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2 Integration Theory

2.1 Integration of positive functions

Problem 2.1.1 Let (X, A, ) be a measure space and let f,g : X — [0, 00| be measurable
positive functions and A, B, E € A, A > 0. Prove that:

i) [pAfdu=X[g fdu.

i) [pfdp= [y fxgdp.

iii) f<g = [pfdu< [pgdp.

w) ACB = [, fdu< [5fdp.

v) [pf=0 & f=0ae inE.

vi) W(E) =0 = [ fdu=0.

vii) ANB=@ = [, gfdu=[,fdu+ [5fdu.
viit) [p(f+9)dp =[5 fdu+ [ gdp.

iw) f29, [xygdu<oo = [y fdu— [gdu= [\(f—g)dp
z) f<gae in E = fEfdunggd,u.

zi) f=gae in E = fEfdM:ngdu.

Hints: vi) If f =0 ae. and s =}, CiXa, < f, then p(A;) =0 for all j and so s =0 a.e. On
the other hand, if pu(f > 0) > 0, then pu(A) > 0 for some n € N, where A = {f > 1/n}. Hence,
0<s= %XA < f and %M(A NE) < fEfdu, a contradiction. For the other statements, the
idea is always to approximate positive functions by simple functions.

Solution: i) Let us observe that s is a simple function if and only if § = s/ is also a simple
function. Hence,

/)\fd,u: sup /sd,u: sup )\/Sdu:/\ sup /édu:)\/fdu.
E 0<s<AfJE o<s/a<f JE A 0<s<f JE E

s simple s simple § simple

ii) We have that

/ fdu= sup / sdy = sup ch,u(AjﬁE).
E E -
J

0<s<f 0<s<f
s simple =05 CiX 4
J

Now, it is easy to check that if the sets A; are disjoint then

s:ZCjXAij & gZZCjXAJ-mESfXE
J J
and so

0<3<fxp 0<s<f
=%, e a e =%, eixa,

/fxEduz sup /Eduz sup ZCjM(AjﬂE)Z/fdu-
X X I E
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iii) As f < g we have that
{ssimple: 0<s< f} C{ssimple: 0 <s<g}

and so

/fdu: sup /sdug sup /sd,u:/gdu.
E 0<s<fJE 0<s<gJE E

iv) ACB = x, <x; = fx, < fx, and so iv) follows from iii).
v)(<)If f=0ae in Fand0<s=3_, CiXa, < f, then p(A; N E) =0 for all j. Hence,

/fd,u: sup /Sd,u: sup chu(AjﬂE)zo.
E 0<s<f JE 0<s<f ™~
s simple J

(=) Assume that pu({z € E: f(z) >0})>0. As{z € E: f(z) >0} = {z € E: f(z) > 1}
we have that In € N such that p({z € E : f(z) > 2}) > 0. Let A:=={z € E: f(z) > 1},
Hence, (AN E) = p(A) >0and 0 < s:= 1y, < f and so

1 1
/sd,u:/XAdug/fdu == u(AﬁE)S/fdu == /fdu>0.
E nJE E 0 E E

vi) If 4(E) = 0, then f = 0 a.e. in E and so, by v), [ fdu = 0.
vii) If AN B = @, then it is easy to check that x, , = X, + X and so

AUdeu=/XfXAUBduz/Xf(xA+XB)du=/Xfodqu/Xfdeu:/Ade/deﬂ,

viil) Let {s,} and {t,} be sequences of simple functions such that 0 < s, » fand 0<t, *g¢
asn — 00. Then {s,+t,} is a sequence of simple functions such that s, +t, / f+gasn — oo.
By the monotone convergence theorem

/(f—i—g)du: lim /(sn—i-tn)d,u: lim (/ snd,u—i—/ tndu)

= lim Sp dit + lim/tnd,u:/ fd,u—i—/gd,u.

Now, using ii) we get that

/(f+9)du=/(f+g)xEdu=/ fxEdu+/ fngdu=/fdu+/gdu-
E X X X E E
ix) As f > g we have that f — g > 0 and, by ii),

/deu—/X(gﬂL(f—g))du—/ngwr/x(f—g)du.

To finish we subtract [ x 9dp < oo from both members.

x) If A:={x € E: f(z) > g(z)}, then u(A) = 0. Let h(z) = f(z) if ¢ A and h(z) =0
otherwise (alternatively h = fx,.). Then f = h a.e. and h is measurable. Also f > h for all
x € X. Applying v) to f — h we get that [ (f —h)du =0 and so, by ix), [y fdu = [y hdpu.
But also g — h > 0 for all z € X and so, by iii), [\ (f —h)dp>0= [y hdu < [y gdpu.

xi) As f = g a.e. we have that f < g a.e. and g < f a.e. and applying x) twice we get xi).
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Problem 2.1.2 Let (X, A, 1) be a measure space and suppose that X = U, X,,, where {X,,}2° ;
is a pairwise disjoint collection of measurable subsets of X. Prove that if f : X — [0,00] is a

measurable positive function, then
fdp= / fdu.
Jrm=X ],

Hint: Use the monotone convergence theorem.

Solution: By definition of the sum of a series and using property viii) of problem 2.1.1 for finite
sums,

5 g 35 g 3 e g 350 f

by the monotone convergence theorem, since the sets X,, are pairwise disjoint, we have that
N
D1 Xx, = Xuux, = Xx =Llandso > fxy, A fas N — oo

Problem 2.1.3 Let (X, A, 1) be a measure space and let f : X — [0, 00] be a measurable
positive function. Let us define

go(E)—/ fdu, for all E € A.
E

Prove that ¢ is a measure on 4 and that

/ gdp = / gfdu, for all g : X — [0, o] measurable. (1)
X X
Note: This fact justifies the notation dy = f du.

Hint: Apply Exercise 2.1.1 to prove that ¢ is a measure. Then, prove (1) first for characteristic
functions and simple functions and then approximate any positive function for a sequence of
simple functions.

Solution: a) o(@) = [, fdp =0 since u(@) = 0. b) Let {A;}32, C A be a collection of disjoint
sets and let A = U372, A;. Then x, = Z]"il X, and, as f, Xa, > 0, the monotone convergence
theorem gives

so(A)Z/Afduz/Xfoduz/X(fngj)duzg/)(fojdungjfdu:gw(flj).

Hence, ¢ is a measure. On the other hand, if s = E?:l CiXg, is a simple function:

/)(Sd@zjéCj/)(XEjng:sz;Cj@(Ej):sz;Cj/Ejfd'u
ZjZn;CJAfXEjduz/X(Zn:ijEj)fdu=/XSfdﬂ

J=1

and so (1) holds for simple functions. Now, letg > 0 measurable and let {s,}>°; be a sequence
of simple functions such that 0 < 51 < 9 < --- < s, /' g as n — oco. Then, by the monotone
convergence theorem and (2),

X n—oo Jx n—oo [y X
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Problem 2.1.4 Let f :[0,1] — [0, 00] be defined by f(x) = 0 if z is rational, and otherwise
f(z) = n where n is the number of zeros immediately after the decimal point in the representation
of z in the decimal scale. Calculate [ f(x)dm, being m the Lebesgue measure.

Hint: f(x) =k for z € [1/10¥+11/10%) \ Q.
Solution: If x € [1/10**1,1/10%)\ Q, then f(z) = k and so f = > 22, kX

the monotone convergence theorem

a.e. By

[1/10k+1 1/10F)

oo o0 ,I{j

> 1 1 9
/fdm_;k(lok_ 10k:+1) _;klok—H _9; 10k+1°

Let F(z) = >3 kz* ! and G(z) = Y22y 2¥ = 1/(1 —2) for 0 < z < 1. Then F(x) = G'(z) =
1/(1 — z)? and so

9 9 1 1
/fdm—mm/m)—mm_l)z—g-

Problem 2.1.5 Let f(x) be the function defined in (0,1) by f(z) = 0 if x is rational, and
f(z) = [1/x] if = is irrational ([t] denote the integer part of t). Decide whether or not f is
Lebesgue integrable and calculate [ f(x)dm being m the Lebesgue measure.

Hint: f(x) =k forz e (1/(k+1),1/k]\ Q.
Solution: As [1] = k if and only if z € (1/(k+1),1/k]\ Q we have that f = > 3%,
So, by the monotone convergence theorem

! > /1 1 - 1 =1
fram=3k G ) " Xy~ o

k=1

RX 1)y 1m0

Hence, f is not Lebesgue integrable in (0,1).

Problem 2.1.6 Let (X, A, 1) be a probability space, i.e. u(X) = 1. Let E € A be a set with
0 < u(F)<1. Put f,, = x, if nisodd, f, =1 — x, if n is even. What is the relevance of this
example to Fatou’s lemma?

Hint: lin_1>inf fn(z) =0 for all z € X but lirginf/fn dp = min{u(F),1 — pu(E)}.

Solution: We have that lirginf fu(z) =min{x,(z),1 — x,(z)} =0 for all x € X, but it is clear
n—odo
that

/ Fodp = {“(E)’ ifnisodd _ liminf/ Fodp = min{u(E),1 — p(E)} > 0.
X 1 X

— p(E), if niseven n—o0

Therefore, in this case, Fatou’s lemma tell us that 0 < min{u(E),1 — u(E)}. Hence, the
inequality in Fatou’s lemma can be strict!

Problem 2.1.7 Let fo,—1 = X(o.1]° fon = Xpop M= 1,2,.... Check that Fatou’s Lemma is
verified strictly for this sequence of functions.
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Hint: lin_1>inf fn(z) =0 for all z € R\ {1} but lini)inf/fn dm = 1.

Solution: As [0,1] N [1,2] = {1} we have that lini}inf fo(z) = min{x, , (%), x5 ()} = 0 for all
n—oo ?

1,2]
z e R\ {1}. But [ fndm =1 for all n € N and so linr_1>inf/fn dm = 1. Therefore, in this case,

Fatou’s lemma tell us that 0 < 1 and so, the inequality in Fatou’s lemma is strict.
Problem 2.1.8

o
1
a) Check that / — dm = 0o, being m the Lebesgue measure.
1 x
b) Let p € R. Prove that:
(o9}
bl) / e P*dm < oo if and only if p > 0.
0

*1
b2) /1 ﬁdm<ooifandonlyifp>l.

1

1

b3) /dm<ooifandonlyifp<1.
o of

1 1
Hint: a) — = lim — Xpn) (). Apply the monotone convergence theorem.
x N—oco I ’

Solution: a) As %x[l’N] () S %x[l’m) (z) = 2, by monotone convergence theorem,

1 1 N1
/ —dzr = lim — X (@) dz = lim —dz.
1 T N—oo J1 @ N—oco J1 X
But 1 is continuous in the bounded interval [1, N] and so it is Riemann-integrable in [1, N] and
its Lebesgue integral coincide with its Riemann integral, and to compute it we can use Barrow’s
rule. Hence,

o0
1 . = .
/1 - dx = A}gnoo[log 2]t =N = A}gnoo log N = 0.

b.1) Similarly,

0o e N e PTiz=N 1 N
/ e P’dr = lim e " Xon (®) dz = lim e P*dr= lim [ } = lim —(1—e7P7).
0 N—oo Jg ’ N—oo /g N—oo L —p laz=0 N—oo D

Hence, [;°e ™ Pdx < 0o <= p >0 and in this case [; e P*dx =1/p.
b.2) Similarly, if p # 1,
/mldm: lim Ooix[lN](a:)d:U: lim Nidw
1 xP N—ooo J1 2P ’ N—ooo J1 P
= lim [;r:N = . lim (L — 1) .
Nooo L(1 —p)aP~tle=1  1—pN—oo \NP~1
1

Hence, taking also into account a), floo mip dxr < oo <= p>1 and in this case ffo g%p dr = =
If p =1, then a similar argument gives that the integral is oco.
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b.3) Similarly, ifp #1,

! 1
1 . 1
idm_NlE"’ o o Xopa@dr= i [ o dr
1 =1 1
N—oo (1 - )xp L 1/N 1 —pNHoo

Hence, taking also into account a), floo mi,, dr < 0o <= p<1 and in this case floo x% dx = %

—p
If p =1, then a similar argument gives that the integral is oco.

Problem 2.1.9 Prove that the function f(x) = % if € (0,1], and f(0) = 0, is Lebesgue-

integrable in [0, 1] and calculate its integral.

Hint: f is almost everywhere continuous and f(z) = lim+ %X[EJ] () if x € ]0,1].

Solution: As % X1 /n.1] () N ﬁ X(o.1] () = f(z) when N — oo for z € [0,1], by the monotone
convergence theorem,

/1f()d—1' /f @)do= Tim [ f()d
) X xXr = 1m 1/N1 T = 1m X X

N—oo N—oo 1/N

But f(z) is continuous in the bounded interval [1/N,1] and so it is Riemann-integrable in
[1/N,1] and its Lebesgue integral coincide with its Riemann integral, and to compute it we can
use Barrow’s rule. Hence,

> [ . 1
/1 foyde= Jm | | 7 do = Jim (22 )55] = lim 2 —1) =2
Problem 2.1.10 Let (X, A, 1) be a measure space and let f : X — [0, 00] be a measurable
positive function. Let f,(x) = min{f(z),n}. Prove that / fndu /‘/ fdu.
X X

Hint: Use an adequate convergence theorem.

Solution: It is clear that f,(x)  f(x) as n — oo, by the monotone convergence theorem, as
n — oo. Thus, we have that [, fndu 7 [y fdp as n — oo.

Problem 2.1.11 Let (X, A, 1) be a measure space and let f,, : X — [0, 00| be a sequence of
measurable positive functions. Let us suppose that 3 lim,, . f,, = f and that f,, < f for all n.

Prove that / fdu= lim frndu.
X n—oo X

Hint: Use Fatou’s Lemma and fX fndu < fX fdu.

Solution: By Fatou’s lema
/ fd,u:/ lim fd,u:/ liminf fdu < liminf/ fndu.
Also, as f, < f we have that [, fndu < [y fdp for all n € N and so

limsup/ fnd,ug/ fdu.
X X

n—oo

Hence,

/fd,u,gliminf/ fnd,uglimsup/ fndug/fdlu:>/fd,u: lim/fnd,u.

n—oo
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Problem 2.1.12

a) Let (X, A, 1) be a measure space and let f,, : X — [0, 00] be a sequence of measurable
positive functions. Let us suppose that f,(x) N\, f(z) and that [ frdu < co for some k.
Prove that limy, o0 [y fndp = [y fdpu.

b) Let ay > ag > a3 > ... > a, > ... be a sequence of positive numbers such that
lim,, oo an, = 0 and a > 0. Let us define f,(x) = a,/x, for x > a > 0. Check that f,
decreases uniformly to 0 but [ f, dm = oo for all n.

Hint: a) Consider the sequence g, = fx — frtn-

Solution: a) Let g, = fx — fr4n for n € N. Then {g,} is increasing and g,  fr — f := g as
n — 00. By the monotone convergence theorem:

[gdn=tm [ gaw — [ fedn— [ sau= [ frdu=tim [ finda.

As [ frdp < oo, subtracting it from both members of the last equality we obtain that

/)(fduznlgngo/)(fk+ndﬂanggo/xfndu-

b) We have that fi(z) > fao(x) > -+ > fu(z) > -+ (0 as n — oo for all z € (a,00). The
convergence is even uniform:

a a
0<fn(x):?n§;n<€ — q, < ae

and, since lim,,_,o a, = 0, this happens for n > ng(e), independently on = € (a,o0). But, by

the monotone convergence theorem,

o0 N
/ fo(z)dz = lim I gz = lim anlog z)2=Y = lim a,(log N —loga) = oo
a N—oo J, X N—o0 N—o0

for all n € N. As faoo 0dx = 0, we conclude that part a) fails if the functions are not integrable
even in the case of uniform convergence.

Problem 2.1.13 Let g : (X, A,u) — [0,00] be an integrable function. Let {E,} be a
decreasing sequence of sets such that N>, F,, = @. Prove that lim,, f B, gdu = 0.

Solution: As {E,};2 is decreasing we have that {g x,, }72; is also decreasing and {g x,, }no1 \
9Xonm, = 9Xs =0. But, as [\ gx, du < [y gdu < oo, we can apply part a) of problem 2.1.12,

and so
i [ o=t [ o, dn= [ i o, du= [ 0du=0.

Problem 2.1.14 Prove that for all @ > 0, the function f(x) = e ®2%~! is Lebesgue-integrable
in [0, oo].

Hints: e=* < 1 for x € [0, 1]; f is continuous in any bounded interval [1, M]; ILm 2o lem/2 —
xX [o.¢]
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Solution: a) Case 1: a > 1. Then, for all M > 0, f is continuous in [0, M] and so f € L'[0, M].
On the other hand, applying L’Hopital rule [a] times:

a—1 1) (e — a—[a]—1
im 5 oy @1 (a—a])z
£—c0 e%/2 T—00 2[17]695/2

=0.

Therefore, there exists M > 0 such that z%'e=*/2 < 1 for all 2 € [M, o), and so, by part b.1)
of problem 2.1.8,

x x oo 0
/ e Tty < / e et/ 2dy = / e 2y < / e 2dr =2 < .
M M M 0

Hence, f € L'(0,00).
b) Case1: 0 <a<1. Then0<1—a<1and, as e ® < e’ =1 for all z > 0, we have that

1 1 1
/e_xx“_ldxg/ :Ea_ldx:/ il dr < 00
€T —a
0 0 0

by part b.3) of problem 2.1.8, since 0 < 1 — a < 1. Hence, f € L'(0,1). Also, since a — 1 < 0,

lim 2% te %/2 = 0
Tr—r00

and we conclude like in part a) that f € L'[M,o00) for some M > 0. Finally, as f is continuous
in [1, M] we have that f is bounded there and so f € L'[1, M]. Hence, f € L'(0,00) also in this
case.

Problem 2.1.15 Let f, : [0,1] — [0, 00) be a sequence of positive functions defined by

f(:):):{n’ ifo0<z<1/n,

0, otherwise.

Check that f, — 0 pointwise when x > 0 but [ f, dm = 1. Interpret why this may happen.

Solution: Given z € (0,1], we have that > 1/n for all n > ng(z). Hence, f,(z) = 0 for all
n > no(z) and so lim,_,~ fn(x) = 0. However,

1 1/n 1
/fn(:c)dac:/ ndr=n-—=1, for all n € N.
0 0 n

Hence,
1 1
1= lim [ fu(z)do ;é/ (lim fo(z))dz =0,
0 n—oo

n—oo 0

in spite of 3 lim,,_,oo fr. This fact shows that the monotonicity in the the monotone convergence
theorem is necessary.

Problem 2.1.16 Let M be the o-algebra of Lebesgue-measurable sets in [0, 00). We define in

M the measure u as
1
E) = dx .
1(E) /EHx x

Check that u is a Borel-Stieltjes measure and calculate the corresponding distribution function
F. Find a function f(z) such that [ fdu < oo but [ fdm = oo, being m the Lebesgue measure.
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Hint: F(t) =log(1 +1) x ., (t); f(z) =1/(1+ ).

Solution: p is a Radon measure in [0, 00), since for all M > 0,

T+ 2 dz = [log(1+ 2)]*=¥ =log M < c.

M
u([0, M)) = /O

Hence, by problem 1.3.12, u is a Borel-Stieltjes measure. Since

b
p(la.b) = [ i do = log(1+ )24 = log(1+ 8) ~ log(1 + o)

we see that u = pp with F' the distribution function F(z) = log(1 + z).
Now, let f(z) =1/(1 + x). Then, by the monotone convergence theorem,

> 1 A . =N _ 1
/[o,oo)fdm_/o 1+$dm’—]\}gnoo ; 1+xdac—]\}gnoo[log(1+x)]z:0 _1\}51100<10g(1+N)_OO'

But, p is a measure given by the density function f, using problem 2.1.3 and the monotone
convergence theorem, we get

/ fd /OO ! ! d /OO ! d li ! ! d
= T = -5 dT = 11lm 5 4T
[0,00) a 0 l1+2x14+=x 0 (1 + $)2 N—oo /o (1 + x)z

LN L L S B S
1+xL:o_ TN IE N T <00

= lim [—

Problem 2.1.17 Let (X, A, u) and (Y, B,v) be measure spaces and let A, A; € A, B,B; € B
(7 € N) be sets such that

oo
Ax B= U(A”L x B;), A; x B disjoint sets.
i=1

Prove that -
W(AW(B) = > u(A(By).
i=1

Hint: Use that for a positive sequence of functions: >, [ frn = [>, fn-

Solution: Let y® v be the product measure of u and v. As the sets A; X B; are pairwise disjoint
we have that

o
Xas (B:0) =D X, (2, 9)
=1

u(A) v(B) = / X @) = /X S s, A1 @ V)

xY i=1
= Z/XXyXA-xB. dp®v) = Z(u ®v)(Ai x Bi) =Y pu(A) v(By).

i=1 i=1 =1
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Problem 2.1.18 Prove Borel-Cantelli Lemma (see Problem 1.2.11) using the the monotone
convergence theorem.

Hint: Consider the function > > x, .
Solution: Let =3 x, . Then

_ — A,
/Xqu nZl/XxAndu ;M( ) < o0

by hypothesis. Therefore we must have that u({z € X : F(z) = oo}) = 0, since on the contrary
we would have [, F'dy = co. But F(z) = co <= x € A, for infinitely many n, and so

p({z € X : x € A, for infinitely many n}) =0.

Problem 2.1.19 Let A =[0,1]NQ. Then we can write A = {a1,ag,...,an,...}. Let us define
the functions f, : [0,1] — R given by

fn(:L“):{l’ if x € {ay,...,an},

0, otherwise.

Prove that f,, is Riemann-integrable and calculate f(x) = lim,, o0 fn(z). Are f,, and f Lebesgue-
integrable functions?

Solution: We have that f,, is only discontinuous at the points a1, as, .. ., a,. Hence, f, is bounded
and continuous almost everywhere with respect to Lebesgue measure in [0, 1] and therefore f,, is
Riemann-integrable and so, Lebesgue-integrable. Besides lim,, oo fr(2) = x,(z) = f(z). Since
fn = f = 0 almost everywhere for each n since m(A) = 0 because A is countable, the integrals
of f, and f are all zero.

Problem 2.1.20 With the notation of the problem above, let F(z) be the function

1 ; _
Fla)= % if v =ay,
0, ifzeR\Q.

Show that the function F' is Riemann-integrable on any bounded interval [a, b] and find f: F(x)dx.

Solution: F' is bounded and continuous in R\ Q and so, F' is almost everywhere continuous since
m(Q) = 0 because Q is countable. Hence, F' is Riemann-integrable on [a, b] and f; F(z)dx =0
since F'(z) = 0 almost everywhere with respect to Lebesgue measure.



