uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems

 Chapter 2: Integration theory Section 2.2: Integration of general functionsProfessors: Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.2. Integration of general functions

Problem 2.2.1 Let $f_{n}:[0,1] \longrightarrow[-1,1]$ be a sequence of continuous functions such that $f_{n}(x) \rightarrow 0$ almost everywhere with respect to Lebesgue measure. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0
$$

Hint: The functions f_{n} are uniformly bounded.
Solution: As $\left|f_{n}(x)\right| \leq 1$ for all $n \in \mathbb{N}$ and $1 \in L^{1}[0,1]$ we can apply the dominated convergence theorem and so

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x=\int_{0}^{1} 0 d x=0
$$

Problem 2.2.2 Let (X, \mathcal{A}, μ) be a finite space measure: $\mu(X)<\infty$. Let $\left\{f_{n}\right\}$ be a sequence of integrable functions such that $f_{n}(x) \rightarrow f(x)$ uniformly in X. Prove that $f \in L^{1}(\mu)$ and that

$$
\int_{X} f d \mu=\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu
$$

Hint: Uniform convergence implies that the sequence f_{n} is uniformly-Cauchy.
Solution: As f_{n} tends uniformly to f, we have that there exists $n_{0} \in \mathbb{N}$ such that

$$
\left|f_{n}(x)-f(x)\right|<1, \quad \forall n \geq n_{0}, \quad \forall x \in X
$$

Hence, by the triangle inequality,

$$
|f(x)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)\right|<1+\left|f_{n}(x)\right|, \quad \forall n \geq n_{0}, \forall x \in X
$$

and so

$$
\int_{X}|f| d \mu \leq \int_{X}\left(1+\left|f_{n_{0}}\right|\right) d \mu=\mu(X)+\int_{X}\left|f_{n_{0}}\right| d \mu<\infty \Longrightarrow f \in L^{1}(\mu)
$$

Also, again by the triangle inequality,

$$
\left|f_{n}(x)\right| \leq\left|f(x)-f_{n}(x)\right|+|f(x)| \leq 1+|f(x)| \in L^{1}(\mu), \quad \forall n \geq n_{0}, \forall x \in X
$$

and using the dominated convergence theorem we get that $\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu$.
Problem 2.2.3* Let $f_{n}:(\mathbb{R}, \mathcal{M}, m) \longrightarrow[0, \infty)$ be a sequence of positive Lebesgue-measurable functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for almost all $x \in \mathbb{R}$ and, besides, $\int_{\mathbb{R}} f_{n} d x=\int_{\mathbb{R}} f d x=1$ for all $n \in \mathbb{N}$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{x} f_{n} d x=\int_{-\infty}^{x} f d x, \quad \text { for all } x \in \mathbb{R}
$$

Hint: Consider the functions $\min \left(f_{n}, f\right)$ and use an adequate convergence theorem. Recall that $\min (x, y)=\frac{x+y-|x-y|}{2}$.

Solution: Let $F_{n}(x)=\int_{-\infty}^{x} f_{n} d x$ and $F(x)=\int_{-\infty}^{x} f d x$. We have that, for all $x \in \mathbb{R}$,

$$
\begin{equation*}
\left|F_{n}(x)-F(x)\right|=\left|\int_{-\infty}^{x}\left(f_{n}-f\right) d x\right| \leq \int_{-\infty}^{x}\left|f_{n}-f\right| d x \leq \int_{\mathbb{R}}\left|f_{n}-f\right| d x \tag{1}
\end{equation*}
$$

On the other hand we have that, as $n \rightarrow \infty$,

$$
f_{n} \longrightarrow f \text { a.e. } \Longrightarrow \min \left(f_{n}, f\right) \longrightarrow f \text { a.e. . }
$$

Also $\min \left(f_{n}, f\right) \leq f \in L^{1}(\mathbb{R})$. Hence by the dominated convergence theorem

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \min \left(f_{n}, f\right) d x=\int_{\mathbb{R}} f d x
$$

and, as $\left|f_{n}-f\right|=f_{n}+f-2 \min \left(f_{n}, f\right)$, we obtain that

$$
\int_{\mathbb{R}}\left|f_{n}-f\right| d x=\int_{\mathbb{R}} f_{n} d x+\int_{\mathbb{R}} f d x-2 \int_{\mathbb{R}} \min \left(f_{n}, f\right) d x \rightarrow \int_{\mathbb{R}} f d x+\int_{\mathbb{R}} f d x-2 \int_{\mathbb{R}} f d x=0
$$

as $n \rightarrow \infty$. Hence, using (1), we get that $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ for all $x \in \mathbb{R}$.
Problem 2.2.4 Let (X, \mathcal{A}, μ) be a measure space and let $f: X \longrightarrow \mathbb{R}$ be an integrable function.
a) Prove Markov's inequality:

$$
\mu(\{x \in X:|f(x)| \geq \varepsilon\}) \leq \frac{1}{\varepsilon} \int_{X}|f| d \mu
$$

b) Using Markov's inequality, show that if f is a measurable function, then

$$
\begin{array}{lll}
\mathrm{b} 1) & \int|f| d \mu=0 & \Longleftrightarrow
\end{array} \quad \mu(f \neq 0)=0, ~ 子 \quad \mu(|f|=\infty)=0 .
$$

Give an example showing that it is possible to have that

$$
\int|f| d \mu=\infty \quad \text { and } \quad \mu(|f|=\infty)=0
$$

Hints: a) $1 \leq \frac{1}{\varepsilon}|f|$ on the set $\{x \in X:|f(x)| \geq \varepsilon\}$. b1) If $\int|f| d \mu=0$, then $\left.\left.\mu(|f(x)| \geq 1 / n)\right\}\right)=0$ for all $n \in \mathbb{N}$. b2) If $\int|f| d \mu<\infty$, then $\{|f|=\infty\} \subset\{|f| \geq n\}$ for all $n \in \mathbb{N}$.
Solution: a) $\mu(\{x \in X:|f(x)| \geq \varepsilon\})=\int_{\{|f| \geq \varepsilon\}} 1 d \mu \leq \int_{\{|f| \geq \varepsilon\}} \frac{1}{\varepsilon}|f| d \mu \leq \frac{1}{\varepsilon} \int_{X}|f| d \mu$.
b1) $(\Leftarrow) \int_{X}|f| d \mu=\int_{\{|f|=0\}}|f| d \mu+\int_{\{|f| \neq 0\}}|f| d \mu=0+0=0$.
(\Rightarrow) Using part a) we have that $\mu(\{x \in X:|f| \geq 1 / n\})=0$ for all $n \in \mathbb{N}$, and so

$$
\mu(\{x \in X: f(x) \neq 0\})=\mu\left(\bigcup_{n=1}^{\infty}\{x \in X:|f(x)| \geq 1 / n\}\right) \leq \sum_{n=1}^{\infty} \mu(\{x \in X:|f| \geq 1 / n\})=0
$$

b2) Using part a) we have that for all $n \in \mathbb{N}$, and since $\int_{X}|f| d \mu<\infty$:

$$
\mu(\{x \in X: f(x)=\infty\}) \leq \mu(\{x \in X:|f| \geq n\}) \leq \frac{1}{n} \int_{X}|f| d \mu \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Hence, $\mu(\{x \in X: f(x)=\infty\})=0$.
The converse is false: Take $X=[1, \infty)$ and $f(x)=1 / x$. Then $\{x:|f(x)|=\infty\}=\varnothing$ and so, $\mu(\{x:|f(x)|=\infty\})=0$ but $\int_{X}|f| d x=\infty$.

Problem 2.2.5 Prove that the function $f(x)=\frac{\sin x}{x}$ is not Lebesgue-integrable in $(0, \infty)$.
Hint: Divide $(0, \infty)$ in the intervals $(n \pi,(n+1) \pi](n \geq 0)$.
Solution: We have that

$$
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x=\sum_{n=0}^{\infty} \int_{n \pi}^{(n+1) \pi} \frac{|\sin x|}{x} d x \geq \sum_{n=0}^{\infty} \frac{1}{(n+1) \pi} \int_{n \pi}^{(n+1) \pi}|\sin x| d x
$$

But the function $|\sin x|$ is π-periodic and so

$$
\int_{0}^{\infty}\left|\frac{\sin x}{x}\right| d x \geq \frac{1}{\pi}\left(\sum_{n=0}^{\infty} \frac{1}{n+1}\right) \int_{0}^{\pi} \sin x d x=\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

and so, $\int_{0}^{\infty}|\sin x / x| d x=\infty$ and $f \notin L^{1}(0, \infty)$.

Problem 2.2.6 Discuss whether the following functions are Lebesgue integrable or not. Give an argument of why they are not, or find the value of the integral:
a) $f(x)=\frac{1-\cos x}{x\left(1+x^{2}\right)}$ for $x \in(0, \infty)$.
b) $g(x)=\sin x+\cos x$ for $x \in \mathbb{R}$.

Hints: a) On $(0, \delta)$ we have $|f(x)| \leq C x /\left(1+x^{2}\right) \in L^{1}(0, \delta)$ and on (δ, ∞) we have $|f(x)| \leq 2 / x^{3} \in$ $L^{1}(\delta, \infty)$. b) $|\sin x+\cos x|$ is π-periodic, $f(x)>0$ on $(-\pi / 4,3 \pi / 4)$ and $\int_{-\pi / 4}^{3 \pi / 4}|\sin x+\cos x| d x=$ $2 \sqrt{2}>0$.
Solution: a) As $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2} / 2}=1$ we have that, given $\varepsilon>0$, there exists $\delta>0$ such that

$$
\left|\frac{1-\cos x}{x^{2} / 2}\right|<1+\varepsilon, \quad \text { if }|x|<\delta
$$

Therefore, since $x /\left(1+x^{2}\right)$ is bounded in $[0, \delta]$ (because it is continuous there), if $x \in(0, \delta)$, then

$$
|f(x)|<\frac{(1+\varepsilon) x^{2} / 2}{x\left(1+x^{2}\right)}=\frac{1+\varepsilon}{2} \frac{x}{1+x^{2}} \in L^{1}(0, \delta)
$$

On the other hand, if $x \in(\delta, \infty)$ then, by part b 2$)$ of problem 2.1.8:

$$
|f(x)| \leq \frac{2}{x\left(1+x^{2}\right)}<\frac{2}{x^{3}} \in L^{1}(\delta, \infty)
$$

Hence, $f \in L^{1}(0, \infty)$.
b) If $x \in[-\pi, \pi]$, then $g(x)=0 \Longleftrightarrow \tan x=-1 \Longleftrightarrow x=-\pi / 4$ or $x=3 \pi / 4$. Hence, $g(x) \geq 0$ in $[-\pi / 4,3 \pi / 4]$ and, as g is π-periodic and

$$
\int_{-\pi / 4}^{3 \pi / 4} g(x) d x=\int_{-\pi / 4}^{3 \pi / 4}(\sin x+\cos x) d x=[-\cos x+\sin x]_{x=-\pi / 4}^{x=3 \pi / 4}=2 \sqrt{2}
$$

we conclude that $g \notin L^{1}(\mathbb{R})$, since

$$
\int_{\mathbb{R}}|g(x)| d x=\sum_{n \in \mathbb{Z}} \int_{-\frac{\pi}{4}+n \pi}^{\frac{3 p i}{4}+n \pi}|\sin x+\cos x| d x=\sum_{n \in \mathbb{Z}} 2 \sqrt{2}=\infty
$$

Problem 2.2.7 It is easy to guess the limits
a) $\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{x / 2} d x$,
b) $\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x$.

Prove that your guesses are correct.
Solution: a) Let $f_{n}(x)=\left(1-\frac{x}{2}\right)^{n} e^{x / 2} \chi_{[0, n]}(x)$. As $\lim _{n \rightarrow \infty}\left(1-\frac{x}{n}\right)^{n}=e^{-x}$, we have $\lim _{n \rightarrow \infty} f_{n}(x)=$ $e^{-x / 2}$. Hence, in view of problem 2.1.8 part b1), we guess that:

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{x / 2} d x=\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{\infty}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x=\int_{0}^{\infty} e^{-x / 2} d x=2
$$

To prove it, we will show that $\left|f_{n}(x)\right| \leq e^{-x / 2} \in L^{1}(0, \infty)$ and then our conjecture will be a consequence of the dominated convergence theorem. To do that it is enough to prove that $\left(1-\frac{x}{n}\right)^{n} \leq e^{-x}$ if $x \in[0, n]$. This inequality is equivalent to $n \log \left(1-\frac{x}{n}\right) \leq-x$. If we define $F(x):=x+n \log \left(1-\frac{x}{n}\right)$ for $x \in[0, n]$, then we must prove that $F(x) \leq 0$ for $x \in[0, n]$. But

$$
F^{\prime}(x)=1-\frac{1}{1-\frac{x}{n}}=-\frac{x / n}{1-\frac{x}{n}} \leq 0 \Longrightarrow F \text { is decreasing } \Longrightarrow F(x) \leq F(0)=0
$$

b) Let $g_{n}(x)=\left(1+\frac{x}{2}\right)^{n} e^{-2 x} \chi_{[0, n]}(x)$. As $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$, we have $\lim _{n \rightarrow \infty} g_{n}(x)=e^{-x}$. Hence, in view of problem 2.1.8 part b1), we guess that:

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x=\lim _{n \rightarrow \infty} \int_{0}^{\infty} g_{n}(x) d x=\int_{0}^{\infty}\left(\lim _{n \rightarrow \infty} g_{n}(x)\right) d x=\int_{0}^{\infty} e^{-x} d x=1
$$

To prove it, we will show that $\left|g_{n}(x)\right| \leq e^{-x} \in L^{1}(0, \infty)$ and then our conjecture will be a consequence of the dominated convergence theorem. To do that it is enough to prove that $\left(1+\frac{x}{n}\right)^{n} \leq e^{x}$ if $x \in[0, n]$. This inequality is equivalent to $n \log \left(1+\frac{x}{n}\right) \leq x$. If we define $G(x):=x-n \log \left(1+\frac{x}{n}\right)$ for $x \in[0, n]$, then we must prove that $G(x) \geq 0$ for $x \in[0, n]$. But

$$
G^{\prime}(x)=1-\frac{1}{1+\frac{x}{n}}=\frac{x / n}{1+\frac{x}{n}} \geq 0 \Longrightarrow G \text { is increasing } \Longrightarrow G(x) \geq G(0)=0 .
$$

Problem 2.2.8 Let (X, \mathcal{A}, μ) be a measure space and let $f_{n}: X \longrightarrow \mathbb{R}$ be a sequence of measurable functions such that

$$
\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty
$$

Prove that:
a) The series $\sum_{n} f_{n}$ converges almost everywhere in X to a function $f: X \longrightarrow \mathbb{R}$:

$$
\sum_{n=1}^{\infty} f_{n}(x)=f(x), \quad \text { for almost every } x \in X
$$

b) $f \in L^{1}(\mu)$.
c) $\int_{X} f d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu$.

Hints: a) Consider the function $F(x):=\sum_{n=1}^{\infty}\left|f_{n}(x)\right| \in L^{1}(X)$, why? Then $|f(x)| \leq F(x)<\infty$ almost everywhere (use problem 2.2.4). b) It follows easily from a). c) $g_{n}:=f_{1}+\cdots+f_{n}$ verifies $\lim _{n \rightarrow \infty} g_{n}(x)=f(x)$ a.e. and $\left|g_{n}\right| \leq F$. Use a convergence theorem.
Solution: a) Let $F(x)=\sum_{n=1}^{\infty}\left|f_{n}(x)\right| \in[0, \infty]$. Then, as a consequence of monotone convergence theorem

$$
\begin{aligned}
\int_{X} F d \mu & =\int_{X} \lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|f_{n}(x)\right| d \mu(x)=\lim _{N \rightarrow \infty} \int_{X} \sum_{n=1}^{N}\left|f_{n}(x)\right| d \mu(x) \\
& =\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{X}\left|f_{n}(x)\right| d \mu(x)=\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty,
\end{aligned}
$$

by hypothesis. Therefore:

$$
F \in L^{1}(\mu) \Longrightarrow F(x)<\infty \text { a.e. } \Longrightarrow \sum_{n=1}^{\infty}\left|f_{n}(x)\right|<\infty \text { a.e. } \Longrightarrow \sum_{n=1}^{\infty} f_{n}(x) \text { converges a.e. }
$$

b) As $|f(x)|=\left|\sum_{n=1}^{\infty} f_{n}(x)\right| \leq \sum_{n=1}^{\infty}\left|f_{n}(x)\right|=F(x) \in L^{1}(\mu)$ we conclude that also $f \in L^{1}(\mu)$.
c) Let $s_{N}(x)=\sum_{n=1}^{N} f_{n}(x)$. Then:

$$
\left|s_{N}(x)\right| \leq \sum_{n=1}^{N}\left|f_{n}(x)\right| \leq F(x) \in L^{1}(\mu) \quad \text { and } \quad s_{N}(x) \rightarrow f(x) \quad \text { as } N \rightarrow \infty
$$

and so, by the dominated convergence theorem:

$$
\int_{X} f d \mu=\int_{X} \lim _{N \rightarrow \infty} s_{N}(x) d \mu(x)=\lim _{N \rightarrow \infty} \int_{X} s_{N}(x) d \mu(x)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{X} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu .
$$

Problem 2.2.9 Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{d x}{(1+x / n)^{n} x^{1 / n}}=1
$$

Hint: $f_{n}(x) \leq \frac{1}{\sqrt{x}} \chi_{(0,1]}(x)+(1+x / 2)^{-2} \chi_{(1, \infty)}(x) \in L^{1}(0, \infty)$ for $n \geq 2$ and so we can use dominated convergence.
Solution: Let $f_{n}(x)=\frac{1}{(1+x / n)^{n} x^{1 / n}}$ for $x \in(0, \infty)$. Then, using problem 2.1.8, we have for $n \geq 2$

- If $x \in(0,1]$, then $f_{n}(x) \leq \frac{1}{x^{1 / n}} \leq \frac{1}{x^{1 / 2}} \in L^{1}(0,1]$.
- If $x \in(1, \infty)$, then $f_{n}(x) \leq \frac{1}{(1+x / n)^{n}} \leq \frac{1}{(1+x / 2)^{2}} \leq \frac{4}{x^{2}} \in L^{1}(1, \infty)$.

Hence, $f_{n}(x) \leq \frac{1}{\sqrt{x}} \chi_{(0,1]}(x)+\frac{4}{x^{2}} \chi_{(1, \infty)}(x) \in L^{1}(0, \infty)$ and, by the dominated convergence theorem and problem 2.2.8,

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{d x}{(1+x / n)^{n} x^{1 / n}}=\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{\infty}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x=\int_{0}^{\infty} \frac{1}{e^{x}} d x=1
$$

Problem 2.2.10 Let us consider the functions

$$
f_{n}(x)=\frac{n x-1}{(x \log n+1)\left(1+n x^{2} \log n\right)}, \quad x \in(0,1] .
$$

Prove that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0, \quad \text { but } \quad \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\frac{1}{2}
$$

What is the relevance of this result?
Hint: Prove that $\frac{n x-1}{(x \log n+1)\left(1+n x^{2} \log n\right)}=\frac{-1}{x \log n+1}+\frac{n x}{(n \log n) x^{2}+1}$.
Solution: First of all, we have that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{\frac{x}{\log ^{2} n}-\frac{1}{n \log ^{2} n}}{\left(x+\frac{1}{\log n}\right)\left(x^{2}+\frac{1}{n \log n}\right)}=\frac{0}{x \cdot x^{2}}=0 .
$$

Now, we decompose $f_{n}(x)$ into simple fractions:

$$
f_{n}(x)=\frac{A_{n}}{x \log n+1}+\frac{B_{n} x+C_{n}}{1+n x^{2} \log n} .
$$

Eliminating denominators we obtain the equivalent equation

$$
n x-1=A_{n}\left(1+n x^{2} \log n\right)+\left(B_{n} x+C_{n}\right)(x \log n+1)
$$

and from this, it is easy to obtain: $A_{n}=-1, B_{n}=n$ and $C_{n}=0$. Hence,

$$
\begin{aligned}
\int_{0}^{1} f_{n}(x) d x & =\int_{0}^{1} \frac{-1}{x \log n+1} d x+\int_{0}^{1} \frac{n x}{1+n x^{2} \log n} d x \\
& =\left[-\frac{\log (x \log n+1)}{\log n}\right]_{x=0}^{x=1}+\left[\frac{\log \left(1+n x^{2} \log n\right)}{2 \log n}\right]_{x=0}^{x=1} \\
& =-\frac{\log (\log n+1)}{\log n}+\frac{\log (1+n \log n)}{2 \log n}
\end{aligned}
$$

and so, using L'Hopital rule, we obtain

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x & =-\lim _{t \rightarrow \infty} \frac{\log (\log t+1)}{\log t}+\lim _{t \rightarrow \infty} \frac{\log (1+t \log t)}{2 \log t}=\lim _{t \rightarrow \infty} \frac{\frac{-1 / t}{\log t+1}}{1 / t}+\lim _{t \rightarrow \infty} \frac{\frac{1+\log t}{1+t \log t}}{2 / t} \\
& =\lim _{t \rightarrow \infty} \frac{-1}{\log t+1}+\frac{1}{2} \lim _{t \rightarrow \infty} \frac{t(1+\log t)}{1+t \log t}=0+\frac{1}{2} \lim _{t \rightarrow \infty} \frac{\frac{1}{\log t}+1}{\frac{1}{t \log t}+1}=\frac{1}{2} \cdot 1=\frac{1}{2}
\end{aligned}
$$

Hence, we have obtained that $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x \neq \int_{0}^{1}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x$ and as a consequence we obtain that $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ but not monotonically and also that we can not dominate the functions f_{n} by an integrable function in $(0,1]$.

Problem 2.2.11 Consider $a>0$.
a) Prove that for each $x \geq a$ the function $v(t):=\frac{t}{1+t^{2} x^{2}}$ decreases for $t \geq 1 / a$.
b) Find an upper bound of the function

$$
f_{n}(x)=\frac{n}{1+n^{2} x^{2}}, \quad x \geq a, n \geq 1 / a
$$

by a function which just depends on x and a.
c) Calculate

$$
L=\lim _{n \rightarrow \infty} \int_{a}^{\infty} \frac{n}{1+n^{2} x^{2}} d x
$$

and say what theorem you used.
d) Calculate L using monotone convergence theorem and Barrow's rule in the cases $a>0$, $a=0, a<0$.

Solution: a) We have that

$$
v^{\prime}(t)=\frac{1-t^{2} x^{2}}{\left(1+t^{2} x^{2}\right)^{2}}=0 \quad \Leftrightarrow \quad t^{2}=\frac{1}{x^{2}}
$$

and therefore, since $x \geq a>0$,

$$
t \geq \frac{1}{a} \Longrightarrow t \geq \frac{1}{x} \Longrightarrow t^{2} \geq \frac{1}{x^{2}} \Longrightarrow 1-x^{2} t^{2} \leq 0 \Longrightarrow v^{\prime}(t) \leq 0
$$

Hence, $v(t)$ decreases in the interval $[1 / a, \infty)$.
b) As a consequence of a)

$$
v(t) \leq v(1 / a)=\frac{a}{a^{2}+x^{2}} \quad \text { if } t \geq 1 / a
$$

Therefore, if $n \geq 1 / a$,

$$
f_{n}(x)=\frac{n}{1+n^{2} x^{2}}=v(n) \leq v(1 / a)=\frac{a}{a^{2}+x^{2}} .
$$

c) As $F(x)=\frac{a}{a^{2}+x^{2}} \in L^{1}(a, \infty)$, by the dominated convergence theorem:

$$
\lim _{n \rightarrow \infty} \int_{a}^{\infty} \frac{n}{1+n^{2} x^{2}} d x=\int_{a}^{\infty} \lim _{n \rightarrow \infty} \frac{n}{1+n^{2} x^{2}} d x=\int_{a}^{\infty} 0 d x=0 .
$$

d) Using the monotone convergence theorem and Barrow's rule, we have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{a}^{\infty} \frac{n}{1+n^{2} x^{2}} d x & =\lim _{n \rightarrow \infty} \int_{a}^{\infty}\left(\lim _{N \rightarrow \infty} \frac{n}{1+n^{2} x^{2}} \chi_{[a, N]}\right) d x=\lim _{n \rightarrow \infty} \lim _{N \rightarrow \infty} \int_{a}^{N} \frac{n}{1+n^{2} x^{2}} d x \\
& =\lim _{n \rightarrow \infty} \lim _{N \rightarrow \infty}[\arctan (n x)]_{x=a}^{x=N}=\lim _{n \rightarrow \infty} \lim _{N \rightarrow \infty}(\arctan (n N)-\arctan (a n)) \\
& =\lim _{n \rightarrow \infty}\left(\frac{\pi}{2}-\arctan (a n)\right)
\end{aligned}
$$

Hence, $L=\frac{\pi}{2}-\frac{\pi}{2}=0$ if $a>0, L=\frac{\pi}{2}-0=\frac{\pi}{2}$ if $a=0$ and $L=\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi$ if $a<0$.
Problem 2.2.12 Calculate $L=\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{1+n x^{2}}{\left(1+x^{2}\right)^{n}} d x$.

Hint: $\left\{f_{n}\right\}$ is a decreasing sequence and $f_{2} \in L^{1}((0, \infty))$. So we can use a convergence theorem. Solution: a) We have that

$$
f_{n}(x) \geq f_{n+1}(x) \quad \Leftrightarrow \quad\left(1+n x^{2}\right)\left(1+x^{2}\right) \geq 1+(n+1) x^{2} \quad \Leftrightarrow \quad n x^{4} \geq 0
$$

and this is obviously true.
b) First, observe that

$$
\begin{aligned}
\int_{0}^{\infty} f_{2}(x) d x & =\int_{0}^{\infty} \frac{1+2 x^{2}}{\left(1+x^{2}\right)^{2}} d x \leq \int_{0}^{1}\left(1+2 x^{2}\right) d x+\int_{1}^{\infty} \frac{1+2 x^{2}}{x^{4}} d x \\
& =\int_{0}^{1}\left(1+2 x^{2}\right) d x+\int_{1}^{\infty} \frac{1}{x^{4}} d x+2 \int_{1}^{\infty} \frac{1}{x^{2}} d x<\infty
\end{aligned}
$$

Hence, using the monotone convergence theorem for decreasing sequences or the dominated convergence theorem:

$$
L=\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{\infty} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{0}^{\infty} 0 d x=0
$$

since, for $x \neq 0$,

$$
0 \leq \lim _{n \rightarrow \infty} f_{n}(x) \leq \lim _{n \rightarrow \infty} \frac{1+n x^{2}}{1+n x^{2}+\frac{n(n-1)}{2} x^{4}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}+\frac{x^{2}}{n}}{\frac{1}{n^{2}}+\frac{x^{2}}{n}+\frac{n-1}{2 n} x^{4}}=\frac{0+0}{0+0+\frac{x^{4}}{2}}=0 .
$$

Problem 2.2.13 Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{\log (n+x)}{n} e^{-x} \cos x d x=0$.
Solution: Let $f_{n}(x)=\frac{\log (n+x)}{n} e^{-x} \cos x$ for $x \in[0,1]$. First of all, using Stolz criterion we have, for all $x \in[0,1]$, that

$$
\lim _{n \rightarrow \infty} \frac{\log (x+n)}{n}=\lim _{n \rightarrow \infty} \frac{\log (x+n+1)-\log (x+n)}{(n+1)-n}=\lim _{n \rightarrow \infty} \log \frac{x+n+1}{x+n}=\log 1=0 .
$$

Also

$$
\left|f_{n}(x)\right| \leq \frac{\log (n+1)}{n} \leq 1 \in L^{1}([0,1])
$$

and so we can apply the dominated convergence theorem:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{\log (n+x)}{n} e^{-x} \cos x d x=\int_{0}^{1}\left(\lim _{n \rightarrow \infty} \frac{\log (n+x)}{n}\right) e^{-x} \cos x d x=\int_{0}^{1} 0 d x=0
$$

Problem 2.2.14 Let $f_{n}: \mathbb{R} \longrightarrow \mathbb{R}$ be the sequence of measurable functions defined by

$$
f_{n}(x)= \begin{cases}n \cos n x, & \text { if } x \in\left[-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right] \\ 0, & \text { otherwise }\end{cases}
$$

Study whether

$$
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f_{n}(x) d x=\int_{-\pi}^{\pi} \lim _{n \rightarrow \infty} f_{n}(x) d x
$$

or not. Can be applied in this case the monotone convergence theorem or the Lebesgue dominated convergence theorem?

Solution: If $x \neq 0$, then eventually $x \notin\left[-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right]$ for n large enough and so $f_{n}(x)=0$ for $n \geq n_{0}(x)$. Hence, $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \neq 0$. On the other hand,

$$
\int_{\mathbb{R}} f_{n}(x) d x=\int_{-\frac{\pi}{2 n}}^{\frac{\pi}{2 n}} n \cos n x d x=[\sin n x]_{x=-\frac{\pi}{2 n}}^{x=\frac{\pi}{2 n}}=\sin \frac{\pi}{2}-\left(-\sin \frac{\pi}{2}\right)=1-(-1)=2 .
$$

Therefore,

$$
2=\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f_{n}(x) d x \neq \int_{\mathbb{R}}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x=0
$$

and as a consequence we obtain that $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ but not monotonically and also that we can not dominate the functions f_{n} by an integrable function in \mathbb{R}.

Problem 2.2.15 Let $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ the measure space defined by

$$
\mu(A)=\operatorname{card}(A \cap \mathbb{N}), \quad A \in \mathcal{B}(\mathbb{R})
$$

Prove that $f(x)=x \sin (\pi x)$ is μ-integrable but not Lebesgue-integrable.
Solution: We have that μ is the counting measure on \mathbb{N} and

$$
\int_{\mathbb{R}}|f(x)| d \mu(x)=\sum_{n=0}^{\infty}|n \sin (n \pi)|=0 \Longrightarrow f \in L^{1}(\mu) .
$$

On the other hand, since $f(x)$ is even

$$
\int_{\mathbb{R}}|f(x)| d \mu(x)=2 \int_{0}^{\infty}|f(x)| d x=2 \sum_{n=0}^{\infty} \int_{n}^{n+1}|f(x)| d x .
$$

Now, if $x \in(n, n+1)$, then $|f(x)|=x|\sin (\pi x)|=(-1)^{n} x \sin (\pi x)$ and integrating by parts, we have

$$
\begin{aligned}
\int_{n}^{n+1}|x \sin (\pi x)| d x & =-\frac{(-1)^{n}}{\pi}[x \cos (\pi x)]_{x=n}^{x=n+1}+\frac{(-1)^{n}}{\pi} \int_{n}^{n+1} \cos (\pi x) d x \\
& =-(-1)^{n}\left[\frac{1}{\pi} x \cos (\pi x)-\frac{1}{\pi^{2}} \sin (\pi x)\right]_{x=n}^{x=n+1} \\
& =-(-1)^{n}\left(\frac{n+1}{\pi}(-1)^{n+1}-\frac{n}{\pi^{2}}(-1)^{n}\right)=\frac{n+1}{\pi}+\frac{n}{\pi^{2}}
\end{aligned}
$$

Hence,

$$
\int_{\mathbb{R}}|f(x)| d \mu(x)=\frac{1}{\pi^{2}} \sum_{n=0}^{\infty}(\pi(n+1)+n)=\infty \quad \Longrightarrow \quad f \notin L^{1}(m) .
$$

Problem 2.2.16

a) Prove that the sequence of functions

$$
f_{n}(t)=\left(1+\frac{t}{n}\right)^{n}, \quad t \geq 0
$$

verify that $f_{3}(t) \leq f_{n}(t)$ for $n \geq 3$.
b) Calculate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n+n^{2} x}{(1+x)^{n}} d x
$$

State correctly the results and theorems you need to get to the solution.

Hint: b) To start, do the change of variable $t=n x$.
Solution: a) We have that

$$
\left(1+\frac{t}{3}\right)^{3} \leq\left(1+\frac{t}{n}\right)^{n} \quad \Leftrightarrow \quad 3 \log \left(1+\frac{t}{3}\right) \leq n \log \left(1+\frac{t}{n}\right)
$$

and if we define $F(t)=n \log \left(1+\frac{t}{n}\right)-3 \log \left(1+\frac{t}{3}\right)$ we have

$$
F^{\prime}(t)=\frac{t / 3-t / n}{(1+t / n)(1+t / 3)} \geq 0 \Longrightarrow \mathrm{~F} \text { is increasing. }
$$

Hence, $F(t) \geq F(0)=0$.
b) Doing the change of variable $t=n x$ we obtain that:

$$
\int_{0}^{1} \frac{n+n^{2} x}{(1+x)^{n}} d x=\int_{0}^{n} \frac{1+t}{\left(1+\frac{t}{n}\right)^{n}} d t \leq \int_{0}^{n} \frac{1+t}{\left(1+\frac{t}{3}\right)^{3}} d t
$$

using the part a) we obtain, for $n \geq 3$, that

$$
\frac{1+t}{\left(1+\frac{t}{n}\right)^{n}} \chi_{[0, n]}(t) \leq \frac{1+t}{\left(1+\frac{t}{3}\right)^{3}} \chi_{[0, \infty)}(t) \in L^{1}[0, \infty)
$$

since

$$
\int_{0}^{\infty} \frac{1+t}{\left(1+\frac{t}{3}\right)^{3}} d t \leq \int_{0}^{1}(1+t) d t+\int_{1}^{\infty} \frac{1+t}{\frac{t^{3}}{27}} d t=\int_{0}^{1}(1+t) d t+27 \int_{1}^{\infty} \frac{d t}{t^{3}}+27 \int_{1}^{\infty} \frac{d t}{t^{2}}<\infty
$$

Hence, since

$$
\lim _{n \rightarrow \infty}\left(1+\frac{t}{n}\right)^{n}=e^{t}, \quad t \geq 0
$$

using the dominated convergence theorem we obtain

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n+n^{2} x}{(1+x)^{n}} d x=\int_{0}^{\infty} \lim _{n \rightarrow \infty} \frac{1+t}{\left(1+\frac{t}{n}\right)^{n}} d t=\int_{0}^{\infty}(1+t) e^{-t} d t
$$

Now, the sequence of positive functions $G_{N}(t)=(1+t) e^{-t} \chi_{[0, N]}(t)$ is clearly increasing, and so, by the monotone convergence theorem:

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n+n^{2} x}{(1+x)^{n}} d x=\int_{0}^{1} \lim _{N \rightarrow \infty} G_{N}(t) d t=\lim _{N \rightarrow \infty} \int_{0}^{N}(1+t) e^{-t} d t
$$

But $(1+t) e^{-t}$ is continuous on $[0, N]$ for all N and therefore is Riemann-integrable in $[0, N]$. Hence, we can use Barrow's rule. By using integration by parts we can compute easily a primitive: $u=1+t \Longrightarrow d u=d t, d v=e^{-t} \Longrightarrow v=-e^{-t}$,

$$
\int(1+t) e^{-t} d t=-(1+t) e^{-t}+\int e^{-t} d t=-(1+t) e^{-t}-e^{-t}=-(2+t) e^{-t}
$$

Finally,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n+n^{2} x}{(1+x)^{n}} d x=\lim _{N \rightarrow \infty}\left[-(2+t) e^{-t}\right]_{t=0}^{t=N}=2-\lim _{N \rightarrow \infty} \frac{2+N}{e^{N}}=2-\lim _{N \rightarrow \infty} \frac{1}{e^{N}}=2-0=2
$$

where we have used L'Hopital rule.
Problem 2.2.17 Calculate $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n+n^{4} x^{3}}{(1+x)^{n}} d x$.
Solution: Proceeding as in the previous problem we begin proving that $\left(1+\frac{t}{5}\right)^{5} \leq\left(1+\frac{t}{n}\right)^{n}$ for $n \geq 5$ and $t \geq 0$, or equivalently that $5 \log \left(1+\frac{t}{5}\right) \leq n \log \left(1+\frac{t}{n}\right)$. To prove it, we define $F(t)=n \log \left(1+\frac{t}{n}\right)-5 \log \left(1+\frac{t}{5}\right)$. We have that $F(t) \geq F(0)=0$ since

$$
F^{\prime}(t)=\frac{t / 5-t / n}{(1+t / n)(1+t / 5)} \geq 0 \Longrightarrow \mathrm{~F} \text { is increasing. }
$$

Now, we do the change of variable $t=n x$:

$$
\int_{0}^{1} \frac{n+n^{4} x^{3}}{(1+x)^{n}} d x=\int_{0}^{n} \frac{1+t^{3}}{(1+t / n)^{n}} d t
$$

Let $f_{n}(t)=\frac{1+t^{3}}{(1+t / n)^{n}} \chi_{[0, n]}(t)$. As $\lim _{n \rightarrow \infty}\left(1+\frac{t}{n}\right)^{n}=e^{t}$, we have that

$$
\lim _{n \rightarrow \infty} f_{n}(t)=\left(1+t^{3}\right) e^{-t} \chi_{[0, \infty)}(t)
$$

On the other hand, $\left|f_{n}(t)\right| \leq \frac{1+t^{3}}{(1+t / 5)^{5}} \in L^{1}[0, \infty)$. Hence, by the dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n+n^{4} x^{3}}{(1+x)^{n}} d x=\lim _{n \rightarrow \infty} \int_{0}^{n} \frac{1+t^{3}}{(1+t / n)^{n}} d t=\int_{0}^{\infty}\left(1+t^{3}\right) e^{-t} d t
$$

To compute this last integral, we apply the monotone convergence theorem and later we use integration by parts and L'Hopital rule:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n+n^{4} x^{3}}{(1+x)^{n}} d x & =\lim _{N \rightarrow \infty} \int_{0}^{N}\left(1+t^{3}\right) e^{-t} d t=\lim _{N \rightarrow \infty}\left(-\left[\left(1+t^{3}\right) e^{-t}\right]_{t=0}^{t=N}+3 \int_{0}^{N} t^{2} e^{-t} d t\right) \\
& =1+3 \lim _{N \rightarrow \infty}\left(-\left[t^{2} e^{-t}\right]_{t=0}^{t=N}+2 \int_{0}^{N} t e^{-t} d t\right)=1+6 \lim _{N \rightarrow \infty} \int_{0}^{N} t e^{-t} d t \\
& =1+6 \lim _{N \rightarrow \infty}\left(-\left[t e^{-t}\right]_{t=0}^{t=N}+\int_{0}^{N} e^{-t} d t\right)=1+6=7 .
\end{aligned}
$$

Problem 2.2.18 Prove that $\int_{0}^{1} \frac{x}{1-x} \log \frac{1}{x} d x=\sum_{n=2}^{\infty} \frac{1}{n^{2}}$.
Hint: Use that $1 /(1-x)=\sum_{n=0}^{\infty} x^{n}$ for $x \in(0,1)$ and then apply an adequate convergence theorem.
Solution: As $\frac{x}{1-x}=\sum_{n=1}^{\infty} x^{n}$ for $0 \leq x<1$, and $x^{n} \log (1 / x) \geq 0$ on $[0,1)$, as a consequence of the monotone convergence theorem, the integral and series symbols commute:

$$
\int_{0}^{1} \frac{x}{1-x} \log \frac{1}{x} d x=\int_{0}^{1} \sum_{n=1}^{\infty} x^{n} \log \frac{1}{x} d x=\sum_{n=1}^{\infty} \int_{0}^{1} x^{n} \log \frac{1}{x} d x .
$$

Using again the monotone convergence theorem we obtain that:

$$
\int_{0}^{1} \frac{x}{1-x} \log \frac{1}{x} d x=\sum_{n=1}^{\infty} \lim _{N \rightarrow \infty} \int_{1 / N}^{1} x^{n} \log \frac{1}{x} d x
$$

But integrating by parts and using L'Hopital rule:

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1} x^{n} \log \frac{1}{x} d x & =\lim _{\varepsilon \rightarrow 0^{+}}\left(\left[\frac{x^{n+1}}{n+1} \log \frac{1}{x}\right]_{x=\varepsilon}^{x=1}+\int_{\varepsilon}^{1} \frac{x^{n}}{n+1} d x\right) \\
& =\lim _{\varepsilon \rightarrow 0^{+}}\left(-\frac{\varepsilon^{n+1}}{n+1} \log \frac{1}{\varepsilon}+\left[\frac{x^{n+1}}{(n+1)^{2}}\right]_{x=\varepsilon}^{x=1}\right) \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \frac{\varepsilon^{n+1}}{n+1} \log \varepsilon+\frac{1}{(n+1)^{2}}=\frac{1}{(n+1)^{2}}+\frac{1}{n+1} \lim _{\varepsilon \rightarrow 0^{+}} \frac{\log \varepsilon}{\varepsilon^{-(n+1)}} \\
& =\frac{1}{(n+1)^{2}}-\frac{1}{(n+1)^{2}} \lim _{\varepsilon \rightarrow 0^{+}} \frac{1 / \varepsilon}{\varepsilon^{-(n+2)}}=\frac{1}{(n+1)^{2}}\left(1-\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon^{n+1}\right)=\frac{1}{(n+1)^{2}} .
\end{aligned}
$$

Hence

$$
\int_{0}^{1} \frac{x}{1-x} \log \frac{1}{x} d x=\sum_{n=1}^{\infty} \frac{1}{(n+1)^{2}}=\sum_{n=2}^{\infty} \frac{1}{n^{2}} .
$$

Problem 2.2.19 Let $(X, \mathcal{P}(X), \mu)$ be a measure space with X countable, $X=\left\{x_{n}\right\}_{n=1}^{\infty}$, and μ the discrete measure defined as:

$$
\mu\left(\left\{x_{n}\right\}\right)=p_{n}, \quad \mu(A)=\sum_{x_{n} \in A} p_{n}, \quad\left(p_{n} \geq 0\right) .
$$

Let $f: X \longrightarrow \mathbb{C}$ be a complex function.
a) Prove that if $f \geq 0$, then $\int_{X} f d \mu=\sum_{n=1}^{\infty} f\left(x_{n}\right) p_{n}$.
b) Prove that $f \in L^{1}(\mu)$ if and only if $\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right| p_{n}<\infty$, and in this case,

$$
\int_{X} f d \mu=\sum_{n=1}^{\infty} f\left(x_{n}\right) p_{n}
$$

Hints: a) $f=\sum_{n=1}^{\infty} f\left(x_{n}\right) \chi_{\left\{x_{n}\right\}}$. b) Decompose $f=u+i v$ and $u=u^{+}-u^{-}, v=v^{+}-v^{-}$.
Solution: a) It is clear that $f=\sum_{n=1}^{\infty} f\left(x_{n}\right) \chi_{\left\{x_{n}\right\}}$. Hence, as $f \geq 0$, as a consequence of monotone convergence theorem, the integral and series symbols commute:

$$
\begin{aligned}
\int_{X} f d \mu & =\int_{X} \sum_{n=1}^{\infty} f\left(x_{n}\right) \chi_{\left\{x_{n}\right\}}(x) d \mu(x)=\sum_{n=1}^{\infty} \int_{X} f\left(x_{n}\right) \chi_{\left\{x_{n}\right\}}(x) d \mu(x) \\
& =\sum_{n=1}^{\infty} f\left(x_{n}\right) \mu\left(\left\{x_{n}\right\}\right)=\sum_{n=1}^{\infty} f\left(x_{n}\right) p_{n}
\end{aligned}
$$

b) By part a) we have: $f \in L^{1}(\mu) \Longleftrightarrow \int_{X}|f| d \mu<\infty \Longleftrightarrow \sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right| p_{n}<\infty$. Besides, in this case:
b.1) If $f: X \longrightarrow \mathbb{R}$, then $f=f^{+}-f^{-}$with $f^{+}, f^{-} \geq 0$ and by a):

$$
\begin{aligned}
\int_{X} f d \mu & =\int_{X} f^{+} d \mu-\int_{X} f^{-} d \mu=\sum_{n=1}^{\infty} f^{+}\left(x_{n}\right) p_{n}-\sum_{n=1}^{\infty} f^{-}\left(x_{n}\right) p_{n} \\
& =\sum_{n=1}^{\infty}\left(f^{+}\left(x_{n}\right)-f^{-}\left(x_{n}\right)\right) p_{n}=\sum_{n=1}^{\infty} f\left(x_{n}\right) p_{n} .
\end{aligned}
$$

b.2) If $f: X \longrightarrow \mathbb{C}$, then $f=u+i v$ with $u, v: X \longrightarrow \mathbb{R}$ and by b.1):

$$
\begin{aligned}
\int_{X} f d \mu & =\int_{X} u d \mu+i \int_{X} v d \mu=\sum_{n=1}^{\infty} u\left(x_{n}\right) p_{n}+i \sum_{n=1}^{\infty} v\left(x_{n}\right) p_{n} \\
& =\sum_{n=1}^{\infty}\left(u\left(x_{n}\right)+i v\left(x_{n}\right)\right) p_{n}=\sum_{n=1}^{\infty} f\left(x_{n}\right) p_{n} .
\end{aligned}
$$

Problem 2.2.19 Calculate $\lim _{n \rightarrow \infty} n \sum_{i=1}^{\infty} \sin \frac{2^{-i}}{n}$.
Hint: Consider and adequate measure space and apply a convergence theorem.
Solution: Here the measure space is $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ where μ is the counting measure, i.e. the measure considered in the previous problem with $p_{n}=1$ for all n.
Let $\varphi_{n}(i)=n \sin \left(2^{-i} / n\right)$. Since $\sin x \leq x$ for $x \in[0, \pi / 2]$ we have: $\left|\varphi_{n}(i)\right| \leq 2^{-i}$, for all $n \in \mathbb{N}$. Also $2^{-i} \in L^{1}(\mu)$ since $\sum_{i=1}^{\infty} 2^{-i}<\infty$. Hence, by the dominated convergence theorem:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n \sum_{i=1}^{\infty} \sin \frac{2^{-i}}{n} & =\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} \varphi_{n}(i)=\sum_{i=1}^{\infty} \lim _{n \rightarrow \infty} \varphi_{n}(i) \\
& =\sum_{i=1}^{\infty} \lim _{n \rightarrow \infty} n \sin \frac{2^{-i}}{n}=\sum_{i=1}^{\infty} 2^{-i}=\frac{1}{1-\frac{1}{2}}-1=2-1=1
\end{aligned}
$$

Problem 2.2.21* Let (X, \mathcal{A}, μ) be a measure space and $\Phi: X \longrightarrow Y$ be a mapping. Let us consider the image measure space (Y, \mathcal{B}, ν) by $\Phi\left(\mathcal{B}=\Phi(\mathcal{A})\right.$ and $\left.\nu=\mu \circ \Phi^{-1}\right)$. Let $f: Y \longrightarrow \mathbb{C}$ be a function. Prove that
a) f is \mathcal{B}-measurable if and only if $f \circ \Phi$ is \mathcal{A}-measurable.
b) If $f \geq 0$ is \mathcal{B}-measurable, then $\int_{Y} f d \nu=\int_{X}(f \circ \Phi) d \mu$.
c) If f is \mathcal{B}-measurable, then $f \in L^{1}(\nu)$ if and only if $f \circ \Phi \in L^{1}(\mu)$, and in this case

$$
\int_{Y} f d \nu=\int_{X}(f \circ \Phi) d \mu
$$

d) Let $\Phi(x, y)=x^{2} y$ be defined on the square $Q=[0,1] \times[0,1]$ in the plane, and let m be two-dimensional Lebesgue measure on Q. If μ is the image measure of m by Φ, evaluate the integral $\int_{-\infty}^{\infty} t^{2} d \mu(t)$.

Hints: a) Use the definition of \mathcal{A}. b) Prove it first for simple functions and then approximate any $f \geq 0$ by simple functions and apply monotone convergence. c) Decompose $f=u+i v$ and $u=u^{+}-u^{-}, v=v^{+}-v^{-}$. d) Apply c).
Solution: a) Let B be a borelian subset in \mathbb{C}. Then, by definition,

$$
f^{-1}(B) \in \mathcal{B} \quad \Longleftrightarrow \quad \Phi^{-1}\left(f^{-1}(B)\right)=(f \circ \Phi)^{-1}(B) \in \mathcal{A}
$$

b) First, if $s=\chi_{B}$ with $B \in \mathcal{B}$, then

$$
\begin{equation*}
\int_{Y} s d \nu=\nu(B)=\mu\left(\Phi^{-1}(B)\right)=\int_{X} \chi_{\Phi^{-1}(B)} d \mu=\int_{X}\left(\chi_{B} \circ \Phi\right) d \mu=\int_{X}(s \circ \Phi) d \mu \tag{2}
\end{equation*}
$$

Secondly, if $s=\sum_{j=1}^{n} c_{j} \chi_{B_{j}}$ is a simple function, then using (2):

$$
\begin{aligned}
\int_{Y} s d \nu & =\int_{Y}\left(\sum_{j=1}^{n} c_{j} \chi_{B_{j}}\right) d \nu=\sum_{j=1}^{n} c_{j} \int_{Y} \chi_{B_{j}} d \nu \\
& =\sum_{j=1}^{n} c_{j} \int_{X}\left(\chi_{B_{j}} \circ \Phi\right) d \mu=\int_{X}\left(\sum_{j=1}^{n} c_{j}\left(\chi_{B_{j}} \circ \Phi\right)\right) d \nu=\int_{X}(s \circ \Phi) d \mu
\end{aligned}
$$

Finally, if $f \geq 0$ is \mathcal{B}-measurable, then let $\left\{s_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive simple functions in Y such that

$$
0 \leq s_{1} \leq \cdots \leq s_{n} \cdots \nearrow f, \quad \text { as } n \rightarrow \infty
$$

But $s_{n} \circ \Phi$ are positive simple functions in X such that

$$
0 \leq s_{1} \circ \Phi \leq \cdots \leq s_{n} \circ \Phi \cdots \nearrow f \circ \Phi, \quad \text { as } n \rightarrow \infty
$$

Using now twice the monotone convergence theorem:

$$
\int_{Y} f d \nu=\lim _{n \rightarrow \infty} \int_{Y} s_{n} d \nu=\lim _{n \rightarrow \infty} \int_{X}\left(s_{n} \circ \Phi\right)=\int_{X}(f \circ \Phi) d \mu
$$

c) If f is \mathcal{B}-measurable, then by part b):

$$
f \in L^{1}(\mu) \Longleftrightarrow \int_{Y}|f| d \nu<\infty \Longleftrightarrow \int_{X}(|f| \circ \Phi) d \mu=\int_{X}|f(\Phi)| d \mu<\infty \Longleftrightarrow f \circ \Phi \in L^{1}(\mu)
$$

Besides, in this case, if If $f: X \longrightarrow \mathbb{R}$, then $f=f^{+}-f^{-}$with $f^{+}, f^{-} \geq 0$ and by b)

$$
\begin{aligned}
\int_{Y} f d \nu & =\int_{Y}\left(f^{+}-f^{-}\right) d \nu=\int_{Y} f^{+} d \nu-\int_{Y} f^{-} d \nu \\
& =\int_{X}\left(f^{+} \circ \Phi\right) d \mu-\int_{X}\left(f^{-} \circ \Phi\right) d \mu=\int_{X}\left(\left(f^{+}-f^{-}\right) \circ \Phi\right) d \mu=\int_{X}(f \circ \Phi) d \mu
\end{aligned}
$$

Finally, if $f: X \longrightarrow \mathbb{C}$, then $f=u+i v$ with $u, v: X \longrightarrow \mathbb{R}$ and by the previous identity:

$$
\begin{aligned}
\int_{Y} f d \nu & =\int_{Y}(u+i v) d \nu=\int_{Y} u d \nu+i \int_{Y} v d \nu \\
& =\int_{X}(u \circ \Phi) d \mu+i \int_{X}(v \circ \Phi) d \mu=\int_{X}((u+i v) \circ \Phi) d \mu=\int_{X}(f \circ \Phi) d \mu
\end{aligned}
$$

d) Using part b) and applying Fubini's theorem we get

$$
\begin{aligned}
\int_{\mathbb{R}} t^{2} d \mu(t) & =\int_{[0,1] \times[0,1]}\left(t^{2} \circ \Phi\right) d x d y=\int_{0}^{1} \int_{0}^{1}(\Phi(x, y))^{2} d x d y=\int_{0}^{1} \int_{0}^{1}\left(x^{2} y\right)^{2} d x d y \\
& =\left(\int_{0}^{1} x^{4} d x\right)\left(\int_{0}^{1} y^{2} d y\right)=\left[\frac{x^{5}}{5}\right]_{x=0}^{x=1}\left[\frac{y^{3}}{3}\right]_{y=0}^{y=1}=\frac{1}{5} \cdot \frac{1}{3}=\frac{1}{15}
\end{aligned}
$$

Problem 2.2.22 Let (X, \mathcal{A}, μ) be a measure space and let $\rho: X \longrightarrow[0, \infty]$ be a measurable function. Let us consider the measure defined by the density ρ :

$$
\nu(A)=\int_{A} \rho d \mu, \quad A \in \mathcal{A} .
$$

Prove that
a) If $f \geq 0$ is measurable, then $\int_{X} f d \nu=\int_{X} f \rho d \mu$.
b) If f is measurable, then: $f \in L^{1}(\nu)$ if and only if $\int_{X}|f| \rho d \mu<\infty$, and in this case

$$
\int_{X} f d \nu=\int_{X} f \rho d \mu
$$

Hints: a) This is the exercise 2.1.3. b) Decompose $f=u+i v$ and $u=u^{+}-u^{-}, v=v^{+}-v^{-}$.
Solution: a) This is the exercise 2.1.3. b) If If $f: X \longrightarrow \mathbb{R}$, then $f=f^{+}-f^{-}$with $f^{+}, f^{-} \geq 0$ and by b)

$$
\begin{aligned}
\int_{X} f d \nu & =\int_{X}\left(f^{+}-f^{-}\right) d \nu=\int_{X} f^{+} d \nu-\int_{X} f^{-} d \nu \\
& =\int_{X} f^{+} \rho d \mu-\int_{X} f^{-} \rho d \mu=\int_{X}\left(f^{+}-f^{-}\right) \rho d \mu=\int_{X} f \rho d \mu
\end{aligned}
$$

Finally, if $f: X \longrightarrow \mathbb{C}$, then $f=u+i v$ with $u, v: X \longrightarrow \mathbb{R}$ and by the previous identity:

$$
\begin{aligned}
\int_{X} f d \nu & =\int_{X}(u+i v) d \nu=\int_{X} u d \nu+i \int_{X} v d \nu \\
& =\int_{X} u \rho d \mu+i \int_{X} v \rho d \mu=\int_{X}(u+i v) \rho d \mu=\int_{X} f \rho d \mu .
\end{aligned}
$$

Problem 2.2.23 Let $X=\mathbb{R}^{2} \backslash\{(0,0)\}$ and $d m=d x d y$ be the Lebesgue measure on X. Let $\Phi: X \longrightarrow \mathbb{R}$ be the function given by $\Phi(x, y)=\log \left(x^{2}+y^{2}\right)$ and let μ be the image measure of $d m$ by Φ.
a) Calculate the value of $\mu([0,1])$.
b) Prove that μ has the form $d \mu=F(t) d t$ and find $F(t)$ explicitly.

Hints: a) $\mu([0,1])=m\left(\left\{(x, y): 0 \leq \log \left(x^{2}+y^{2}\right) \leq 1\right\}\right)$. b) Calculate $\int_{\mathbb{R}} f(t) d \mu(t)$ for any $f \in L^{1}(\mu)$.
Solution: a) By definition of image measure we have

$$
\begin{aligned}
\mu([0,1]) & =m\left(\Phi^{-1}([0,1])=m(\{(x, y): \Phi(x, y) \in[0,1]\})=m\left(\left\{(x, y): 0 \leq \log \left(x^{2}+y^{2}\right) \leq 1\right\}\right)\right. \\
& =m\left(\left\{(x, y): 1 \leq x^{2}+y^{2} \leq e\right\}\right)=\pi\left((\sqrt{e})^{2}-1\right)=\pi(e-1) .
\end{aligned}
$$

b) Let $f \in L^{1}(\mu)$. Then, using polar coordinates,

$$
\begin{aligned}
\int_{\mathbb{R}} f(y) d \mu(y) & =\iint_{X}(f \circ \Phi)(x, y) d x d y=\iint_{X} f\left(\log \left(x^{2}+y^{2}\right)\right) d x d y= \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} f\left(\log r^{2}\right) r d r d \theta=2 \pi \int_{0}^{\infty} f\left(\log r^{2}\right) r d r
\end{aligned}
$$

and doing the change of variable $y=\log r^{2}$ we obtain

$$
\int_{\mathbb{R}} f(y) d \mu(y)=2 \pi \int_{\mathbb{R}} f(y) e^{y / 2} \frac{1}{2} e^{y / 2} d y=\int_{\mathbb{R}} f(y) \pi e^{y} d y
$$

Hence, $d \mu=F(y) d y$ where $F(y)=\pi e^{y}$.

Problem 2.2.24

a) Let $f: \mathbb{R} \rightarrow[0, \infty]$ be an integrable function on \mathbb{R} and such that $\int_{-\infty}^{\infty} f(x) d x=1$. Prove that $F(x)=\int_{-\infty}^{x} f(y) d y$ is a probability distribution function and that besides F is continuous (f is called the density function).
b) Prove that the Borel-Stieltjes measure with distribution function F coincides with the measure defined with the density function $f: \nu_{f}(A)=\int_{A} f(x) d x$.
c) Calculate $F(x)$ if

$$
f(x)= \begin{cases}1 & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Hints: a) F is increasing because $f \geq 0$ and is continuous by the dominated convergence theorem. b) The Borel-Stieltjes measure μ_{F} coincides with the density measure ν_{f} by the CaratheodoryHopf's extension theorem since for semi-intervals $[a, b)$ we have: $\mu_{F}([a, b))=F(b)-F(a)=$ $\int_{a}^{b} f(x) d x=\nu_{f}([a, b))$. Observe that $\mu_{F}(\{a\})=0$ for all $a \in \mathbb{R}$ since F is continuous. c) $F(x)=0$, if $x \leq 0, F(x)=x$ if $x \in[0,1]$ and $F(x)=1$ if $x \geq 1$.
a) As $f \geq 0$, then F is increasing since for $x_{1} \leq x_{2}$ we have that

$$
F\left(x_{2}\right)-F\left(x_{1}\right)=\int_{-\infty}^{x_{2}} f(y) d y-\int_{-\infty}^{x_{1}} f(y) d y=\int_{x_{1}}^{x_{2}} f(y) d y \geq 0
$$

Also, if $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$ we have that

$$
F\left(x_{n}\right)=\int_{-\infty}^{x_{n}} f(y) d y=\int_{\mathbb{R}} f(y) \chi_{\left(-\infty, x_{n}\right)}(y) d y
$$

and $\left|f \chi_{\left(-\infty, x_{n}\right)}\right| \leq f \in L^{1}(\mathbb{R})$. Hence, by the dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} F\left(x_{n}\right)=\int_{\mathbb{R}}\left(\lim _{n \rightarrow \infty} f(y) \chi_{\left(-\infty, x_{n}\right)}(y)\right) d y=\int_{\mathbb{R}} f(y) \chi_{\left(-\infty, x_{0}\right)}(y) d y=F\left(x_{0}\right)
$$

Hence, F is continuous.
F is the distribution function of the probability measure given by the density $f: \nu_{f}(A)=$ $\int_{A} f(y) d y$ for any borelian A in \mathbb{R}.
b) For all semiopen interval $[a, b)$ we have, since F is continuous, that

$$
\mu_{F}([a, b))=F(b)-F(a)=\int_{a}^{b} f(y) d y=\int_{[a, b)} f(y) d y=\nu_{f}([\alpha, b))
$$

Hence, by Caratheodory-Hopf's extension theorem, $\mu_{F}=\nu_{f}$.
c) We have

$$
F(x)=\int_{-\infty}^{x} f(y) d y= \begin{cases}0, & \text { if } x \leq 0 \\ \int_{0}^{x} 1 d y=x, & \text { if } 0 \leq x \leq 1 \\ \int_{0}^{1} 1 d y=1, & \text { if } 1 \leq x\end{cases}
$$

Problem 2.2.25* Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing derivable function with bounded derivative g^{\prime} on each compact set. Let us consider the Borel-Stieltjes measure space ($\left.\mathbb{R}, \mathcal{B}(\mathbb{R}), m_{g}\right)$. Prove that $m_{g}=g^{\prime} d m$, that is to say that the Borel-Stieltjes measure m_{g} coincides with the measure defined by the density g^{\prime} and therefore for all $f: \mathbb{R} \longrightarrow \mathbb{R}, f \in L^{1}\left(m_{g}\right)$, we have

$$
\int_{\mathbb{R}} f d m_{g}=\int_{\mathbb{R}} f g^{\prime} d m=\int_{\mathbb{R}} f(t) g^{\prime}(t) d t
$$

Hint: Use the Caratheodory-Hopf extension theorem and that $\int_{a}^{b} g^{\prime} d m=g(b)-g(a)$. This is trivial if g^{\prime} is continuous by Barrow's rule, but for g^{\prime} only bounded we must use an approximation argument: let $g_{n}(t)=\left(f\left(t+h_{n}\right)-f(t) / h_{n}\right.$. Then $g_{n} \longrightarrow g^{\prime}$ for all $t \in[a, b)$. Use dominated convergence to conclude that $\int_{a}^{c} g^{\prime} d m=g(c)-g(a)$ for all $c \in[a, b)$. Finally use monotone convergence, since $[a, b)=\cup_{n}\left[a, c_{n}\right]$ with $c_{n} \nearrow b$ as $n \rightarrow \infty$.

Problem 2.2.26* Let us consider the Lebesgue measure space $\left(\mathbb{R}^{n}, \mathcal{M}, m\right)$, where \mathcal{M} is the σ-algebra of Lebesgue-measurable sets and m is Lebesgue measure. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a measurable function. Prove that
a) If $f \geq 0$ or if $f \in L^{1}(m)$, then
a.1) $\int_{\mathbb{R}^{n}} f(a+x) d x=\int_{\mathbb{R}^{n}} f(x) d x$.
a.2) $\int_{\mathbb{R}^{n}} f(T(x)) d x=\frac{1}{|\operatorname{det} T|} \int_{\mathbb{R}^{n}} f(x) d x$, for all $T \in G L(n)$.
a.3) More generally, $\int_{A} f(T(x)) d x=\frac{1}{|\operatorname{det} T|} \int_{T(A)} f(x) d x$, for all $T \in G L(n)$ and $A \in \mathcal{M}$.
b) If $\Phi: \mathbb{R} \longrightarrow[0, \infty]$ is a Borel function, then

$$
\int_{\mathbb{R}^{n}} \Phi(\|x\|) d x=n \Omega_{n} \int_{0}^{\infty} \Phi(r) r^{n-1} d r, \quad \text { where } \Omega_{n}=m\left(\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}\right) .
$$

c) Let $B_{n}=\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$. Then

$$
\int_{B_{n}} \frac{d x}{\|x\|^{\alpha}}<\infty \quad \Leftrightarrow \quad \alpha<n \quad \text { and } \quad \int_{\mathbb{R}^{n} \backslash B_{n}} \frac{d x}{\|x\|^{\alpha}}<\infty \quad \Leftrightarrow \quad \alpha>n
$$

Hints: Let $\mu=T(m)$ be the image measure of m under T : a.1) If $T(x)=a+x$, then $\mu(A)=m(A)$ since m is translation-invariant. a.2) $\mu(A)=m\left(T^{-1}(A)\right)=\left|\operatorname{det} T^{-1}\right| m(A)$. This fact is easy for semi-intervals $\left[a_{1}, b_{1}\right) \times \cdots \times\left[a_{n}, b_{n}\right)$ and so it is a consequence of Caratheodory-Hopf extension theorem. a.3) It follows from a.2) and the fact that, as T is bijective, we have $\chi_{T(A)} \circ T=\chi_{A}$. b) Let $\nu=\|\cdot\| \circ m$ be the image measure under $\|\cdot\|$: then prove that $\nu[a, b)=\Omega_{n}\left(b^{n}-a^{n}\right)$ and as $g(t)=\Omega_{n} t^{n}$ is increasing and continuous, conclude from Exercise 2 that $\nu=g^{\prime} d m=n \Omega_{n} t^{n-1} d t$. c) Apply part b).

Problem 2.2.27* Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a Lebesgue-integrable function. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x-n) \frac{x}{1+|x|} d x
$$

Hint: Apply the change of variables $y=x+n$ and divide the integral in two parts: one on the interval $(-\infty,-n)$ and the other one on $(-n, \infty)$. Apply Lebesgue dominated convergence theorem to prove that the first integral converges to 0 and the second one to $\int_{-\infty}^{\infty} f(x) d x$. Solution: $\int_{-\infty}^{\infty} f(x) d x$.

