \leq \int_{B} f d \mu \text {. } \\
& \text { v) } \int_{E} f=0 \Leftrightarrow f=0 \text { a.e. in } E \text {. } \\
& \text { vi) } \mu(E)=0 \Longrightarrow \int_{E} f d \mu=0 \text {. } \\
& \text { vii) } A \cap B=\varnothing \Longrightarrow \int_{A \cup B} f d \mu=\int_{A} f d \mu+\int_{B} f d \mu \text {. } \\
& \text { viii) } \int_{E}(f+g) d \mu=\int_{E} f d \mu+\int_{E} g d \mu \text {. } \\
& \text { ix) } f \geq g, \int_{X} g d \mu<\infty \Longrightarrow \int_{X} f d \mu-\int g d \mu=\int_{X}(f-g) d \mu \text {. } \\
& \text { x) } f \leq g \text { a.e. in } E \Longrightarrow \int_{E} f d \mu \leq \int_{E} g d \mu \text {. } \\
& \text { xi) } f=g \text { a.e. in } E \Longrightarrow \int_{E} f d \mu=\int_{E} g d \mu \text {. }
\end{aligned}
$$

Hints: vi) If $f=0$ a.e. and $s=\sum_{j} c_{j} \chi_{A_{j}} \leq f$, then $\mu\left(A_{j}\right)=0$ for all j and so $s=0$ a.e. On the other hand, if $\mu(f>0)>0$, then $\mu(A)>0$ for some $n \in \mathbb{N}$, where $A=\{f>1 / n\}$. Hence, $0 \leq s=\frac{1}{n} \chi_{A} \leq f$ and $\frac{1}{n} \mu(A \cap E) \leq \int_{E} f d \mu$, a contradiction. For the other statements, the idea is always to approximate positive functions by simple functions.
Solution: i) Let us observe that s is a simple function if and only if $\tilde{s}=s / \lambda$ is also a simple function. Hence,

$$
\int_{E} \lambda f d \mu=\sup _{\substack{0 \leq s \leq f \\ s \text { simple }}} \int_{E} s d \mu=\sup _{\substack{0 \leq s / \lambda \leq f \\ s \text { simple }}} \lambda \int_{E} \frac{s}{\lambda} d \mu=\lambda \sup _{\substack{0 \leq \tilde{s} \leq f \\ \tilde{s} \text { simple }}} \int_{E} \tilde{s} d \mu=\lambda \int_{E} f d \mu .
$$

ii) We have that

$$
\int_{E} f d \mu=\sup _{\substack{0 \leq s \leq f \\ s \text { simple }}} \int_{E} s d \mu=\sup _{\substack{0 \leq s \leq f \\ s=\sum_{j} c_{j} \chi_{A_{j}}}} \sum_{j} c_{j} \mu\left(A_{j} \cap E\right) .
$$

Now, it is easy to check that if the sets A_{j} are disjoint then

$$
s=\sum_{j} c_{j} \chi_{A_{j}} \leq f \quad \Leftrightarrow \quad \tilde{s}=\sum_{j} c_{j} \chi_{A_{j} \cap E} \leq f \chi_{E}
$$

and so

$$
\int_{X} f \chi_{E} d \mu=\sup _{\substack{0 \leq \tilde{s} \leq f \chi_{E} \\ \tilde{s}=\sum_{j} c_{j} \chi_{A_{j} \cap E}}} \int_{X} \tilde{s} d \mu=\sup _{\substack{0 \leq s \leq f \\ s=\sum_{j} c_{j} \chi_{A_{j}}}} \sum_{j} c_{j} \mu\left(A_{j} \cap E\right)=\int_{E} f d \mu
$$

iii) As $f \leq g$ we have that

$$
\{s \text { simple : } 0 \leq s \leq f\} \subseteq\{s \text { simple : } 0 \leq s \leq g\}
$$

and so

$$
\int_{E} f d \mu=\sup _{0 \leq s \leq f} \int_{E} s d \mu \leq \sup _{0 \leq s \leq g} \int_{E} s d \mu=\int_{E} g d \mu
$$

iv) $A \subseteq B \Longrightarrow \chi_{A} \leq \chi_{B} \Longrightarrow f \chi_{A} \leq f \chi_{B}$ and so iv) follows from iii).
v) (\Leftarrow) If $f=0$ a.e. in E and $0 \leq s=\sum_{j} c_{j} \chi_{A_{j}} \leq f$, then $\mu\left(A_{j} \cap E\right)=0$ for all j. Hence,

$$
\int_{E} f d \mu=\sup _{\substack{0 \leq s \leq f \\ s \text { simple }}} \int_{E} s d \mu=\sup _{0 \leq s \leq f} \sum_{j} c_{j} \mu\left(A_{j} \cap E\right)=0 .
$$

(\Rightarrow) Assume that $\mu(\{x \in E: f(x)>0\})>0$. As $\{x \in E: f(x)>0\}=\cup_{n=1}^{\infty}\left\{x \in E: f(x)>\frac{1}{n}\right\}$ we have that $\exists n \in \mathbb{N}$ such that $\mu\left(\left\{x \in E: f(x)>\frac{1}{n}\right\}\right)>0$. Let $A:=\left\{x \in E: f(x)>\frac{1}{n}\right\}$. Hence, $\mu(A \cap E)=\mu(A)>0$ and $0 \leq s:=\frac{1}{n} \chi_{A}<f$ and so

$$
\int_{E} s d \mu=\frac{1}{n} \int_{E} \chi_{A} d \mu \leq \int_{E} f d \mu \Longrightarrow \frac{1}{n} \mu(A \cap E) \leq \int_{E} f d \mu \Longrightarrow \int_{E} f d \mu>0
$$

vi) If $\mu(E)=0$, then $f=0$ a.e. in E and so, by v), $\int_{E} f d \mu=0$.
vii) If $A \cap B=\varnothing$, then it is easy to check that $\chi_{A \cup B}=\chi_{A}+\chi_{B}$ and so
$\int_{A \cup B} f d \mu=\int_{X} f \chi_{A \cup B} d \mu=\int_{X} f\left(\chi_{A}+\chi_{B}\right) d \mu=\int_{X} f \chi_{A} d \mu+\int_{X} f \chi_{B} d \mu=\int_{A} f d \mu+\int_{B} f d \mu$.
viii) Let $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ be sequences of simple functions such that $0 \leq s_{n} \nearrow f$ and $0 \leq t_{n} \nearrow g$ as $n \rightarrow \infty$. Then $\left\{s_{n}+t_{n}\right\}$ is a sequence of simple functions such that $s_{n}+t_{n} \nearrow f+g$ as $n \rightarrow \infty$. By the monotone convergence theorem

$$
\begin{aligned}
\int_{X}(f+g) d \mu & =\lim _{n \rightarrow \infty} \int_{X}\left(s_{n}+t_{n}\right) d \mu=\lim _{n \rightarrow \infty}\left(\int_{X} s_{n} d \mu+\int_{X} t_{n} d \mu\right) \\
& =\lim _{n \rightarrow \infty} \int_{X} s_{n} d \mu+\lim _{n \rightarrow \infty} \int_{X} t_{n} d \mu=\int_{X} f d \mu+\int_{X} g d \mu
\end{aligned}
$$

Now, using ii) we get that

$$
\int_{E}(f+g) d \mu=\int_{X}(f+g) \chi_{E} d \mu=\int_{X} f \chi_{E} d \mu+\int_{X} f g \chi_{E} d \mu=\int_{E} f d \mu+\int_{E} g d \mu .
$$

ix) As $f \geq g$ we have that $f-g \geq 0$ and, by ii),

$$
\int_{X} f d \mu=\int_{X}(g+(f-g)) d \mu=\int_{X} g d \mu+\int_{X}(f-g) d \mu
$$

To finish we subtract $\int_{X} g d \mu<\infty$ from both members.
x) If $A:=\{x \in E: f(x)>g(x)\}$, then $\mu(A)=0$. Let $h(x)=f(x)$ if $x \notin A$ and $h(x)=0$ otherwise (alternatively $h=f \chi_{A^{c}}$). Then $f=h$ a.e. and h is measurable. Also $f \geq h$ for all $x \in X$. Applying v) to $f-h$ we get that $\int_{X}(f-h) d \mu=0$ and so, by ix), $\int_{X} f d \mu=\int_{X} h d \mu$. But also $g-h \geq 0$ for all $x \in X$ and so, by iii), $\int_{X}(f-h) d \mu \geq 0 \Rightarrow \int_{X} h d \mu \leq \int_{X} g d \mu$.
xi) As $f=g$ a.e. we have that $f \leq g$ a.e. and $g \leq f$ a.e. and applying x) twice we get xi).

Problem 2.1.2 Let (X, \mathcal{A}, μ) be a measure space and suppose that $X=\cup_{n} X_{n}$, where $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a pairwise disjoint collection of measurable subsets of X. Prove that if $f: X \longrightarrow[0, \infty]$ is a measurable positive function, then

$$
\int_{X} f d \mu=\sum_{n} \int_{X_{n}} f d \mu
$$

Hint: Use the monotone convergence theorem.
Solution: By definition of the sum of a series and using property viii) of problem 2.1.1 for finite sums,
$\sum_{n=1}^{\infty} \int_{X_{n}} f d \mu=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{X_{n}} f d \mu=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{X} f \chi_{X_{n}} d \mu=\lim _{N \rightarrow \infty} \int_{X} \sum_{n=1}^{N}\left(f \chi_{X_{n}}\right) d \mu=\int_{X} f d \mu$,
by the monotone convergence theorem, since the sets X_{n} are pairwise disjoint, we have that $\sum_{n=1}^{\infty} \chi_{X_{n}}=\chi_{\cup_{n} X_{n}}=\chi_{X}=1$ and so $\sum_{n=1}^{N} f \chi_{X_{n}} \nearrow f$ as $N \rightarrow \infty$.

Problem 2.1.3 Let (X, \mathcal{A}, μ) be a measure space and let $f: X \longrightarrow[0, \infty]$ be a measurable positive function. Let us define

$$
\varphi(E)=\int_{E} f d \mu, \quad \text { for all } E \in \mathcal{A}
$$

Prove that φ is a measure on \mathcal{A} and that

$$
\begin{equation*}
\int_{X} g d \varphi=\int_{X} g f d \mu, \quad \text { for all } g: X \longrightarrow[0, \infty] \text { measurable. } \tag{1}
\end{equation*}
$$

Note: This fact justifies the notation $d \varphi=f d \mu$.
Hint: Apply Exercise 2.1 .1 to prove that φ is a measure. Then, prove (1) first for characteristic functions and simple functions and then approximate any positive function for a sequence of simple functions.
Solution: a) $\varphi(\varnothing)=\int_{\varnothing} f d \mu=0$ since $\mu(\varnothing)=0$. b) Let $\left\{A_{j}\right\}_{j=1}^{\infty} \subset \mathcal{A}$ be a collection of disjoint sets and let $A=\cup_{j=1}^{\infty} A_{j}$. Then $\chi_{A}=\sum_{j=1}^{\infty} \chi_{A_{j}}$ and, as $f, \chi_{A_{j}} \geq 0$, the monotone convergence theorem gives
$\varphi(A)=\int_{A} f d \mu=\int_{X} f \chi_{A} d \mu=\int_{X}\left(f \sum_{j=1}^{\infty} \chi_{A_{j}}\right) d \mu=\sum_{j=1}^{\infty} \int_{X} f \chi_{A_{j}} d \mu=\sum_{j=1}^{\infty} \int_{A_{j}} f d \mu=\sum_{j=1}^{\infty} \varphi\left(A_{j}\right)$.
Hence, φ is a measure. On the other hand, if $s=\sum_{j=1}^{n} c_{j} \chi_{E_{j}}$ is a simple function:

$$
\begin{align*}
\int_{X} s d \varphi & =\sum_{j=1}^{n} c_{j} \int_{X} \chi_{E_{j}} d \varphi=\sum_{j=1}^{n} c_{j} \varphi\left(E_{j}\right)=\sum_{j=1}^{n} c_{j} \int_{E_{j}} f d \mu \\
& =\sum_{j=1}^{n} c_{j} \int_{X} f \chi_{E_{j}} d \mu=\int_{X}\left(\sum_{j=1}^{n} c_{j} \chi_{E_{j}}\right) f d \mu=\int_{X} s f d \mu \tag{2}
\end{align*}
$$

and so (1) holds for simple functions. Now, let $g \geq 0$ measurable and let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be a sequence of simple functions such that $0 \leq s_{1} \leq s_{2} \leq \cdots \leq s_{n} \nearrow g$ as $n \rightarrow \infty$. Then, by the monotone convergence theorem and (2),

$$
\int_{X} g d \varphi=\lim _{n \rightarrow \infty} \int_{X} s_{n} d \varphi=\lim _{n \rightarrow \infty} \int_{X} s_{n} f d \mu=\int_{X} g f d \mu
$$

Problem 2.1.4 Let $f:[0,1] \longrightarrow[0, \infty]$ be defined by $f(x)=0$ if x is rational, and otherwise $f(x)=n$ where n is the number of zeros immediately after the decimal point in the representation of x in the decimal scale. Calculate $\int f(x) d m$, being m the Lebesgue measure.

Hint: $f(x)=k$ for $x \in\left[1 / 10^{k+1}, 1 / 10^{k}\right) \backslash \mathbb{Q}$.
Solution: If $x \in\left[1 / 10^{k+1}, 1 / 10^{k}\right) \backslash \mathbb{Q}$, then $f(x)=k$ and so $f=\sum_{k=1}^{\infty} k \chi_{\left[1 / 10^{\left.k+1,1 / 10^{k}\right)}\right.}$ a.e. By the monotone convergence theorem

$$
\int f d m=\sum_{k=1}^{\infty} k\left(\frac{1}{10^{k}}-\frac{1}{10^{k+1}}\right)=\sum_{k=1}^{\infty} k \frac{9}{10^{k+1}}=9 \sum_{k=1}^{\infty} \frac{k}{10^{k+1}} .
$$

Let $F(x)=\sum_{k=1}^{\infty} k x^{k-1}$ and $G(x)=\sum_{k=0}^{\infty} x^{k}=1 /(1-x)$ for $0 \leq x<1$. Then $F(x)=G^{\prime}(x)=$ $1 /(1-x)^{2}$ and so

$$
\int f d m=\frac{9}{10^{2}} F(1 / 10)=\frac{9}{10^{2}} \frac{1}{\left(1-\frac{1}{10}\right)^{2}}=\frac{1}{9} .
$$

Problem 2.1.5 Let $f(x)$ be the function defined in $(0,1)$ by $f(x)=0$ if x is rational, and $f(x)=[1 / x]$ if x is irrational $([t]$ denote the integer part of $t)$. Decide whether or not f is Lebesgue integrable and calculate $\int f(x) d m$ being m the Lebesgue measure.

Hint: $f(x)=k$ for $x \in(1 /(k+1), 1 / k] \backslash \mathbb{Q}$.
Solution: As $\left[\frac{1}{x}\right]=k$ if and only if $x \in(1 /(k+1), 1 / k] \backslash \mathbb{Q}$ we have that $f=\sum_{k=1}^{\infty} k \chi_{(1 /(k+1), 1 / k]}$. So, by the monotone convergence theorem

$$
\int_{0}^{1} f d m=\sum_{k=1}^{\infty} k\left(\frac{1}{k}-\frac{1}{k+1}\right)=\sum_{k=1}^{\infty} k \frac{1}{k(k+1)}=\sum_{k=1}^{\infty} \frac{1}{k+1}=\infty .
$$

Hence, f is not Lebesgue integrable in $(0,1)$.
Problem 2.1.6 Let (X, \mathcal{A}, μ) be a probability space, i.e. $\mu(X)=1$. Let $E \in \mathcal{A}$ be a set with $0<\mu(E)<1$. Put $f_{n}=\chi_{E}$ if n is odd, $f_{n}=1-\chi_{E}$ if n is even. What is the relevance of this example to Fatou's lemma?

Hint: $\liminf _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \in X$ but $\liminf _{n \rightarrow \infty} \int f_{n} d \mu=\min \{\mu(E), 1-\mu(E)\}$.
Solution: We have that $\liminf _{n \rightarrow \infty} f_{n}(x)=\min \left\{\chi_{E}(x), 1-\chi_{E}(x)\right\}=0$ for all $x \in X$, but it is clear that

$$
\int_{X} f_{n} d \mu=\left\{\begin{array}{ll}
\mu(E), & \text { if } n \text { is odd } \\
1-\mu(E), & \text { if } n \text { is even }
\end{array} \Longrightarrow \liminf _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\min \{\mu(E), 1-\mu(E)\}>0 .\right.
$$

Therefore, in this case, Fatou's lemma tell us that $0 \leq \min \{\mu(E), 1-\mu(E)\}$. Hence, the inequality in Fatou's lemma can be strict!

Problem 2.1.7 Let $f_{2 n-1}=\chi_{[0,1]}, f_{2 n}=\chi_{[1,2]}, n=1,2, \ldots$. Check that Fatou's Lemma is verified strictly for this sequence of functions.

Hint: $\liminf _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \in \mathbb{R} \backslash\{1\}$ but $\liminf _{n \rightarrow \infty} \int f_{n} d m=1$.
Solution: As $[0,1] \cap[1,2]=\{1\}$ we have that $\liminf _{n \rightarrow \infty} f_{n}(x)=\min \left\{\chi_{[0,1]}(x), \chi_{[1,2]}(x)\right\}=0$ for all $x \in \mathbb{R} \backslash\{1\}$. But $\int_{\mathbb{R}} f_{n} d m=1$ for all $n \in \mathbb{N}$ and so $\liminf _{n \rightarrow \infty} \int f_{n} d m=1$. Therefore, in this case, Fatou's lemma tell us that $0 \leq 1$ and so, the inequality in Fatou's lemma is strict.

Problem 2.1.8

a) Check that $\int_{1}^{\infty} \frac{1}{x} d m=\infty$, being m the Lebesgue measure.
b) Let $p \in \mathbb{R}$. Prove that:
b1) $\int_{0}^{\infty} e^{-p x} d m<\infty$ if and only if $p>0$.
b2) $\int_{1}^{\infty} \frac{1}{x^{p}} d m<\infty$ if and only if $p>1$.
b3) $\int_{0}^{1} \frac{1}{x^{p}} d m<\infty$ if and only if $p<1$.
Hint: a) $\frac{1}{x}=\lim _{N \rightarrow \infty} \frac{1}{x} \chi_{[1, N]}(x)$. Apply the monotone convergence theorem.
Solution: a) As $\frac{1}{x} \chi_{[1, N]}(x) \nearrow \frac{1}{x} \chi_{[1, \infty)}(x)=\frac{1}{x}$, by monotone convergence theorem,

$$
\int_{1}^{\infty} \frac{1}{x} d x=\lim _{N \rightarrow \infty} \int_{1}^{\infty} \frac{1}{x} \chi_{[1, N]}(x) d x=\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{1}{x} d x
$$

But $\frac{1}{x}$ is continuous in the bounded interval $[1, N]$ and so it is Riemann-integrable in $[1, N]$ and its Lebesgue integral coincide with its Riemann integral, and to compute it we can use Barrow's rule. Hence,

$$
\int_{1}^{\infty} \frac{1}{x} d x=\lim _{N \rightarrow \infty}[\log x]_{x=1}^{x=N}=\lim _{N \rightarrow \infty} \log N=\infty .
$$

b.1) Similarly,

$$
\int_{0}^{\infty} e^{-p x} d x=\lim _{N \rightarrow \infty} \int_{0}^{\infty} e^{-p x} \chi_{[0, N]}(x) d x=\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-p x} d x=\lim _{N \rightarrow \infty}\left[\frac{e^{-p x}}{-p}\right]_{x=0}^{x=N}=\lim _{N \rightarrow \infty} \frac{1}{p}\left(1-e^{-p N}\right) .
$$

Hence, $\int_{0}^{\infty} e^{-p x} d x<\infty \Longleftrightarrow p>0$ and in this case $\int_{0}^{\infty} e^{-p x} d x=1 / p$.
b.2) Similarly, if $p \neq 1$,

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{x^{p}} d x & =\lim _{N \rightarrow \infty} \int_{1}^{\infty} \frac{1}{x^{p}} \chi_{[1, N]}(x) d x=\lim _{N \rightarrow \infty} \int_{1}^{N} \frac{1}{x^{p}} d x \\
& =\lim _{N \rightarrow \infty}\left[\frac{1}{(1-p) x^{p-1}}\right]_{x=1}^{x=N}=\frac{1}{1-p} \lim _{N \rightarrow \infty}\left(\frac{1}{N^{p-1}}-1\right) .
\end{aligned}
$$

Hence, taking also into account a), $\int_{1}^{\infty} \frac{1}{x^{p}} d x<\infty \Longleftrightarrow p>1$ and in this case $\int_{1}^{\infty} \frac{1}{x^{p}} d x=\frac{1}{p-1}$. If $p=1$, then a similar argument gives that the integral is ∞.
b.3) Similarly, if $p \neq 1$,

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{x^{p}} d x & =\lim _{N \rightarrow \infty} \int_{0}^{1} \frac{1}{x^{p}} \chi_{[1 / N, 1]}(x) d x=\lim _{N \rightarrow \infty} \int_{1 / N}^{1} \frac{1}{x^{p}} d x \\
& =\lim _{N \rightarrow \infty}\left[\frac{1}{(1-p) x^{p-1}}\right]_{x=1 / N}^{x=1}=\frac{1}{1-p} \lim _{N \rightarrow \infty}\left(1-N^{p-1}\right)
\end{aligned}
$$

Hence, taking also into account a), $\int_{1}^{\infty} \frac{1}{x^{p}} d x<\infty \Longleftrightarrow p<1$ and in this case $\int_{1}^{\infty} \frac{1}{x^{p}} d x=\frac{1}{1-p}$. If $p=1$, then a similar argument gives that the integral is ∞.

Problem 2.1.9 Prove that the function $f(x)=\frac{1}{\sqrt{x}}$ if $x \in(0,1]$, and $f(0)=0$, is Lebesgueintegrable in $[0,1]$ and calculate its integral.

Hint: f is almost everywhere continuous and $f(x)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\sqrt{x}} \chi_{[\varepsilon, 1]}(x)$ if $x \in[0,1]$.
Solution: As $\frac{1}{\sqrt{x}} \chi_{[1 / N, 1]}(x) \nearrow \frac{1}{\sqrt{x}} \chi_{(0,1]}(x)=f(x)$ when $N \rightarrow \infty$ for $x \in[0,1]$, by the monotone convergence theorem,

$$
\int_{0}^{1} f(x) d x=\lim _{N \rightarrow \infty} \int_{0}^{1} f(x) \chi_{[1 / N, 1]}(x) d x=\lim _{N \rightarrow \infty} \int_{1 / N}^{1} f(x) d x
$$

But $f(x)$ is continuous in the bounded interval $[1 / N, 1]$ and so it is Riemann-integrable in $[1 / N, 1]$ and its Lebesgue integral coincide with its Riemann integral, and to compute it we can use Barrow's rule. Hence,

$$
\int_{1}^{\infty} f(x) d x=\lim _{N \rightarrow \infty} \int_{1 / N}^{1} \frac{1}{\sqrt{x}} d x=\lim _{N \rightarrow \infty}[2 \sqrt{x}]_{x=1 / N}^{x=1}=\lim _{N \rightarrow \infty} 2\left(\frac{1}{\sqrt{N}}-1\right)=2
$$

Problem 2.1.10 Let (X, \mathcal{A}, μ) be a measure space and let $f: X \longrightarrow[0, \infty]$ be a measurable positive function. Let $f_{n}(x)=\min \{f(x), n\}$. Prove that $\int_{X} f_{n} d \mu \nearrow \int_{X} f d \mu$.

Hint: Use an adequate convergence theorem.
Solution: It is clear that $f_{n}(x) \nearrow f(x)$ as $n \rightarrow \infty$, by the monotone convergence theorem, as $n \rightarrow \infty$. Thus, we have that $\int_{X} f_{n} d \mu \nearrow \int_{X} f d \mu$ as $n \rightarrow \infty$.
Problem 2.1.11 Let (X, \mathcal{A}, μ) be a measure space and let $f_{n}: X \longrightarrow[0, \infty]$ be a sequence of measurable positive functions. Let us suppose that $\exists \lim _{n \rightarrow \infty} f_{n}=f$ and that $f_{n} \leq f$ for all n. Prove that $\int_{X} f d \mu=\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu$.

Hint: Use Fatou's Lemma and $\int_{X} f_{n} d \mu \leq \int_{X} f d \mu$.
Solution: By Fatou's lema

$$
\int_{X} f d \mu=\int_{X} \lim _{n \rightarrow \infty} f d \mu=\int_{X} \liminf _{n \rightarrow \infty} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{X} f_{n} d \mu
$$

Also, as $f_{n} \leq f$ we have that $\int_{X} f_{n} d \mu \leq \int_{X} f d \mu$ for all $n \in \mathbb{N}$ and so

$$
\limsup _{n \rightarrow \infty} \int_{X} f_{n} d \mu \leq \int_{X} f d \mu
$$

Hence,

$$
\int_{X} f d \mu \leq \liminf _{n \rightarrow \infty} \int_{X} f_{n} d \mu \leq \limsup _{n \rightarrow \infty} \int_{X} f_{n} d \mu \leq \int_{X} f d \mu \Longrightarrow \int_{X} f d \mu=\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu
$$

Problem 2.1.12

a) Let (X, \mathcal{A}, μ) be a measure space and let $f_{n}: X \longrightarrow[0, \infty]$ be a sequence of measurable positive functions. Let us suppose that $f_{n}(x) \searrow f(x)$ and that $\int_{X} f_{k} d \mu<\infty$ for some k. Prove that $\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu$.
b) Let $a_{1} \geq a_{2} \geq a_{3} \geq \ldots \geq a_{n} \geq \ldots$ be a sequence of positive numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$ and $a>0$. Let us define $f_{n}(x)=a_{n} / x$, for $x>a>0$. Check that f_{n} decreases uniformly to 0 but $\int f_{n} d m=\infty$ for all n.

Hint: a) Consider the sequence $g_{n}=f_{k}-f_{k+n}$.
Solution: a) Let $g_{n}=f_{k}-f_{k+n}$ for $n \in \mathbb{N}$. Then $\left\{g_{n}\right\}$ is increasing and $g_{n} \nearrow f_{k}-f:=g$ as $n \rightarrow \infty$. By the monotone convergence theorem:

$$
\int_{X} g d \mu=\lim _{n \rightarrow \infty} \int_{X} g_{n} d \mu \Longrightarrow \int_{X} f_{k} d \mu-\int_{X} f d \mu=\int_{X} f_{k} d \mu-\lim _{n \rightarrow \infty} \int_{X} f_{k+n} d \mu
$$

As $\int_{X} f_{k} d \mu<\infty$, subtracting it from both members of the last equality we obtain that

$$
\int_{X} f d \mu=\lim _{n \rightarrow \infty} \int_{X} f_{k+n} d \mu=\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu
$$

b) We have that $f_{1}(x) \geq f_{2}(x) \geq \cdots \geq f_{n}(x) \geq \cdots \searrow 0$ as $n \rightarrow \infty$ for all $x \in(a, \infty)$. The convergence is even uniform:

$$
0<f_{n}(x)=\frac{a_{n}}{x} \leq \frac{a_{n}}{a}<\varepsilon \Longleftrightarrow a_{n}<a \varepsilon
$$

and, since $\lim _{n \rightarrow \infty} a_{n}=0$, this happens for $n \geq n_{0}(\varepsilon)$, independently on $x \in(a, \infty)$. But, by the monotone convergence theorem,

$$
\int_{a}^{\infty} f_{n}(x) d x=\lim _{N \rightarrow \infty} \int_{a}^{N} \frac{a_{n}}{x} d x=\lim _{N \rightarrow \infty} a_{n}[\log x]_{x=a}^{x=N}=\lim _{N \rightarrow \infty} a_{n}(\log N-\log a)=\infty
$$

for all $n \in \mathbb{N}$. As $\int_{a}^{\infty} 0 d x=0$, we conclude that part a) fails if the functions are not integrable even in the case of uniform convergence.

Problem 2.1.13 Let $g:(X, \mathcal{A}, \mu) \longrightarrow[0, \infty]$ be an integrable function. Let $\left\{E_{n}\right\}$ be a decreasing sequence of sets such that $\cap_{n=1}^{\infty} E_{n}=\varnothing$. Prove that $\lim _{n \rightarrow \infty} \int_{E_{n}} g d \mu=0$.

Solution: As $\left\{E_{n}\right\}_{n=1}^{\infty}$ is decreasing we have that $\left\{g \chi_{E_{n}}\right\}_{n=1}^{\infty}$ is also decreasing and $\left\{g \chi_{E_{n}}\right\}_{n=1}^{\infty} \searrow$ $g \chi_{\cap_{n} E_{n}}=g \chi_{\varnothing}=0$. But, as $\int_{X} g \chi_{E_{1}} d \mu \leq \int_{X} g d \mu<\infty$, we can apply part a) of problem 2.1.12, and so

$$
\lim _{n \rightarrow \infty} \int_{E_{n}} g d \mu=\lim _{n \rightarrow \infty} \int_{X} g \chi_{E_{n}} d \mu=\int_{X} \lim _{n \rightarrow \infty} g \chi_{E_{n}} d \mu=\int_{X} 0 d \mu=0 .
$$

Problem 2.1.14 Prove that for all $a>0$, the function $f(x)=e^{-x} x^{a-1}$ is Lebesgue-integrable in $[0, \infty]$.

Hints: $e^{-x} \leq 1$ for $x \in[0,1] ; f$ is continuous in any bounded interval $[1, M] ; \lim _{x \rightarrow \infty} x^{a-1} e^{-x / 2}=0$.

Solution: a) Case 1: $a \geq 1$. Then, for all $M>0, f$ is continuous in $[0, M]$ and so $f \in L^{1}[0, M]$. On the other hand, applying L'Hopital rule $[a]$ times:

$$
\lim _{x \rightarrow \infty} \frac{x^{a-1}}{e^{x / 2}}=\lim _{x \rightarrow \infty} \frac{(a-1) \cdots(a-[a]) x^{a-[a]-1}}{\frac{1}{2^{[a]}} e^{x / 2}}=0 .
$$

Therefore, there exists $M>0$ such that $x^{a-1} e^{-x / 2}<1$ for all $x \in[M, \infty)$, and so, by part b.1) of problem 2.1.8,

$$
\int_{M}^{\infty} e^{-x} x^{a-1} d x \leq \int_{M}^{\infty} e^{-x} e^{x / 2} d x=\int_{M}^{\infty} e^{-x / 2} d x \leq \int_{0}^{\infty} e^{-x / 2} d x=2<\infty
$$

Hence, $f \in L^{1}(0, \infty)$.
b) Case 1: $0<a<1$. Then $0<1-a<1$ and, as $e^{-x} \leq e^{0}=1$ for all $x>0$, we have that

$$
\int_{0}^{1} e^{-x} x^{a-1} d x \leq \int_{0}^{1} x^{a-1} d x=\int_{0}^{1} \frac{1}{x^{1-a}} d x<\infty
$$

by part b.3) of problem 2.1.8, since $0<1-a<1$. Hence, $f \in L^{1}(0,1)$. Also, since $a-1<0$,

$$
\lim _{x \rightarrow \infty} x^{a-1} e^{-x / 2}=0
$$

and we conclude like in part a) that $f \in L^{1}[M, \infty)$ for some $M>0$. Finally, as f is continuous in $[1, M]$ we have that f is bounded there and so $f \in L^{1}[1, M]$. Hence, $f \in L^{1}(0, \infty)$ also in this case.

Problem 2.1.15 Let $f_{n}:[0,1] \longrightarrow[0, \infty)$ be a sequence of positive functions defined by

$$
f_{n}(x)= \begin{cases}n, & \text { if } 0 \leq x \leq 1 / n \\ 0, & \text { otherwise }\end{cases}
$$

Check that $f_{n} \rightarrow 0$ pointwise when $x>0$ but $\int f_{n} d m=1$. Interpret why this may happen.
Solution: Given $x \in(0,1]$, we have that $x>1 / n$ for all $n \geq n_{0}(x)$. Hence, $f_{n}(x)=0$ for all $n \geq n_{0}(x)$ and so $\lim _{n \rightarrow \infty} f_{n}(x)=0$. However,

$$
\int_{0}^{1} f_{n}(x) d x=\int_{0}^{1 / n} n d x=n \cdot \frac{1}{n}=1, \quad \text { for all } n \in \mathbb{N}
$$

Hence,

$$
1=\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x \neq \int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x=0
$$

in spite of $\exists \lim _{n \rightarrow \infty} f_{n}$. This fact shows that the monotonicity in the the monotone convergence theorem is necessary.

Problem 2.1.16 Let \mathcal{M} be the σ-algebra of Lebesgue-measurable sets in $[0, \infty)$. We define in \mathcal{M} the measure μ as

$$
\mu(E)=\int_{E} \frac{1}{1+x} d x
$$

Check that μ is a Borel-Stieltjes measure and calculate the corresponding distribution function F. Find a function $f(x)$ such that $\int f d \mu<\infty$ but $\int f d m=\infty$, being m the Lebesgue measure.

Hint: $F(t)=\log (1+t) \chi_{[0, \infty]}(t) ; f(x)=1 /(1+x)$.
Solution: μ is a Radon measure in $[0, \infty)$, since for all $M>0$,

$$
\mu([0, M))=\int_{0}^{M} \frac{1}{1+x} d x=[\log (1+x)]_{x=0}^{x=M}=\log M<\infty
$$

Hence, by problem 1.3.12, μ is a Borel-Stieltjes measure. Since

$$
\mu([a, b))=\int_{a}^{b} \frac{1}{1+x} d x=[\log (1+x)]_{x=a}^{x=b}=\log (1+b)-\log (1+a)
$$

we see that $\mu=\mu_{F}$ with F the distribution function $F(x)=\log (1+x)$.
Now, let $f(x)=1 /(1+x)$. Then, by the monotone convergence theorem,
$\int_{[0, \infty)} f d m=\int_{0}^{\infty} \frac{1}{1+x} d x=\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{1}{1+x} d x=\lim _{N \rightarrow \infty}[\log (1+x)]_{x=0}^{x=N}=\lim _{N \rightarrow \infty}(\log (1+N)=\infty$.
But, μ is a measure given by the density function f, using problem 2.1.3 and the monotone convergence theorem, we get

$$
\begin{aligned}
\int_{[0, \infty)} f d \mu & =\int_{0}^{\infty} \frac{1}{1+x} \frac{1}{1+x} d x=\int_{0}^{\infty} \frac{1}{(1+x)^{2}} d x=\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{1}{(1+x)^{2}} d x \\
& =\lim _{N \rightarrow \infty}\left[-\frac{1}{1+x}\right]_{x=0}^{x=N}=1-\lim _{N \rightarrow \infty} \frac{1}{1+N}=1-0=1<\infty
\end{aligned}
$$

Problem 2.1.17 Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces and let $A, A_{i} \in \mathcal{A}, B, B_{i} \in \mathcal{B}$ $(i \in \mathbb{N})$ be sets such that

$$
A \times B=\bigcup_{i=1}^{\infty}\left(A_{i} \times B_{i}\right), \quad A_{i} \times B_{i} \text { disjoint sets. }
$$

Prove that

$$
\mu(A) \nu(B)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \nu\left(B_{i}\right) .
$$

Hint: Use that for a positive sequence of functions: $\sum_{n} \int f_{n}=\int \sum_{n} f_{n}$.
Solution: Let $\mu \otimes \nu$ be the product measure of μ and ν. As the sets $A_{i} \times B_{i}$ are pairwise disjoint we have that

$$
\chi_{A \times B}(x, y)=\sum_{i=1}^{\infty} \chi_{A_{i} \times B_{i}}(x, y)
$$

and so,

$$
\begin{aligned}
\mu(A) \nu(B) & =\int_{X \times Y} \chi_{A \times B} d(\mu \otimes \nu)=\int_{X \times Y} \sum_{i=1}^{\infty} \chi_{A_{i} \times B_{i}} d(\mu \otimes \nu) \\
& =\sum_{i=1}^{\infty} \int_{X \times Y} \chi_{A_{i} \times B_{i}} d(\mu \otimes \nu)=\sum_{i=1}^{\infty}(\mu \otimes \nu)\left(A_{i} \times B_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \nu\left(B_{i}\right) .
\end{aligned}
$$

Problem 2.1.18 Prove Borel-Cantelli Lemma (see Problem 1.2.11) using the the monotone convergence theorem.

Hint: Consider the function $\sum_{n=1}^{\infty} \chi_{A_{n}}$.
Solution: Let $F=\sum_{n=1}^{\infty} \chi_{A_{n}}$. Then

$$
\int_{X} F d \mu=\sum_{n=1}^{\infty} \int_{X} \chi_{A_{n}} d \mu=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\infty
$$

by hypothesis. Therefore we must have that $\mu(\{x \in X: F(x)=\infty\})=0$, since on the contrary we would have $\int_{X} F d \mu=\infty$. But $F(x)=\infty \Longleftrightarrow x \in A_{n}$ for infinitely many n, and so

$$
\mu\left(\left\{x \in X: x \in A_{n} \text { for infinitely many } n\right\}\right)=0 .
$$

Problem 2.1.19 Let $A=[0,1] \cap \mathbb{Q}$. Then we can write $A=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}$. Let us define the functions $f_{n}:[0,1] \longrightarrow \mathbb{R}$ given by

$$
f_{n}(x)= \begin{cases}1, & \text { if } x \in\left\{a_{1}, \ldots, a_{n}\right\} \\ 0, & \text { otherwise }\end{cases}
$$

Prove that f_{n} is Riemann-integrable and calculate $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Are f_{n} and f Lebesgueintegrable functions?

Solution: We have that f_{n} is only discontinuous at the points $a_{1}, a_{2}, \ldots, a_{n}$. Hence, f_{n} is bounded and continuous almost everywhere with respect to Lebesgue measure in $[0,1]$ and therefore f_{n} is Riemann-integrable and so, Lebesgue-integrable. Besides $\lim _{n \rightarrow \infty} f_{n}(x)=\chi_{A}(x)=f(x)$. Since $f_{n}=f=0$ almost everywhere for each n since $m(A)=0$ because A is countable, the integrals of f_{n} and f are all zero.

Problem 2.1.20 With the notation of the problem above, let $F(x)$ be the function

$$
F(x)= \begin{cases}\frac{1}{k}, & \text { if } x=a_{k}, \\ 0, & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}
$$

Show that the function F is Riemann-integrable on any bounded interval $[a, b]$ and find $\int_{a}^{b} F(x) d x$.

Solution: F is bounded and continuous in $\mathbb{R} \backslash \mathbb{Q}$ and so, F is almost everywhere continuous since $m(\mathbb{Q})=0$ because \mathbb{Q} is countable. Hence, F is Riemann-integrable on $[a, b]$ and $\int_{a}^{b} F(x) d x=0$ since $F(x)=0$ almost everywhere with respect to Lebesgue measure.

