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2 Integration Theory

2.1 Integration of positive functions

Problem 2.1.1 Let (X,A, µ) be a measure space and let f, g : X −→ [0,∞] be measurable
positive functions and A,B,E ∈ A, λ ≥ 0. Prove that:

i)
∫
E λf dµ = λ

∫
E f dµ .

ii)
∫
E f dµ =

∫
X fχE dµ.

iii) f ≤ g =⇒
∫
E f dµ ≤

∫
E g dµ.

iv) A ⊆ B =⇒
∫
A f dµ ≤

∫
B f dµ.

v)
∫
E f = 0 ⇔ f = 0 a.e. in E.

vi) µ(E) = 0 =⇒
∫
E f dµ = 0.

vii) A ∩B = ∅ =⇒
∫
A∪B f dµ =

∫
A f dµ+

∫
B f dµ.

viii)
∫
E(f + g) dµ =

∫
E f dµ+

∫
E g dµ.

ix) f ≥ g,
∫
X g dµ <∞ =⇒

∫
X f dµ−

∫
g dµ =

∫
X(f − g) dµ.

x) f ≤ g a.e. in E =⇒
∫
E f dµ ≤

∫
E g dµ.

xi) f = g a.e. in E =⇒
∫
E f dµ =

∫
E g dµ.

Hints: vi) If f = 0 a.e. and s =
∑

j cjχAj
≤ f , then µ(Aj) = 0 for all j and so s = 0 a.e. On

the other hand, if µ(f > 0) > 0, then µ(A) > 0 for some n ∈ N, where A = {f > 1/n}. Hence,
0 ≤ s = 1

n χA ≤ f and 1
n µ(A ∩ E) ≤

∫
E f dµ, a contradiction. For the other statements, the

idea is always to approximate positive functions by simple functions.

Solution: i) Let us observe that s is a simple function if and only if s̃ = s/λ is also a simple
function. Hence,∫

E
λf dµ = sup

0≤s≤λf
s simple

∫
E
s dµ = sup

0≤s/λ≤f
s simple

λ

∫
E

s

λ
dµ = λ sup

0≤s̃≤f
s̃ simple

∫
E
s̃ dµ = λ

∫
E
f dµ .

ii) We have that ∫
E
f dµ = sup

0≤s≤f
s simple

∫
E
s dµ = sup

0≤s≤f
s=

∑
j cjχAj

∑
j

cj µ(Aj ∩ E) .

Now, it is easy to check that if the sets Aj are disjoint then

s =
∑
j

cjχAj
≤ f ⇔ s̃ =

∑
j

cjχAj∩E
≤ f χE

and so ∫
X
f χE dµ = sup

0≤s̃≤f χ
E

s̃=
∑

j cjχAj∩E

∫
X
s̃ dµ = sup

0≤s≤f
s=

∑
j cjχAj

∑
j

cj µ(Aj ∩ E) =

∫
E
f dµ .
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iii) As f ≤ g we have that

{s simple : 0 ≤ s ≤ f} ⊆ {s simple : 0 ≤ s ≤ g}

and so ∫
E
f dµ = sup

0≤s≤f

∫
E
s dµ ≤ sup

0≤s≤g

∫
E
s dµ =

∫
E
g dµ .

iv) A ⊆ B =⇒ χA ≤ χB =⇒ fχA ≤ fχB and so iv) follows from iii).

v) (⇐) If f = 0 a.e. in E and 0 ≤ s =
∑

j cjχAj
≤ f , then µ(Aj ∩ E) = 0 for all j. Hence,∫

E
f dµ = sup

0≤s≤f
s simple

∫
E
s dµ = sup

0≤s≤f

∑
j

cjµ(Aj ∩ E) = 0 .

(⇒) Assume that µ({x ∈ E : f(x) > 0}) > 0. As {x ∈ E : f(x) > 0} = ∪∞n=1{x ∈ E : f(x) > 1
n}

we have that ∃n ∈ N such that µ({x ∈ E : f(x) > 1
n}) > 0. Let A := {x ∈ E : f(x) > 1

n}.
Hence, µ(A ∩ E) = µ(A) > 0 and 0 ≤ s := 1

nχA < f and so∫
E
s dµ =

1

n

∫
E
χA dµ ≤

∫
E
f dµ =⇒ 1

n
µ(A ∩ E) ≤

∫
E
f dµ =⇒

∫
E
f dµ > 0 .

vi) If µ(E) = 0, then f = 0 a.e. in E and so, by v),
∫
E f dµ = 0.

vii) If A ∩B = ∅, then it is easy to check that χA∪B = χA + χB and so∫
A∪B

f dµ =

∫
X
f χA∪B dµ =

∫
X
f (χA +χB ) dµ =

∫
X
f χA dµ+

∫
X
f χB dµ =

∫
A
f dµ+

∫
B
f dµ .

viii) Let {sn} and {tn} be sequences of simple functions such that 0 ≤ sn ↗ f and 0 ≤ tn ↗ g
as n→∞. Then {sn+tn} is a sequence of simple functions such that sn+tn ↗ f+g as n→∞.
By the monotone convergence theorem∫

X
(f + g) dµ = lim

n→∞

∫
X

(sn + tn) dµ = lim
n→∞

(∫
X
sn dµ+

∫
X
tn dµ

)
= lim

n→∞

∫
X
sn dµ+ lim

n→∞

∫
X
tn dµ =

∫
X
f dµ+

∫
X
g dµ .

Now, using ii) we get that∫
E

(f + g) dµ =

∫
X

(f + g)χE dµ =

∫
X
fχE dµ+

∫
X
fgχE dµ =

∫
E
f dµ+

∫
E
g dµ .

ix) As f ≥ g we have that f − g ≥ 0 and, by ii),∫
X
f dµ =

∫
X

(g + (f − g)) dµ =

∫
X
g dµ+

∫
X

(f − g) dµ .

To finish we subtract
∫
X g dµ <∞ from both members.

x) If A := {x ∈ E : f(x) > g(x)}, then µ(A) = 0. Let h(x) = f(x) if x /∈ A and h(x) = 0
otherwise (alternatively h = fχ

Ac ). Then f = h a.e. and h is measurable. Also f ≥ h for all
x ∈ X. Applying v) to f − h we get that

∫
X(f − h) dµ = 0 and so, by ix),

∫
X f dµ =

∫
X h dµ.

But also g − h ≥ 0 for all x ∈ X and so, by iii),
∫
X(f − h) dµ ≥ 0⇒

∫
X h dµ ≤

∫
X g dµ.

xi) As f = g a.e. we have that f ≤ g a.e. and g ≤ f a.e. and applying x) twice we get xi).
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Problem 2.1.2 Let (X,A, µ) be a measure space and suppose that X = ∪nXn, where {Xn}∞n=1

is a pairwise disjoint collection of measurable subsets of X. Prove that if f : X −→ [0,∞] is a
measurable positive function, then ∫

X
f dµ =

∑
n

∫
Xn

f dµ .

Hint: Use the monotone convergence theorem.

Solution: By definition of the sum of a series and using property viii) of problem 2.1.1 for finite
sums,

∞∑
n=1

∫
Xn

f dµ = lim
N→∞

N∑
n=1

∫
Xn

f dµ = lim
N→∞

N∑
n=1

∫
X
fχXn

dµ = lim
N→∞

∫
X

N∑
n=1

(
fχXn

)
dµ =

∫
X
f dµ ,

by the monotone convergence theorem, since the sets Xn are pairwise disjoint, we have that∑∞
n=1 χXn

= χ∪nXn
= χX = 1 and so

∑N
n=1 fχXn

↗ f as N →∞.

Problem 2.1.3 Let (X,A, µ) be a measure space and let f : X −→ [0,∞] be a measurable
positive function. Let us define

ϕ(E) =

∫
E
f dµ , for all E ∈ A.

Prove that ϕ is a measure on A and that∫
X
g dϕ =

∫
X
gf dµ , for all g : X −→ [0,∞] measurable. (1)

Note: This fact justifies the notation dϕ = f dµ.

Hint: Apply Exercise 2.1.1 to prove that ϕ is a measure. Then, prove (1) first for characteristic
functions and simple functions and then approximate any positive function for a sequence of
simple functions.

Solution: a) ϕ(∅) =
∫
∅ f dµ = 0 since µ(∅) = 0. b) Let {Aj}∞j=1 ⊂ A be a collection of disjoint

sets and let A = ∪∞j=1Aj . Then χA =
∑∞

j=1 χAj
and, as f, χAj

≥ 0, the monotone convergence

theorem gives

ϕ(A)=

∫
A
f dµ =

∫
X
f χA dµ=

∫
X

(
f
∞∑
j=1

χAj

)
dµ =

∞∑
j=1

∫
X
f χAj

dµ =
∞∑
j=1

∫
Aj

f dµ =
∞∑
j=1

ϕ(Aj) .

Hence, ϕ is a measure. On the other hand, if s =
∑n

j=1 cjχEj
is a simple function:∫

X
s dϕ =

n∑
j=1

cj

∫
X
χEj

dϕ =

n∑
j=1

cjϕ(Ej) =

n∑
j=1

cj

∫
Ej

f dµ

=

n∑
j=1

cj

∫
X
f χEj

dµ =

∫
X

( n∑
j=1

cj χEj

)
f dµ =

∫
X
s f dµ

(2)

and so (1) holds for simple functions. Now, letg ≥ 0 measurable and let {sn}∞n=1 be a sequence
of simple functions such that 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ↗ g as n → ∞. Then, by the monotone
convergence theorem and (2),∫

X
g dϕ = lim

n→∞

∫
X
sn dϕ = lim

n→∞

∫
X
snf dµ =

∫
X
gf dµ .
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Problem 2.1.4 Let f : [0, 1] −→ [0,∞] be defined by f(x) = 0 if x is rational, and otherwise
f(x) = n where n is the number of zeros immediately after the decimal point in the representation
of x in the decimal scale. Calculate

∫
f(x) dm, being m the Lebesgue measure.

Hint: f(x) = k for x ∈ [1/10k+1, 1/10k) \Q.

Solution: If x ∈ [1/10k+1, 1/10k) \ Q, then f(x) = k and so f =
∑∞

k=1 k χ[1/10k+1,1/10k)
a.e. By

the monotone convergence theorem∫
f dm =

∞∑
k=1

k
( 1

10k
− 1

10k+1

)
=

∞∑
k=1

k
9

10k+1
= 9

∞∑
k=1

k

10k+1
.

Let F (x) =
∑∞

k=1 kx
k−1 and G(x) =

∑∞
k=0 x

k = 1/(1− x) for 0 ≤ x < 1. Then F (x) = G′(x) =
1/(1− x)2 and so ∫

f dm =
9

102
F (1/10) =

9

102
1

(1− 1
10)2

=
1

9
.

Problem 2.1.5 Let f(x) be the function defined in (0, 1) by f(x) = 0 if x is rational, and
f(x) = [1/x] if x is irrational ([t] denote the integer part of t). Decide whether or not f is
Lebesgue integrable and calculate

∫
f(x) dm being m the Lebesgue measure.

Hint: f(x) = k for x ∈ (1/(k + 1), 1/k] \Q.

Solution: As [ 1x ] = k if and only if x ∈ (1/(k+ 1), 1/k] \Q we have that f =
∑∞

k=1 kχ(1/(k+1),1/k]
.

So, by the monotone convergence theorem∫ 1

0
f dm =

∞∑
k=1

k
(1

k
− 1

k + 1

)
=
∞∑
k=1

k
1

k(k + 1)
=
∞∑
k=1

1

k + 1
=∞ .

Hence, f is not Lebesgue integrable in (0, 1).

Problem 2.1.6 Let (X,A, µ) be a probability space, i.e. µ(X) = 1. Let E ∈ A be a set with
0 < µ(E) < 1. Put fn = χE if n is odd, fn = 1− χE if n is even. What is the relevance of this
example to Fatou’s lemma?

Hint: lim inf
n→∞

fn(x) = 0 for all x ∈ X but lim inf
n→∞

∫
fn dµ = min{µ(E), 1− µ(E)}.

Solution: We have that lim inf
n→∞

fn(x) = min{χE (x), 1− χE (x)} = 0 for all x ∈ X, but it is clear

that∫
X
fn dµ =

{
µ(E), if n is odd

1− µ(E), if n is even
=⇒ lim inf

n→∞

∫
X
fn dµ = min{µ(E), 1− µ(E)} > 0.

Therefore, in this case, Fatou’s lemma tell us that 0 ≤ min{µ(E), 1 − µ(E)}. Hence, the
inequality in Fatou’s lemma can be strict!

Problem 2.1.7 Let f2n−1 = χ
[0,1]

, f2n = χ
[1,2]

, n = 1, 2, . . .. Check that Fatou’s Lemma is
verified strictly for this sequence of functions.
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Hint: lim inf
n→∞

fn(x) = 0 for all x ∈ R \ {1} but lim inf
n→∞

∫
fn dm = 1.

Solution: As [0, 1] ∩ [1, 2] = {1} we have that lim inf
n→∞

fn(x) = min{χ
[0,1]

(x), χ
[1,2]

(x)} = 0 for all

x ∈ R \ {1}. But
∫
R fn dm = 1 for all n ∈ N and so lim inf

n→∞

∫
fn dm = 1. Therefore, in this case,

Fatou’s lemma tell us that 0 ≤ 1 and so, the inequality in Fatou’s lemma is strict.

Problem 2.1.8

a) Check that

∫ ∞
1

1

x
dm =∞, being m the Lebesgue measure.

b) Let p ∈ R. Prove that:

b1)

∫ ∞
0

e−pxdm <∞ if and only if p > 0.

b2)

∫ ∞
1

1

xp
dm <∞ if and only if p > 1.

b3)

∫ 1

0

1

xp
dm <∞ if and only if p < 1.

Hint: a)
1

x
= lim

N→∞

1

x
χ

[1,N ]
(x). Apply the monotone convergence theorem.

Solution: a) As 1
x χ[1,N ]

(x)↗ 1
x χ[1,∞)

(x) = 1
x , by monotone convergence theorem,∫ ∞

1

1

x
dx = lim

N→∞

∫ ∞
1

1

x
χ

[1,N ]
(x) dx = lim

N→∞

∫ N

1

1

x
dx .

But 1
x is continuous in the bounded interval [1, N ] and so it is Riemann-integrable in [1, N ] and

its Lebesgue integral coincide with its Riemann integral, and to compute it we can use Barrow’s
rule. Hence, ∫ ∞

1

1

x
dx = lim

N→∞
[log x]x=Nx=1 = lim

N→∞
logN =∞.

b.1) Similarly,∫ ∞
0
e−pxdx = lim

N→∞

∫ ∞
0
e−px χ

[0,N ]
(x) dx = lim

N→∞

∫ N

0
e−pxdx= lim

N→∞

[e−px
−p

]x=N
x=0

= lim
N→∞

1

p
(1−e−pN ).

Hence,
∫∞
0 e−pxdx <∞ ⇐⇒ p > 0 and in this case

∫∞
0 e−pxdx = 1/p.

b.2) Similarly, if p 6= 1,∫ ∞
1

1

xp
dx = lim

N→∞

∫ ∞
1

1

xp
χ

[1,N ]
(x) dx = lim

N→∞

∫ N

1

1

xp
dx

= lim
N→∞

[ 1

(1− p)xp−1
]x=N
x=1

=
1

1− p
lim
N→∞

( 1

Np−1 − 1
)
.

Hence, taking also into account a),
∫∞
1

1
xp dx< ∞ ⇐⇒ p> 1 and in this case

∫∞
1

1
xp dx = 1

p−1 .
If p = 1, then a similar argument gives that the integral is ∞.
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b.3) Similarly, if p 6= 1,∫ 1

0

1

xp
dx = lim

N→∞

∫ 1

0

1

xp
χ

[1/N,1]
(x) dx = lim

N→∞

∫ 1

1/N

1

xp
dx

= lim
N→∞

[ 1

(1− p)xp−1
]x=1

x=1/N
=

1

1− p
lim
N→∞

(
1−Np−1)

Hence, taking also into account a),
∫∞
1

1
xp dx< ∞ ⇐⇒ p< 1 and in this case

∫∞
1

1
xp dx = 1

1−p .
If p = 1, then a similar argument gives that the integral is ∞.

Problem 2.1.9 Prove that the function f(x) = 1√
x

if x ∈ (0, 1], and f(0) = 0, is Lebesgue-

integrable in [0, 1] and calculate its integral.

Hint: f is almost everywhere continuous and f(x) = lim
ε→0+

1√
x
χ

[ε,1]
(x) if x ∈ [0, 1].

Solution: As 1√
x
χ

[1/N,1]
(x)↗ 1√

x
χ

(0,1]
(x) = f(x) when N →∞ for x ∈ [0, 1], by the monotone

convergence theorem,∫ 1

0
f(x) dx = lim

N→∞

∫ 1

0
f(x)χ

[1/N,1]
(x) dx = lim

N→∞

∫ 1

1/N
f(x) dx .

But f(x) is continuous in the bounded interval [1/N, 1] and so it is Riemann-integrable in
[1/N, 1] and its Lebesgue integral coincide with its Riemann integral, and to compute it we can
use Barrow’s rule. Hence,∫ ∞

1
f(x) dx = lim

N→∞

∫ 1

1/N

1√
x
dx = lim

N→∞
[2
√
x ]x=1

x=1/N = lim
N→∞

2
( 1√

N
− 1
)

= 2.

Problem 2.1.10 Let (X,A, µ) be a measure space and let f : X −→ [0,∞] be a measurable

positive function. Let fn(x) = min{f(x), n}. Prove that

∫
X
fn dµ↗

∫
X
f dµ.

Hint: Use an adequate convergence theorem.

Solution: It is clear that fn(x) ↗ f(x) as n → ∞, by the monotone convergence theorem, as
n→∞. Thus, we have that

∫
X fn dµ↗

∫
X f dµ as n→∞.

Problem 2.1.11 Let (X,A, µ) be a measure space and let fn : X −→ [0,∞] be a sequence of
measurable positive functions. Let us suppose that ∃ limn→∞ fn = f and that fn ≤ f for all n.

Prove that

∫
X
f dµ = lim

n→∞

∫
X
fn dµ.

Hint: Use Fatou’s Lemma and
∫
X fn dµ ≤

∫
X f dµ.

Solution: By Fatou’s lema∫
X
f dµ =

∫
X

lim
n→∞

f dµ =

∫
X

lim inf
n→∞

f dµ ≤ lim inf
n→∞

∫
X
fn dµ .

Also, as fn ≤ f we have that
∫
X fn dµ ≤

∫
X f dµ for all n ∈ N and so

lim sup
n→∞

∫
X
fn dµ ≤

∫
X
f dµ.

Hence,∫
X
f dµ ≤ lim inf

n→∞

∫
X
fn dµ ≤ lim sup

n→∞

∫
X
fn dµ ≤

∫
X
f dµ =⇒

∫
X
f dµ = lim

n→∞

∫
X
fn dµ.
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Problem 2.1.12

a) Let (X,A, µ) be a measure space and let fn : X −→ [0,∞] be a sequence of measurable
positive functions. Let us suppose that fn(x)↘ f(x) and that

∫
X fk dµ <∞ for some k.

Prove that limn→∞
∫
X fn dµ =

∫
X f dµ.

b) Let a1 ≥ a2 ≥ a3 ≥ . . . ≥ an ≥ . . . be a sequence of positive numbers such that
limn→∞ an = 0 and a > 0. Let us define fn(x) = an/x, for x > a > 0. Check that fn
decreases uniformly to 0 but

∫
fn dm =∞ for all n.

Hint: a) Consider the sequence gn = fk − fk+n.

Solution: a) Let gn = fk − fk+n for n ∈ N. Then {gn} is increasing and gn ↗ fk − f := g as
n→∞. By the monotone convergence theorem:∫

X
g dµ = lim

n→∞

∫
X
gndµ =⇒

∫
X
fk dµ−

∫
X
f dµ =

∫
X
fk dµ− lim

n→∞

∫
X
fk+n dµ .

As
∫
X fkdµ <∞, subtracting it from both members of the last equality we obtain that∫

X
f dµ = lim

n→∞

∫
X
fk+n dµ = lim

n→∞

∫
X
fn dµ .

b) We have that f1(x) ≥ f2(x) ≥ · · · ≥ fn(x) ≥ · · · ↘ 0 as n → ∞ for all x ∈ (a,∞). The
convergence is even uniform:

0 < fn(x) =
an
x
≤ an

a
< ε ⇐⇒ an < aε

and, since limn→∞ an = 0, this happens for n ≥ n0(ε), independently on x ∈ (a,∞). But, by
the monotone convergence theorem,∫ ∞

a
fn(x) dx = lim

N→∞

∫ N

a

an
x
dx = lim

N→∞
an[log x]x=Nx=a = lim

N→∞
an(logN − log a) =∞

for all n ∈ N. As
∫∞
a 0 dx = 0, we conclude that part a) fails if the functions are not integrable

even in the case of uniform convergence.

Problem 2.1.13 Let g : (X,A, µ) −→ [0,∞] be an integrable function. Let {En} be a
decreasing sequence of sets such that ∩∞n=1En = ∅. Prove that limn→∞

∫
En
g dµ = 0.

Solution: As {En}∞n=1 is decreasing we have that {g χEn
}∞n=1 is also decreasing and {g χEn

}∞n=1 ↘
g χ∩nEn

= g χ∅ = 0. But, as
∫
X g χE1

dµ ≤
∫
X g dµ <∞, we can apply part a) of problem 2.1.12,

and so

lim
n→∞

∫
En

g dµ = lim
n→∞

∫
X
g χEn

dµ =

∫
X

lim
n→∞

g χEn
dµ =

∫
X

0 dµ = 0 .

Problem 2.1.14 Prove that for all a > 0, the function f(x) = e−xxa−1 is Lebesgue-integrable
in [0,∞].

Hints: e−x ≤ 1 for x ∈ [0, 1]; f is continuous in any bounded interval [1,M ]; lim
x→∞

xa−1e−x/2 = 0.
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Solution: a) Case 1: a ≥ 1. Then, for all M > 0, f is continuous in [0,M ] and so f ∈ L1[0,M ].
On the other hand, applying L’Hopital rule [a] times:

lim
x→∞

xa−1

ex/2
= lim

x→∞

(a− 1) · · · (a− [a])xa−[a]−1

1
2[a]
ex/2

= 0 .

Therefore, there exists M > 0 such that xa−1e−x/2 < 1 for all x ∈ [M,∞), and so, by part b.1)
of problem 2.1.8,∫ ∞

M
e−xxa−1dx ≤

∫ ∞
M

e−xex/2dx =

∫ ∞
M

e−x/2dx ≤
∫ ∞
0

e−x/2dx = 2 <∞ .

Hence, f ∈ L1(0,∞).

b) Case 1: 0 < a < 1. Then 0 < 1− a < 1 and, as e−x ≤ e0 = 1 for all x > 0, we have that∫ 1

0
e−xxa−1dx ≤

∫ 1

0
xa−1dx =

∫ 1

0

1

x1−a
dx <∞

by part b.3) of problem 2.1.8, since 0 < 1− a < 1. Hence, f ∈ L1(0, 1). Also, since a− 1 < 0,

lim
x→∞

xa−1e−x/2 = 0

and we conclude like in part a) that f ∈ L1[M,∞) for some M > 0. Finally, as f is continuous
in [1,M ] we have that f is bounded there and so f ∈ L1[1,M ]. Hence, f ∈ L1(0,∞) also in this
case.

Problem 2.1.15 Let fn : [0, 1] −→ [0,∞) be a sequence of positive functions defined by

fn(x) =

{
n , if 0 ≤ x ≤ 1/n ,

0 , otherwise.

Check that fn → 0 pointwise when x > 0 but
∫
fn dm = 1. Interpret why this may happen.

Solution: Given x ∈ (0, 1], we have that x > 1/n for all n ≥ n0(x). Hence, fn(x) = 0 for all
n ≥ n0(x) and so limn→∞ fn(x) = 0. However,∫ 1

0
fn(x) dx =

∫ 1/n

0
ndx = n · 1

n
= 1 , for all n ∈ N .

Hence,

1 = lim
n→∞

∫ 1

0
fn(x) dx 6=

∫ 1

0

(
lim
n→∞

fn(x)
)
dx = 0 ,

in spite of ∃ limn→∞ fn. This fact shows that the monotonicity in the the monotone convergence
theorem is necessary.

Problem 2.1.16 LetM be the σ-algebra of Lebesgue-measurable sets in [0,∞). We define in
M the measure µ as

µ(E) =

∫
E

1

1 + x
dx .

Check that µ is a Borel-Stieltjes measure and calculate the corresponding distribution function
F . Find a function f(x) such that

∫
f dµ <∞ but

∫
f dm =∞, being m the Lebesgue measure.
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Hint: F (t) = log(1 + t)χ
[0,∞]

(t); f(x) = 1/(1 + x).

Solution: µ is a Radon measure in [0,∞), since for all M > 0,

µ([0,M)) =

∫ M

0

1

1 + x
dx = [log(1 + x)]x=Mx=0 = logM <∞ .

Hence, by problem 1.3.12, µ is a Borel-Stieltjes measure. Since

µ([a, b)) =

∫ b

a

1

1 + x
dx = [log(1 + x)]x=bx=a = log(1 + b)− log(1 + a)

we see that µ = µF with F the distribution function F (x) = log(1 + x).
Now, let f(x) = 1/(1 + x). Then, by the monotone convergence theorem,∫
[0,∞)

f dm =

∫ ∞
0

1

1 + x
dx = lim

N→∞

∫ N

0

1

1 + x
dx = lim

N→∞
[log(1 + x)]x=Nx=0 = lim

N→∞
(log(1 +N) =∞ .

But, µ is a measure given by the density function f , using problem 2.1.3 and the monotone
convergence theorem, we get∫

[0,∞)
f dµ =

∫ ∞
0

1

1 + x

1

1 + x
dx =

∫ ∞
0

1

(1 + x)2
dx = lim

N→∞

∫ N

0

1

(1 + x)2
dx

= lim
N→∞

[
− 1

1 + x

]x=N
x=0

= 1− lim
N→∞

1

1 +N
= 1− 0 = 1 <∞ .

Problem 2.1.17 Let (X,A, µ) and (Y,B, ν) be measure spaces and let A,Ai ∈ A, B,Bi ∈ B
(i ∈ N) be sets such that

A×B =
∞⋃
i=1

(Ai ×Bi) , Ai ×Bi disjoint sets.

Prove that

µ(A)ν(B) =

∞∑
i=1

µ(Ai)ν(Bi) .

Hint: Use that for a positive sequence of functions:
∑

n

∫
fn =

∫ ∑
n fn.

Solution: Let µ⊗ν be the product measure of µ and ν. As the sets Ai×Bi are pairwise disjoint
we have that

χA×B (x, y) =

∞∑
i=1

χAi×Bi
(x, y)

and so,

µ(A) ν(B) =

∫
X×Y

χA×B d(µ⊗ ν) =

∫
X×Y

∞∑
i=1

χAi×Bi
d(µ⊗ ν)

=
∞∑
i=1

∫
X×Y

χAi×Bi
d(µ⊗ ν) =

∞∑
i=1

(µ⊗ ν)(Ai ×Bi) =
∞∑
i=1

µ(Ai) ν(Bi) .
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Problem 2.1.18 Prove Borel-Cantelli Lemma (see Problem 1.2.11) using the the monotone
convergence theorem.

Hint: Consider the function
∑∞

n=1 χAn
.

Solution: Let F =
∑∞

n=1 χAn
. Then∫

X
F dµ =

∞∑
n=1

∫
X
χAn

dµ =

∞∑
n=1

µ(An) <∞

by hypothesis. Therefore we must have that µ({x ∈ X : F (x) =∞}) = 0, since on the contrary
we would have

∫
X F dµ =∞. But F (x) =∞ ⇐⇒ x ∈ An for infinitely many n, and so

µ({x ∈ X : x ∈ An for infinitely many n}) = 0 .

Problem 2.1.19 Let A = [0, 1]∩Q. Then we can write A = {a1, a2, . . . , an, . . . }. Let us define
the functions fn : [0, 1] −→ R given by

fn(x) =

{
1 , if x ∈ {a1, . . . , an} ,
0 , otherwise.

Prove that fn is Riemann-integrable and calculate f(x) = limn→∞ fn(x). Are fn and f Lebesgue-
integrable functions?

Solution: We have that fn is only discontinuous at the points a1, a2, . . . , an. Hence, fn is bounded
and continuous almost everywhere with respect to Lebesgue measure in [0, 1] and therefore fn is
Riemann-integrable and so, Lebesgue-integrable. Besides limn→∞ fn(x) = χA(x) = f(x). Since
fn = f = 0 almost everywhere for each n since m(A) = 0 because A is countable, the integrals
of fn and f are all zero.

Problem 2.1.20 With the notation of the problem above, let F (x) be the function

F (x) =

{
1
k , if x = ak ,

0 , if x ∈ R \Q .

Show that the function F is Riemann-integrable on any bounded interval [a, b] and find
∫ b
a F (x) dx.

Solution: F is bounded and continuous in R\Q and so, F is almost everywhere continuous since

m(Q) = 0 because Q is countable. Hence, F is Riemann-integrable on [a, b] and
∫ b
a F (x) dx = 0

since F (x) = 0 almost everywhere with respect to Lebesgue measure.


