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2 Integration Theory

2.2. Integration of general functions

Problem 2.2.1 Let fn : [0, 1] −→ [−1, 1] be a sequence of continuous functions such that
fn(x)→ 0 almost everywhere with respect to Lebesgue measure. Prove that

lim
n→∞

∫ 1

0
fn(x) dx = 0 .

Hint: The functions fn are uniformly bounded.

Solution: As |fn(x)| ≤ 1 for all n ∈ N and 1 ∈ L1[0, 1] we can apply the dominated convergence
theorem and so

lim
n→∞

∫ 1

0
fn(x) dx =

∫ 1

0
( lim
n→∞

fn(x)) dx =

∫ 1

0
0 dx = 0 .

Problem 2.2.2 Let (X,A, µ) be a finite space measure: µ(X) < ∞. Let {fn} be a sequence
of integrable functions such that fn(x)→ f(x) uniformly in X. Prove that f ∈ L1(µ) and that∫

X
f dµ = lim

n→∞

∫
X
fn dµ .

Hint: Uniform convergence implies that the sequence fn is uniformly-Cauchy.

Solution: As fn tends uniformly to f , we have that there exists n0 ∈ N such that

|fn(x)− f(x)| < 1 , ∀n ≥ n0, ∀x ∈ X .

Hence, by the triangle inequality,

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| < 1 + |fn(x)| , ∀n ≥ n0, ∀x ∈ X .

and so ∫
X
|f | dµ ≤

∫
X

(1 + |fn0 |) dµ = µ(X) +

∫
X
|fn0 | dµ <∞ =⇒ f ∈ L1(µ) .

Also, again by the triangle inequality,

|fn(x)| ≤ |f(x)− fn(x)|+ |f(x)| ≤ 1 + |f(x)| ∈ L1(µ) , ∀n ≥ n0, ∀x ∈ X ,

and using the dominated convergence theorem we get that lim
n→∞

∫
X
fn dµ =

∫
X
f dµ.

Problem 2.2.3∗ Let fn : (R,M,m) −→ [0,∞) be a sequence of positive Lebesgue-measurable
functions such that limn→∞ fn(x)=f(x) for almost all x ∈ R and, besides,

∫
R fn dx =

∫
R f dx = 1

for all n ∈ N. Prove that

lim
n→∞

∫ x

−∞
fn dx =

∫ x

−∞
f dx , for all x ∈ R .

Hint: Consider the functions min(fn, f) and use an adequate convergence theorem. Recall that

min(x, y) = x+y−|x−y|
2 .
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Solution: Let Fn(x) =
∫ x
−∞ fn dx and F (x) =

∫ x
−∞ f dx. We have that, for all x ∈ R,

|Fn(x)− F (x)| =
∣∣∣ ∫ x

−∞
(fn − f) dx

∣∣∣ ≤ ∫ x

−∞
|fn − f | dx ≤

∫
R
|fn − f | dx . (1)

On the other hand we have that, as n→∞,

fn −→ f a.e. =⇒ min(fn, f) −→ f a.e. .

Also min(fn, f) ≤ f ∈ L1(R). Hence by the dominated convergence theorem

lim
n→∞

∫
R

min(fn, f) dx =

∫
R
f dx ,

and, as |fn − f | = fn + f − 2 min(fn, f), we obtain that∫
R
|fn − f | dx =

∫
R
fn dx+

∫
R
f dx− 2

∫
R

min(fn, f) dx→
∫
R
f dx+

∫
R
f dx− 2

∫
R
f dx = 0

as n→∞. Hence, using (1), we get that limn→∞ Fn(x) = F (x) for all x ∈ R.

Problem 2.2.4 Let (X,A, µ) be a measure space and let f : X −→ R be an integrable function.

a) Prove Markov’s inequality:

µ({x ∈ X : |f(x)| ≥ ε}) ≤ 1

ε

∫
X
|f | dµ .

b) Using Markov’s inequality, show that if f is a measurable function, then

b1)
∫
|f | dµ = 0 ⇐⇒ µ(f 6= 0) = 0 ,

b2)
∫
|f | dµ <∞ =⇒ µ(|f | =∞) = 0 .

Give an example showing that it is possible to have that∫
|f | dµ =∞ and µ(|f | =∞) = 0 .

Hints: a) 1 ≤ 1
ε |f | on the set {x∈X : |f(x)| ≥ ε}. b1) If

∫
|f | dµ = 0, then µ(|f(x)| ≥ 1/n)}) = 0

for all n ∈ N. b2) If
∫
|f | dµ <∞, then {|f | =∞} ⊂ {|f | ≥ n} for all n ∈ N.

Solution: a) µ({x ∈ X : |f(x)| ≥ ε}) =

∫
{|f |≥ε}

1 dµ ≤
∫
{|f |≥ε}

1

ε
|f | dµ ≤ 1

ε

∫
X
|f | dµ.

b1) (⇐)

∫
X
|f | dµ =

∫
{|f |=0}

|f | dµ+

∫
{|f |6=0}

|f | dµ = 0 + 0 = 0.

(⇒) Using part a) we have that µ({x ∈ X : |f | ≥ 1/n}) = 0 for all n ∈ N, and so

µ({x ∈ X : f(x) 6= 0}) = µ
( ∞⋃
n=1

{x ∈ X : |f(x)| ≥ 1/n}
)
≤
∞∑
n=1

µ({x ∈ X : |f | ≥ 1/n}) = 0 .

b2) Using part a) we have that for all n ∈ N, and since
∫
X |f | dµ <∞:

µ({x ∈ X : f(x) =∞}) ≤ µ({x ∈ X : |f | ≥ n}) ≤ 1

n

∫
X
|f | dµ→ 0 , as n→∞ .

Hence,µ({x ∈ X : f(x) =∞}) = 0.
The converse is false: Take X = [1,∞) and f(x) = 1/x. Then {x : |f(x)| = ∞} = ∅ and so,
µ({x : |f(x)| =∞}) = 0 but

∫
X |f | dx =∞.
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Problem 2.2.5 Prove that the function f(x) =
sinx

x
is not Lebesgue-integrable in (0,∞).

Hint: Divide (0,∞) in the intervals (nπ, (n+ 1)π] (n ≥ 0).

Solution: We have that∫ ∞
0

∣∣∣sinx
x

∣∣∣ dx =
∞∑
n=0

∫ (n+1)π

nπ

| sinx|
x

dx ≥
∞∑
n=0

1

(n+ 1)π

∫ (n+1)π

nπ
| sinx| dx .

But the function | sinx| is π-periodic and so∫ ∞
0

∣∣∣sinx
x

∣∣∣ dx ≥ 1

π

( ∞∑
n=0

1

n+ 1

)∫ π

0
sinx dx =

2

π

∞∑
n=1

1

n
=∞

and so,
∫∞
0 | sinx/x| dx =∞ and f /∈ L1(0,∞).

Problem 2.2.6 Discuss whether the following functions are Lebesgue integrable or not. Give
an argument of why they are not, or find the value of the integral:

a) f(x) =
1− cosx

x(1 + x2)
for x ∈ (0,∞).

b) g(x) = sinx+ cosx for x ∈ R.

Hints: a) On (0, δ) we have |f(x)| ≤ Cx/(1+x2) ∈ L1(0, δ) and on (δ,∞) we have |f(x)| ≤ 2/x3 ∈
L1(δ,∞). b) | sinx+cosx| is π-periodic, f(x) > 0 on (−π/4, 3π/4) and

∫ 3π/4
−π/4 | sinx+cosx| dx =

2
√

2 > 0.

Solution: a) As lim
x→0

1− cosx

x2/2
= 1 we have that, given ε > 0, there exists δ > 0 such that

∣∣∣1− cosx

x2/2

∣∣∣ < 1 + ε , if |x| < δ ,

Therefore, since x/(1 + x2) is bounded in [0, δ] (because it is continuous there), if x ∈ (0, δ),
then

|f(x)| < (1 + ε)x2/2

x(1 + x2)
=

1 + ε

2

x

1 + x2
∈ L1(0, δ) .

On the other hand, if x ∈ (δ,∞) then, by part b2) of problem 2.1.8:

|f(x)| ≤ 2

x(1 + x2)
<

2

x3
∈ L1(δ,∞) .

Hence, f ∈ L1(0,∞).

b) If x ∈ [−π, π], then g(x) = 0 ⇐⇒ tanx = −1 ⇐⇒ x = −π/4 or x = 3π/4. Hence,g(x) ≥ 0
in [−π/4, 3π/4] and, as g is π-periodic and∫ 3π/4

−π/4
g(x) dx =

∫ 3π/4

−π/4
(sinx+ cosx) dx = [− cosx+ sinx]

x=3π/4
x=−π/4 = 2

√
2 ,

we conclude that g /∈ L1(R), since∫
R
|g(x)| dx =

∑
n∈Z

∫ 3pi
4

+nπ

−π
4
+nπ

| sinx+ cosx| dx =
∑
n∈Z

2
√

2 =∞ .
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Problem 2.2.7 It is easy to guess the limits

a) lim
n→∞

∫ n

0

(
1− x

n

)n
ex/2dx ,

b) lim
n→∞

∫ n

0

(
1 +

x

n

)n
e−2xdx .

Prove that your guesses are correct.

Solution: a) Let fn(x)=(1−x2 )nex/2χ
[0,n]

(x). As limn→∞
(
1− x

n

)n
=e−x, we have limn→∞ fn(x)=

e−x/2. Hence, in view of problem 2.1.8 part b1), we guess that:

lim
n→∞

∫ n

0

(
1− x

n

)n
ex/2dx = lim

n→∞

∫ ∞
0

fn(x) dx =

∫ ∞
0

(
lim
n→∞

fn(x)
)
dx =

∫ ∞
0

e−x/2dx = 2.

To prove it, we will show that |fn(x)| ≤ e−x/2 ∈ L1(0,∞) and then our conjecture will be
a consequence of the dominated convergence theorem. To do that it is enough to prove that
(1 − x

n)n ≤ e−x if x ∈ [0, n]. This inequality is equivalent to n log(1 − x
n) ≤ −x. If we define

F (x) := x+ n log(1− x
n) for x ∈ [0, n], then we must prove that F (x) ≤ 0 for x ∈ [0, n]. But

F ′(x) = 1− 1

1− x
n

= − x/n

1− x
n

≤ 0 =⇒ F is decreasing =⇒ F (x) ≤ F (0) = 0 .

b) Let gn(x)=(1+ x
2 )ne−2xχ

[0,n]
(x). As limn→∞

(
1 + x

n

)n
=ex, we have lim

n→∞
gn(x)=e−x. Hence,

in view of problem 2.1.8 part b1), we guess that:

lim
n→∞

∫ n

0

(
1 +

x

n

)n
e−2xdx = lim

n→∞

∫ ∞
0

gn(x) dx =

∫ ∞
0

(
lim
n→∞

gn(x)
)
dx =

∫ ∞
0

e−x dx = 1.

To prove it, we will show that |gn(x)| ≤ e−x ∈ L1(0,∞) and then our conjecture will be a
consequence of the dominated convergence theorem. To do that it is enough to prove that
(1 + x

n)n ≤ ex if x ∈ [0, n]. This inequality is equivalent to n log(1 + x
n) ≤ x. If we define

G(x) := x− n log(1 + x
n) for x ∈ [0, n], then we must prove that G(x) ≥ 0 for x ∈ [0, n]. But

G′(x) = 1− 1

1 + x
n

=
x/n

1 + x
n

≥ 0 =⇒ G is increasing =⇒ G(x) ≥ G(0) = 0 .

Problem 2.2.8 Let (X,A, µ) be a measure space and let fn : X −→ R be a sequence of
measurable functions such that

∞∑
n=1

∫
X
|fn| dµ <∞ .

Prove that:

a) The series
∑

n fn converges almost everywhere in X to a function f : X −→ R:

∞∑
n=1

fn(x) = f(x) , for almost every x ∈ X .

b) f ∈ L1(µ).
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c)

∫
X
f dµ =

∞∑
n=1

∫
X
fn dµ .

Hints: a) Consider the function F (x) :=
∑∞

n=1 |fn(x)| ∈ L1(X), why? Then |f(x)| ≤ F (x) <∞
almost everywhere (use problem 2.2.4). b) It follows easily from a). c) gn := f1+ · · ·+fn verifies
limn→∞ gn(x) = f(x) a.e. and |gn| ≤ F . Use a convergence theorem.

Solution: a) Let F (x) =
∑∞

n=1 |fn(x)| ∈ [0,∞]. Then, as a consequence of monotone convergence
theorem ∫

X
F dµ =

∫
X

lim
N→∞

N∑
n=1

|fn(x)| dµ(x) = lim
N→∞

∫
X

N∑
n=1

|fn(x)| dµ(x)

= lim
N→∞

N∑
n=1

∫
X
|fn(x)| dµ(x) =

∞∑
n=1

∫
X
|fn| dµ <∞ ,

by hypothesis. Therefore:

F ∈ L1(µ) =⇒ F (x) <∞ a.e. =⇒
∞∑
n=1

|fn(x)| <∞ a.e. =⇒
∞∑
n=1

fn(x) converges a.e.

b) As |f(x)| =
∣∣∣ ∞∑
n=1

fn(x)
∣∣∣ ≤ ∞∑

n=1

|fn(x)| = F (x) ∈ L1(µ) we conclude that also f ∈ L1(µ).

c) Let sN (x) =

N∑
n=1

fn(x). Then:

|sN (x)| ≤
N∑
n=1

|fn(x)| ≤ F (x) ∈ L1(µ) and sN (x)→ f(x) as N →∞ ,

and so, by the dominated convergence theorem:∫
X
f dµ =

∫
X

lim
N→∞

sN (x) dµ(x) = lim
N→∞

∫
X
sN (x) dµ(x) = lim

N→∞

N∑
n=1

∫
X
fn dµ =

∞∑
n=1

∫
X
|fn| dµ .

Problem 2.2.9 Prove that

lim
n→∞

∫ ∞
0

dx

(1 + x/n)nx1/n
= 1 .

Hint: fn(x) ≤ 1√
x
χ

(0,1]
(x) + (1 + x/2)−2 χ

(1,∞)
(x) ∈ L1(0,∞) for n ≥ 2 and so we can use

dominated convergence.

Solution: Let fn(x) = 1
(1+x/n)nx1/n for x ∈ (0,∞). Then, using problem 2.1.8, we have for n ≥ 2

• If x ∈ (0, 1], then fn(x) ≤ 1
x1/n ≤ 1

x1/2 ∈ L1(0, 1].

• If x ∈ (1,∞), then fn(x) ≤ 1
(1+x/n)n ≤

1
(1+x/2)2

≤ 4
x2 ∈ L1(1,∞).

Hence,fn(x) ≤ 1√
x
χ

(0,1]
(x)+ 4

x2 χ(1,∞)
(x) ∈ L1(0,∞) and, by the dominated convergence theorem

and problem 2.2.8,

lim
n→∞

∫ ∞
0

dx

(1 + x/n)nx1/n
= lim

n→∞

∫ ∞
0

fn(x) dx =

∫ ∞
0

(
lim
n→∞

fn(x)
)
dx =

∫ ∞
0

1

ex
dx = 1 .
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Problem 2.2.10 Let us consider the functions

fn(x) =
nx− 1

(x log n+ 1)(1 + nx2 log n)
, x ∈ (0, 1] .

Prove that

lim
n→∞

fn(x) = 0 , but lim
n→∞

∫ 1

0
fn(x) dx =

1

2
.

What is the relevance of this result?

Hint: Prove that
nx− 1

(x log n+ 1)(1 + nx2 log n)
=

−1

x log n+ 1
+

nx

(n log n)x2 + 1
.

Solution: First of all, we have that

lim
n→∞

fn(x) = lim
n→∞

x
log2n

− 1
n log2n(

x+ 1
logn

)(
x2 + 1

n logn

) =
0

x · x2
= 0 .

Now, we decompose fn(x) into simple fractions:

fn(x) =
An

x log n+ 1
+

Bnx+ Cn
1 + nx2 log n

.

Eliminating denominators we obtain the equivalent equation

nx− 1 = An(1 + nx2 log n) + (Bnx+ Cn)(x log n+ 1)

and from this, it is easy to obtain: An = −1, Bn = n and Cn = 0. Hence,∫ 1

0
fn(x) dx =

∫ 1

0

−1

x log n+ 1
dx+

∫ 1

0

nx

1 + nx2 log n
dx

=
[
− log(x log n+ 1)

log n

]x=1

x=0
+
[ log(1 + nx2 log n)

2 log n

]x=1

x=0

= − log(log n+ 1)

log n
+

log(1 + n log n)

2 log n
,

and so, using L’Hopital rule, we obtain

lim
n→∞

∫ 1

0
fn(x) dx = − lim

t→∞

log(log t+ 1)

log t
+ lim
t→∞

log(1 + t log t)

2 log t
= lim

t→∞

−1/t
log t+1

1/t
+ lim
t→∞

1+log t
1+t log t

2/t

= lim
t→∞

−1

log t+ 1
+

1

2
lim
t→∞

t(1 + log t)

1 + t log t
= 0 +

1

2
lim
t→∞

1
log t + 1
1

t log t + 1
=

1

2
· 1 =

1

2
.

Hence,we have obtained that limn→∞
∫ 1
0 fn(x) dx 6=

∫ 1
0 (limn→∞ fn(x)) dx and as a consequence

we obtain that fn(x)→ 0 as n→∞ but not monotonically and also that we can not dominate
the functions fn by an integrable function in (0, 1].

Problem 2.2.11 Consider a > 0.

a) Prove that for each x ≥ a the function v(t) :=
t

1 + t2x2
decreases for t ≥ 1/a.
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b) Find an upper bound of the function

fn(x) =
n

1 + n2x2
, x ≥ a , n ≥ 1/a ,

by a function which just depends on x and a.

c) Calculate

L = lim
n→∞

∫ ∞
a

n

1 + n2x2
dx ,

and say what theorem you used.

d) Calculate L using monotone convergence theorem and Barrow’s rule in the cases a > 0,
a = 0, a < 0.

Solution: a) We have that

v′(t) =
1− t2x2

(1 + t2x2)2
= 0 ⇔ t2 =

1

x2

and therefore, since x ≥ a > 0,

t ≥ 1

a
=⇒ t ≥ 1

x
=⇒ t2 ≥ 1

x2
=⇒ 1− x2t2 ≤ 0 =⇒ v′(t) ≤ 0 .

Hence,v(t) decreases in the interval [1/a,∞).

b) As a consequence of a)

v(t) ≤ v(1/a) =
a

a2 + x2
if t ≥ 1/a .

Therefore, if n ≥ 1/a,

fn(x) =
n

1 + n2x2
= v(n) ≤ v(1/a) =

a

a2 + x2
.

c) As F (x) =
a

a2 + x2
∈ L1(a,∞), by the dominated convergence theorem:

lim
n→∞

∫ ∞
a

n

1 + n2x2
dx =

∫ ∞
a

lim
n→∞

n

1 + n2x2
dx =

∫ ∞
a

0 dx = 0 .

d) Using the monotone convergence theorem and Barrow’s rule, we have:

lim
n→∞

∫ ∞
a

n

1 + n2x2
dx = lim

n→∞

∫ ∞
a

(
lim
N→∞

n

1 + n2x2
χ

[a,N ]

)
dx = lim

n→∞
lim
N→∞

∫ N

a

n

1 + n2x2
dx

= lim
n→∞

lim
N→∞

[arctan(nx)]x=Nx=a = lim
n→∞

lim
N→∞

(
arctan(nN)− arctan(an)

)
= lim

n→∞

(π
2
− arctan(an)

)
.

Hence, L = π
2 −

π
2 = 0 if a > 0, L = π

2 − 0 = π
2 if a = 0 and L = π

2 − (−π
2 ) = π if a < 0.

Problem 2.2.12 Calculate L = lim
n→∞

∫ ∞
0

1 + nx2

(1 + x2)n
dx .
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Hint: {fn} is a decreasing sequence and f2 ∈ L1((0,∞)). So we can use a convergence theorem.
Solution: a) We have that

fn(x) ≥ fn+1(x) ⇔ (1 + nx2)(1 + x2) ≥ 1 + (n+ 1)x2 ⇔ nx4 ≥ 0

and this is obviously true.

b) First, observe that∫ ∞
0

f2(x) dx =

∫ ∞
0

1 + 2x2

(1 + x2)2
dx ≤

∫ 1

0
(1 + 2x2) dx+

∫ ∞
1

1 + 2x2

x4
dx

=

∫ 1

0
(1 + 2x2) dx+

∫ ∞
1

1

x4
dx+ 2

∫ ∞
1

1

x2
dx <∞ .

Hence, using the monotone convergence theorem for decreasing sequences or the dominated
convergence theorem:

L = lim
n→∞

∫ ∞
0

fn(x) dx =

∫ ∞
0

lim
n→∞

fn(x) dx =

∫ ∞
0

0 dx = 0,

since, for x 6= 0,

0 ≤ lim
n→∞

fn(x) ≤ lim
n→∞

1 + nx2

1 + nx2 + n(n−1)
2 x4

= lim
n→∞

1
n2 + x2

n
1
n2 + x2

n + n−1
2n x

4
=

0 + 0

0 + 0 + x4

2

= 0 .

Problem 2.2.13 Prove that lim
n→∞

∫ 1

0

log(n+ x)

n
e−x cosx dx = 0.

Solution: Let fn(x) =
log(n+ x)

n
e−x cosx for x ∈ [0, 1]. First of all, using Stolz criterion we

have, for all x ∈ [0, 1], that

lim
n→∞

log(x+ n)

n
= lim

n→∞

log(x+ n+ 1)− log(x+ n)

(n+ 1)− n
= lim

n→∞
log

x+ n+ 1

x+ n
= log 1 = 0 .

Also

|fn(x)| ≤ log(n+ 1)

n
≤ 1 ∈ L1([0, 1])

and so we can apply the dominated convergence theorem:

lim
n→∞

∫ 1

0

log(n+ x)

n
e−x cosx dx =

∫ 1

0

(
lim
n→∞

log(n+ x)

n

)
e−x cosx dx =

∫ 1

0
0 dx = 0 .

Problem 2.2.14 Let fn : R −→ R be the sequence of measurable functions defined by

fn(x) =

{
n cosnx , if x ∈ [− π

2n ,
π
2n ] ,

0 , otherwise.

Study whether

lim
n→∞

∫ π

−π
fn(x) dx =

∫ π

−π
lim
n→∞

fn(x) dx

or not. Can be applied in this case the monotone convergence theorem or the Lebesgue domi-
nated convergence theorem?
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Solution: If x 6= 0, then eventually x /∈ [− π
2n ,

π
2n ] for n large enough and so fn(x) = 0 for

n ≥ n0(x). Hence, limn→∞ fn(x) = 0 for all x 6= 0. On the other hand,∫
R
fn(x) dx =

∫ π
2n

− π
2n

n cosnx dx = [sinnx]
x= π

2n

x=− π
2n

= sin
π

2
−
(
− sin

π

2

)
= 1− (−1) = 2 .

Therefore,

2 = lim
n→∞

∫
R
fn(x) dx 6=

∫
R

(
lim
n→∞

fn(x)
)
dx = 0

and as a consequence we obtain that fn(x)→ 0 as n→∞ but not monotonically and also that
we can not dominate the functions fn by an integrable function in R.

Problem 2.2.15 Let (R,B(R), µ) the measure space defined by

µ(A) = card (A ∩ N) , A ∈ B(R) .

Prove that f(x) = x sin(πx) is µ-integrable but not Lebesgue-integrable.

Solution: We have that µ is the counting measure on N and∫
R
|f(x)| dµ(x) =

∞∑
n=0

|n sin(nπ)| = 0 =⇒ f ∈ L1(µ) .

On the other hand, since f(x) is even∫
R
|f(x)| dµ(x) = 2

∫ ∞
0
|f(x)| dx = 2

∞∑
n=0

∫ n+1

n
|f(x)| dx .

Now, if x ∈ (n, n+ 1), then |f(x)| = x | sin(πx)| = (−1)nx sin(πx) and integrating by parts, we
have ∫ n+1

n
|x sin(πx)| dx = −(−1)n

π

[
x cos(πx)

]x=n+1

x=n
+

(−1)n

π

∫ n+1

n
cos(πx) dx

= −(−1)n
[ 1

π
x cos(πx)− 1

π2
sin(πx)

]x=n+1

x=n

= −(−1)n
(n+ 1

π
(−1)n+1 − n

π2
(−1)n

)
=
n+ 1

π
+

n

π2
.

Hence, ∫
R
|f(x)| dµ(x) =

1

π2

∞∑
n=0

(
π(n+ 1) + n

)
=∞ =⇒ f /∈ L1(m) .

Problem 2.2.16

a) Prove that the sequence of functions

fn(t) =
(

1 +
t

n

)n
, t ≥ 0 ,

verify that f3(t) ≤ fn(t) for n ≥ 3.

b) Calculate

lim
n→∞

∫ 1

0

n+ n2x

(1 + x)n
dx .

State correctly the results and theorems you need to get to the solution.



Problems of Integration & Measure: Integration of general functions 10

Hint: b) To start, do the change of variable t = nx.

Solution: a) We have that(
1 +

t

3

)3
≤
(

1 +
t

n

)n
⇔ 3 log

(
1 +

t

3

)
≤ n log

(
1 +

t

n

)
and if we define F (t) = n log

(
1 +

t

n

)
− 3 log

(
1 +

t

3

)
we have

F ′(t) =
t/3− t/n

(1 + t/n)(1 + t/3)
≥ 0 =⇒ F is increasing.

Hence,F (t) ≥ F (0) = 0.

b) Doing the change of variable t = nx we obtain that:∫ 1

0

n+ n2x

(1 + x)n
dx =

∫ n

0

1 + t

(1 + t
n)n

dt ≤
∫ n

0

1 + t

(1 + t
3)3

dt

using the part a) we obtain, for n ≥ 3, that

1 + t

(1 + t
n)n

χ
[0,n]

(t) ≤ 1 + t

(1 + t
3)3

χ
[0,∞)

(t) ∈ L1[0,∞),

since∫ ∞
0

1 + t

(1 + t
3)3

dt ≤
∫ 1

0
(1 + t) dt+

∫ ∞
1

1 + t
t3

27

dt =

∫ 1

0
(1 + t) dt+ 27

∫ ∞
1

dt

t3
+ 27

∫ ∞
1

dt

t2
<∞ .

Hence, since

lim
n→∞

(
1 +

t

n

)n
= et , t ≥ 0 ,

using the dominated convergence theorem we obtain

lim
n→∞

∫ 1

0

n+ n2x

(1 + x)n
dx =

∫ ∞
0

lim
n→∞

1 + t

(1 + t
n)n

dt =

∫ ∞
0

(1 + t) e−t dt .

Now, the sequence of positive functions GN (t) = (1 + t) e−t χ
[0,N ]

(t) is clearly increasing, and so,
by the monotone convergence theorem:

lim
n→∞

∫ 1

0

n+ n2x

(1 + x)n
dx =

∫ 1

0
lim
N→∞

GN (t) dt = lim
N→∞

∫ N

0
(1 + t) e−t dt .

But (1 + t)e−t is continuous on [0, N ] for all N and therefore is Riemann-integrable in [0, N ].
Hence,we can use Barrow’s rule. By using integration by parts we can compute easily a primitive:
u = 1 + t =⇒ du = dt, dv = e−t =⇒ v = −e−t,∫

(1 + t) e−t dt = −(1 + t)e−t +

∫
e−t dt = −(1 + t)e−t − e−t = −(2 + t)e−t .

Finally,

lim
n→∞

∫ 1

0

n+ n2x

(1 + x)n
dx = lim

N→∞
[−(2 + t)e−t]t=Nt=0 = 2− lim

N→∞

2 +N

eN
= 2− lim

N→∞

1

eN
= 2− 0 = 2 ,
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where we have used L’Hopital rule.

Problem 2.2.17 Calculate lim
n→∞

∫ 1

0

n+ n4x3

(1 + x)n
dx .

Solution: Proceeding as in the previous problem we begin proving that
(
1 + t

5

)5 ≤ (1 + t
n

)n
for n ≥ 5 and t ≥ 0, or equivalently that 5 log

(
1 + t

5

)
≤ n log

(
1 + t

n

)
. To prove it, we define

F (t) = n log
(
1 + t

n

)
− 5 log

(
1 + t

5

)
. We have that F (t) ≥ F (0) = 0 since

F ′(t) =
t/5− t/n

(1 + t/n)(1 + t/5)
≥ 0 =⇒ F is increasing.

Now, we do the change of variable t = nx:∫ 1

0

n+ n4x3

(1 + x)n
dx =

∫ n

0

1 + t3

(1 + t/n)n
dt .

Let fn(t) =
1 + t3

(1 + t/n)n
χ

[0,n]
(t). As lim

n→∞

(
1 +

t

n

)n
= et, we have that

lim
n→∞

fn(t) = (1 + t3) e−t χ
[0,∞)

(t) .

On the other hand, |fn(t)| ≤ 1+t3

(1+t/5)5
∈ L1[0,∞). Hence, by the dominated convergence theorem,

lim
n→∞

∫ 1

0

n+ n4x3

(1 + x)n
dx = lim

n→∞

∫ n

0

1 + t3

(1 + t/n)n
dt =

∫ ∞
0

(1 + t3) e−t dt .

To compute this last integral, we apply the monotone convergence theorem and later we use
integration by parts and L’Hopital rule:

lim
n→∞

∫ 1

0

n+ n4x3

(1 + x)n
dx = lim

N→∞

∫ N

0
(1 + t3) e−t dt = lim

N→∞

(
−
[
(1 + t3)e−t

]t=N
t=0

+ 3

∫ N

0
t2e−tdt

)
= 1 + 3 lim

N→∞

(
−
[
t2e−t

]t=N
t=0

+ 2

∫ N

0
t e−tdt

)
= 1 + 6 lim

N→∞

∫ N

0
t e−tdt

= 1 + 6 lim
N→∞

(
−
[
t e−t

]t=N
t=0

+

∫ N

0
e−tdt

)
= 1 + 6 = 7 .

Problem 2.2.18 Prove that

∫ 1

0

x

1− x
log

1

x
dx =

∞∑
n=2

1

n2
.

Hint: Use that 1/(1 − x) =
∑∞

n=0 x
n for x ∈ (0, 1) and then apply an adequate convergence

theorem.

Solution: As x
1−x =

∑∞
n=1 x

n for 0 ≤ x < 1, and xn log(1/x) ≥ 0 on [0, 1), as a consequence of
the monotone convergence theorem, the integral and series symbols commute:∫ 1

0

x

1− x
log

1

x
dx =

∫ 1

0

∞∑
n=1

xn log
1

x
dx =

∞∑
n=1

∫ 1

0
xn log

1

x
dx .

Using again the monotone convergence theorem we obtain that:∫ 1

0

x

1− x
log

1

x
dx =

∞∑
n=1

lim
N→∞

∫ 1

1/N
xn log

1

x
dx .



Problems of Integration & Measure: Integration of general functions 12

But integrating by parts and using L’Hopital rule:

lim
ε→0+

∫ 1

ε
xn log

1

x
dx = lim

ε→0+

([ xn+1

n+ 1
log

1

x

]x=1

x=ε
+

∫ 1

ε

xn

n+ 1
dx
)

= lim
ε→0+

(
− εn+1

n+ 1
log

1

ε
+
[ xn+1

(n+ 1)2

]x=1

x=ε

)
= lim

ε→0+

εn+1

n+ 1
log ε+

1

(n+ 1)2
=

1

(n+ 1)2
+

1

n+ 1
lim
ε→0+

log ε

ε−(n+1)

=
1

(n+ 1)2
− 1

(n+ 1)2
lim
ε→0+

1/ε

ε−(n+2)
=

1

(n+ 1)2

(
1− lim

ε→0+
εn+1

)
=

1

(n+ 1)2
.

Hence ∫ 1

0

x

1− x
log

1

x
dx =

∞∑
n=1

1

(n+ 1)2
=

∞∑
n=2

1

n2
.

Problem 2.2.19 Let (X,P(X), µ) be a measure space with X countable, X = {xn}∞n=1, and
µ the discrete measure defined as:

µ({xn}) = pn , µ(A) =
∑
xn∈A

pn , (pn ≥ 0) .

Let f : X −→ C be a complex function.

a) Prove that if f ≥ 0, then

∫
X
f dµ =

∞∑
n=1

f(xn) pn .

b) Prove that f ∈ L1(µ) if and only if
∑∞

n=1 |f(xn)| pn <∞, and in this case,∫
X
f dµ =

∞∑
n=1

f(xn) pn .

Hints: a) f =
∑∞

n=1 f(xn)χ{xn} . b) Decompose f = u+ iv and u = u+ − u−, v = v+ − v−.

Solution: a) It is clear that f =
∑∞

n=1 f(xn)χ{xn} . Hence, as f ≥ 0, as a consequence of
monotone convergence theorem, the integral and series symbols commute:∫

X
f dµ =

∫
X

∞∑
n=1

f(xn)χ{xn}(x) dµ(x) =
∞∑
n=1

∫
X
f(xn)χ{xn}(x) dµ(x)

=

∞∑
n=1

f(xn)µ({xn}) =

∞∑
n=1

f(xn) pn .

b) By part a) we have: f ∈ L1(µ) ⇐⇒
∫
X |f | dµ <∞ ⇐⇒

∑∞
n=1 |f(xn)| pn <∞. Besides, in

this case:
b.1) If f : X −→ R, then f = f+ − f− with f+, f− ≥ 0 and by a):∫

X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ =

∞∑
n=1

f+(xn) pn −
∞∑
n=1

f−(xn) pn

=
∞∑
n=1

(f+(xn)− f−(xn)) pn =
∞∑
n=1

f(xn) pn .



Problems of Integration & Measure: Integration of general functions 13

b.2) If f : X −→ C, then f = u+ iv with u, v : X −→ R and by b.1):∫
X
f dµ =

∫
X
u dµ+ i

∫
X
v dµ =

∞∑
n=1

u(xn) pn + i

∞∑
n=1

v(xn) pn

=
∞∑
n=1

(
u(xn) + iv(xn)

)
pn =

∞∑
n=1

f(xn) pn .

Problem 2.2.19 Calculate lim
n→∞

n

∞∑
i=1

sin
2−i

n
.

Hint: Consider and adequate measure space and apply a convergence theorem.

Solution: Here the measure space is (N,P(N), µ) where µ is the counting measure, i.e. the
measure considered in the previous problem with pn = 1 for all n.
Let ϕn(i) = n sin(2−i/n). Since sinx ≤ x for x ∈ [0, π/2] we have: |ϕn(i)| ≤ 2−i, for all n ∈ N.
Also 2−i ∈ L1(µ) since

∑∞
i=1 2−i <∞. Hence, by the dominated convergence theorem:

lim
n→∞

n
∞∑
i=1

sin
2−i

n
= lim

n→∞

∞∑
i=1

ϕn(i) =
∞∑
i=1

lim
n→∞

ϕn(i)

=
∞∑
i=1

lim
n→∞

n sin
2−i

n
=
∞∑
i=1

2−i =
1

1− 1
2

− 1 = 2− 1 = 1 .

Problem 2.2.21∗ Let (X,A, µ) be a measure space and Φ : X −→ Y be a mapping. Let us
consider the image measure space (Y,B, ν) by Φ (B = Φ(A) and ν = µ ◦ Φ−1). Let f : Y −→ C
be a function. Prove that

a) f is B-measurable if and only if f ◦ Φ is A-measurable .

b) If f ≥ 0 is B-measurable, then

∫
Y
f dν =

∫
X

(f ◦ Φ) dµ.

c) If f is B-measurable, then f ∈ L1(ν) if and only if f ◦ Φ ∈ L1(µ), and in this case∫
Y
f dν =

∫
X

(f ◦ Φ) dµ.

d) Let Φ(x, y) = x2y be defined on the square Q = [0, 1] × [0, 1] in the plane, and let m be
two-dimensional Lebesgue measure on Q. If µ is the image measure of m by Φ, evaluate
the integral

∫∞
−∞ t

2 dµ(t).

Hints: a) Use the definition of A. b) Prove it first for simple functions and then approximate
any f ≥ 0 by simple functions and apply monotone convergence. c) Decompose f = u+ iv and
u = u+ − u−, v = v+ − v−. d) Apply c).
Solution: a) Let B be a borelian subset in C. Then, by definition,

f−1(B) ∈ B ⇐⇒ Φ−1(f−1(B)) = (f ◦ Φ)−1(B) ∈ A .

b) First, if s = χB with B ∈ B, then∫
Y
s dν = ν(B) = µ(Φ−1(B)) =

∫
X
χ

Φ−1(B)
dµ =

∫
X

(χB ◦ Φ) dµ =

∫
X

(s ◦ Φ) dµ . (2)
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Secondly, if s =
∑n

j=1 cjχBj is a simple function, then using (2):

∫
Y
s dν =

∫
Y

( n∑
j=1

cjχBj

)
dν =

n∑
j=1

cj

∫
Y
χBj dν

=

n∑
j=1

cj

∫
X

(χBj ◦ Φ) dµ =

∫
X

( n∑
j=1

cj(χBj ◦ Φ)
)
dν =

∫
X

(s ◦ Φ) dµ .

Finally, if f ≥ 0 is B-measurable, then let {sn}∞n=1 be a sequence of positive simple functions in
Y such that

0 ≤ s1 ≤ · · · ≤ sn · · · ↗ f , as n→∞ .

But sn ◦ Φ are positive simple functions in X such that

0 ≤ s1 ◦ Φ ≤ · · · ≤ sn ◦ Φ · · · ↗ f ◦ Φ , as n→∞ .

Using now twice the monotone convergence theorem:∫
Y
f dν = lim

n→∞

∫
Y
sn dν = lim

n→∞

∫
X

(sn ◦ Φ) =

∫
X

(f ◦ Φ) dµ .

c) If f is B-measurable, then by part b):

f ∈ L1(µ) ⇐⇒
∫
Y
|f | dν <∞ ⇐⇒

∫
X

(|f | ◦ Φ) dµ=

∫
X
|f(Φ)| dµ <∞ ⇐⇒ f ◦ Φ ∈ L1(µ).

Besides, in this case, if If f : X −→ R, then f = f+ − f− with f+, f− ≥ 0 and by b)∫
Y
f dν =

∫
Y

(f+ − f−) dν =

∫
Y
f+ dν −

∫
Y
f− dν

=

∫
X

(f+ ◦ Φ) dµ−
∫
X

(f− ◦ Φ) dµ =

∫
X

(
(f+ − f−) ◦ Φ

)
dµ =

∫
X

(f ◦ Φ) dµ .

Finally, if f : X −→ C, then f = u+ iv with u, v : X −→ R and by the previous identity:∫
Y
f dν =

∫
Y

(u+ iv) dν =

∫
Y
u dν + i

∫
Y
v dν

=

∫
X

(u ◦ Φ) dµ+ i

∫
X

(v ◦ Φ) dµ =

∫
X

(
(u+ iv) ◦ Φ

)
dµ =

∫
X

(f ◦ Φ) dµ .

d) Using part b) and applying Fubini’s theorem we get∫
R
t2 dµ(t) =

∫
[0,1]×[0,1]

(t2 ◦ Φ) dx dy =

∫ 1

0

∫ 1

0
(Φ(x, y))2 dx dy =

∫ 1

0

∫ 1

0
(x2y)2 dx dy

=
(∫ 1

0
x4dx

)(∫ 1

0
y2dy

)
=
[x5

5

]x=1

x=0

[y3
3

]y=1

y=0
=

1

5
· 1

3
=

1

15
.
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Problem 2.2.22 Let (X,A, µ) be a measure space and let ρ : X −→ [0,∞] be a measurable
function. Let us consider the measure defined by the density ρ:

ν(A) =

∫
A
ρ dµ , A ∈ A.

Prove that

a) If f ≥ 0 is measurable, then

∫
X
f dν =

∫
X
fρ dµ.

b) If f is measurable, then: f ∈ L1(ν) if and only if

∫
X
|f |ρ dµ <∞, and in this case∫

X
f dν =

∫
X
fρ dµ.

Hints: a) This is the exercise 2.1.3. b) Decompose f = u+ iv and u = u+ − u−, v = v+ − v−.

Solution: a) This is the exercise 2.1.3. b) If If f : X −→ R, then f = f+ − f− with f+, f− ≥ 0
and by b) ∫

X
f dν =

∫
X

(f+ − f−) dν =

∫
X
f+ dν −

∫
X
f− dν

=

∫
X
f+ρ dµ−

∫
X
f−ρ dµ =

∫
X

(f+ − f−) ρ dµ =

∫
X
f ρ dµ .

Finally, if f : X −→ C, then f = u+ iv with u, v : X −→ R and by the previous identity:∫
X
f dν =

∫
X

(u+ iv) dν =

∫
X
u dν + i

∫
X
v dν

=

∫
X
u ρ dµ+ i

∫
X
vρ dµ =

∫
X

(u+ iv) ρ dµ =

∫
X
f ρ dµ .

Problem 2.2.23 Let X = R2 \ {(0, 0)} and dm = dx dy be the Lebesgue measure on X. Let
Φ : X −→ R be the function given by Φ(x, y) = log(x2 + y2) and let µ be the image measure of
dm by Φ.

a) Calculate the value of µ([0, 1]).

b) Prove that µ has the form dµ = F (t) dt and find F (t) explicitly.

Hints: a) µ([0, 1]) = m({(x, y) : 0 ≤ log(x2 + y2) ≤ 1}). b) Calculate
∫
R f(t)dµ(t) for any

f ∈ L1(µ).

Solution: a) By definition of image measure we have

µ([0, 1]) = m(Φ−1([0, 1]) = m
(
{(x, y) : Φ(x, y) ∈ [0, 1]}

)
= m

(
{(x, y) : 0 ≤ log(x2 + y2) ≤ 1}

)
= m

(
{(x, y) : 1 ≤ x2 + y2 ≤ e}

)
= π((

√
e )2 − 1) = π(e− 1) .

b) Let f ∈ L1(µ). Then, using polar coordinates,∫
R
f(y) dµ(y) =

∫∫
X

(f ◦ Φ)(x, y) dx dy =

∫∫
X
f
(

log(x2 + y2)
)
dx dy =

=

∫ 2π

0

∫ ∞
0

f(log r2) r dr dθ = 2π

∫ ∞
0

f(log r2) r dr ,
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and doing the change of variable y = log r2 we obtain∫
R
f(y) dµ(y) = 2π

∫
R
f(y) ey/2

1

2
ey/2 dy =

∫
R
f(y)π ey dy .

Hence, dµ = F (y) dy where F (y) = π ey.

Problem 2.2.24

a) Let f : R → [0,∞] be an integrable function on R and such that
∫∞
−∞ f(x) dx = 1.

Prove that F (x) =
∫ x
−∞ f(y)dy is a probability distribution function and that besides F is

continuous (f is called the density function).

b) Prove that the Borel-Stieltjes measure with distribution function F coincides with the
measure defined with the density function f : νf (A) =

∫
A f(x) dx.

c) Calculate F (x) if

f(x) =

{
1 if x ∈ [0, 1] ,
0 otherwise.

Hints: a) F is increasing because f ≥ 0 and is continuous by the dominated convergence theorem.
b) The Borel-Stieltjes measure µF coincides with the density measure νf by the Caratheodory-
Hopf’s extension theorem since for semi-intervals [a, b) we have: µF ([a, b)) = F (b) − F (a) =∫ b
a f(x) dx = νf ([a, b)). Observe that µF ({a})=0 for all a ∈ R since F is continuous. c)
F (x) = 0, if x ≤ 0, F (x) = x if x ∈ [0, 1] and F (x) = 1 if x ≥ 1.

a) As f ≥ 0, then F is increasing since for x1 ≤ x2 we have that

F (x2)− F (x1) =

∫ x2

−∞
f(y) dy −

∫ x1

−∞
f(y) dy =

∫ x2

x1

f(y) dy ≥ 0 .

Also, if xn → x0 as n→∞ we have that

F (xn) =

∫ xn

−∞
f(y) dy =

∫
R
f(y)χ

(−∞,xn)
(y) dy

and |f χ
(−∞,xn)

| ≤ f ∈ L1(R). Hence, by the dominated convergence theorem,

lim
n→∞

F (xn) =

∫
R

(
lim
n→∞

f(y)χ
(−∞,xn)

(y)
)
dy =

∫
R
f(y)χ

(−∞,x0)
(y) dy = F (x0) .

Hence, F is continuous.
F is the distribution function of the probability measure given by the density f : νf (A) =∫
A f(y) dy for any borelian A in R.

b) For all semiopen interval [a, b) we have, since F is continuous, that

µF ([a, b)) = F (b)− F (a) =

∫ b

a
f(y) dy =

∫
[a,b)

f(y) dy = νf ([α, b)) .

Hence, by Caratheodory-Hopf’s extension theorem, µF = νf .
c) We have

F (x) =

∫ x

−∞
f(y) dy =


0 , if x ≤ 0 ,∫ x
0 1 dy = x , if 0 ≤ x ≤ 1 ,∫ 1
0 1 dy = 1 , if 1 ≤ x .
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Problem 2.2.25∗ Let g : R −→ R be an increasing derivable function with bounded derivative
g′ on each compact set. Let us consider the Borel-Stieltjes measure space (R,B(R),mg). Prove
that mg = g′dm, that is to say that the Borel-Stieltjes measure mg coincides with the measure
defined by the density g′ and therefore for all f : R −→ R, f ∈ L1(mg), we have∫

R
f dmg =

∫
R
fg′ dm =

∫
R
f(t) g′(t) dt .

Hint: Use the Caratheodory-Hopf extension theorem and that
∫ b
a g
′ dm = g(b) − g(a). This is

trivial if g′ is continuous by Barrow’s rule, but for g′ only bounded we must use an approximation
argument: let gn(t) = (f(t + hn) − f(t)/hn. Then gn −→ g′ for all t ∈ [a, b). Use dominated
convergence to conclude that

∫ c
a g
′ dm = g(c) − g(a) for all c ∈ [a, b). Finally use monotone

convergence, since [a, b) = ∪n[a, cn] with cn ↗ b as n→∞.

Problem 2.2.26∗ Let us consider the Lebesgue measure space (Rn,M,m), where M is the
σ-algebra of Lebesgue-measurable sets and m is Lebesgue measure. Let f : Rn −→ R be a
measurable function. Prove that

a) If f ≥ 0 or if f ∈ L1(m), then

a.1)

∫
Rn
f(a+ x) dx =

∫
Rn
f(x) dx .

a.2)

∫
Rn
f(T (x)) dx =

1

|detT |

∫
Rn
f(x) dx, for all T ∈ GL(n).

a.3) More generally,

∫
A
f(T (x)) dx =

1

|detT |

∫
T (A)

f(x) dx, for all T ∈ GL(n) and A ∈M.

b) If Φ : R −→ [0,∞] is a Borel function, then∫
Rn

Φ(‖x‖) dx = nΩn

∫ ∞
0

Φ(r) rn−1 dr , where Ωn = m({x ∈ Rn : ‖x‖ ≤ 1}) .

c) Let Bn = {x ∈ Rn : ‖x‖ < 1}. Then∫
Bn

dx

‖x‖α
<∞ ⇔ α < n and

∫
Rn\Bn

dx

‖x‖α
<∞ ⇔ α > n .

Hints: Let µ = T (m) be the image measure ofm under T : a.1) If T (x) = a+x, then µ(A) = m(A)
since m is translation-invariant. a.2) µ(A) = m(T−1(A)) = |detT−1|m(A). This fact is easy for
semi-intervals [a1, b1)× · · · × [an, bn) and so it is a consequence of Caratheodory-Hopf extension
theorem. a.3) It follows from a.2) and the fact that, as T is bijective, we have χ

T (A)
◦T = χA . b)

Let ν = ‖ · ‖ ◦m be the image measure under ‖ · ‖: then prove that ν[a, b) = Ωn(bn− an) and as
g(t) = Ωnt

n is increasing and continuous, conclude from Exercise 2 that ν = g′ dm = nΩnt
n−1dt.

c) Apply part b).

Problem 2.2.27∗ Let f : R −→ R be a Lebesgue-integrable function. Evaluate

lim
n→∞

∫ ∞
−∞

f(x− n)
x

1 + |x|
dx .
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Hint: Apply the change of variables y = x + n and divide the integral in two parts: one on
the interval (−∞,−n) and the other one on (−n,∞). Apply Lebesgue dominated convergence
theorem to prove that the first integral converges to 0 and the second one to

∫∞
−∞ f(x) dx.

Solution:
∫∞
−∞ f(x) dx.


