uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure. Problems

Chapter 2: Integration theory Section 2.4: Decomposition of measures

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.4. Decomposition of measures

Problem 2.4.1 Let μ, λ be measures defined on the same σ -algebra. Prove that if we have at the same time $\lambda \perp \mu$ and $\lambda \ll \mu$, then $\lambda \equiv 0$.

Solution: As $\lambda \perp \mu$ we have that $X = A \cup B$ with $A \cap B = \emptyset$, $\lambda(A) = 0$ and $\mu(B) = 0$. But then, as $\lambda \ll \mu$ we have that $\lambda(B) = 0$. Hence, $\lambda(X) = \lambda(A) + \lambda(B) = 0 \implies \lambda \equiv 0$.

Problem 2.4.2 Let X = [0, 1], $\mathcal{M} = \mathcal{B}([0, 1])$, *m* the Lebesgue measure on \mathcal{M} , μ the counting measure on \mathcal{M} .

- a) Prove that $m \ll \mu$ but $dm \neq f d\mu$ for all f.
- b) Prove that m has not Radon-Nikodym decomposition with respect to μ .
- c) What hypothesis fails to apply in Radon-Nikodym theorem?

Hints: a) Suppose that there exists such an f. Then, there exists x_0 such that $f(x_0) \neq 0$. Consider the set $A = \{x_0\}$. b) How must be a measure which is mutually orthogonal with μ ? Solution: a) If $A \subset [0, 1]$ verifies $\mu(A) = 0$, then $A = \emptyset$ and so, m(A) = 0. Hence, $m \ll \mu$. Now, let $f \neq 0$. Then $\exists x_0 \in [0, 1]$ such that $f(x_0) \neq 0$. Let $A = \{x_0\}$, then m(A) = 0, but

$$\int_A f \, d\mu = \int_{\{x_0\}} f \, d\mu = f(x_0) \neq 0 \quad \Longrightarrow \quad m(A) \neq \int_A f \, d\mu \, .$$

c) What is failing here to apply Radon-Nikodym theorem is that μ is not σ -finite.

Problem 2.4.3 Let (X, \mathcal{M}, μ) be a measure space. Let \mathcal{N} be a σ -subalgebra of \mathcal{M} and let ν be the restriction of μ to \mathcal{N} . If $0 \leq f \in L^1(\mu)$ prove that there exists g \mathcal{N} -measurable, $0 \leq g \in L^1(\nu)$, such that $\int_E f d\mu = \int_E g d\nu$ for all $E \in \mathcal{N}$. Besides, g is unique module alterations in ν -null sets.

Hint: Consider the measure $\lambda(E) = \int_E f d\mu$ for $E \in \mathcal{N}$. The function g is called the *conditioned* expected value $E(f|\mathcal{N})$ of f with respect to \mathcal{N} .

Solution: Let us define $\lambda(E) = \int_E f \, d\mu$ for $E \in \mathcal{N}$. Then λ is a positive finite measure in X. As $\lambda \ll \mu$, by Radon-Nikodym theorem, there exists an \mathcal{N} -measurable function, $g :\longrightarrow [0, \infty]$ such that $d\lambda = g \, d\nu$ or equivalently, such that

$$\lambda(E) = \int_E g \, d\nu \quad \text{for all } E \in \mathcal{N} \implies \int_E f \, d\mu = \int_E g \, d\nu \quad \text{for all } E \in \mathcal{N}$$

Observe that, as $f \in L^1(\mu)$, we have that also $g \in L^1(\nu)$. Besides, g is unique up to zero-measure sets, since

$$\int_{E} g_1 d\mu = \int_{E} g_2 d\nu \quad \forall E \in \mathcal{N} \quad \Longrightarrow \quad \int_{E} (g_1 - g_2) d\nu = 0 \quad \forall E \in \mathcal{N} \quad \Longrightarrow \quad g_1 = g_2 \ \nu\text{-a.e.}.$$

Problem 2.4.4 Let μ and ν be finite positive measures on the measurable space (X, \mathcal{A}) . Show that there is a nonnegative measurable function f on X such that for all $A \in \mathcal{A}$

$$\int_A (1-f) \, d\mu = \int_A f \, d\nu$$

Hint: The statement is equivalent to $\mu(A) = \int_A f d(\mu + \nu)$. Solution: Since μ and ν are positive, we have that $\mu \ll \mu + \nu$ and so, by Radon-Nikodym theorem, there exists a positive function $f \in L^1(\mu + \nu)$ such that

$$\mu(A) = \int_A f \, d(\mu + \nu) \,, \quad \forall A \in \mathcal{A} \implies \int_A (1 - f) \, d\mu = \int_A f \, d\nu \,, \quad \forall A \in \mathcal{A} \,.$$

Problem 2.4.5 Let m be the Lebesgue measure on the real line \mathbb{R} . For each Lebesgue measurable subset E of \mathbb{R} define

$$\mu(E) = \int_E \frac{1}{1+x^2} \, dm(x) \, .$$

- a) Show that $m \ll \mu$.
- b) Compute the Radon-Nikodym derivative $h = dm/d\mu$.

Hints: a) Use Problem 2.1.1. b) Given a Lebesgue-measurable set E, consider the function $f(x) = \frac{1}{1+x^2} \chi_E(x)$ and use problem 2.2.21.

Solution: a) If $\mu(E) = 0$ then, by problem 2.1.1, we have that $m(\{x \in E : \frac{1}{1+x^2} \neq 0\}) = 0$ and so, m(E) = 0. Hence, $m \ll \mu$.

b) As $m \ll \mu$, by Radon-Nikodym theorem, there exists a positive function $f \in L^1(\mu)$ such that, for any Lebesgue-measurable set E,

$$m(E) = \int_E f(x) d\mu(x)$$
 and $\int_{\mathbb{R}} g dm = \int_{\mathbb{R}} g f d\mu$, $\forall g \in L^1(m)$.

by problem 2.2.21. Then, for any Lebesgue-measurable set E

$$\mu(E) = \int_E \frac{1}{1+x^2} \, dm(x) = \int_{\mathbb{R}} \frac{1}{1+x^2} \, \chi_E(x) \, dm(x) = \int_{\mathbb{R}} \frac{f(x)}{1+x^2} \, \chi_E(x) \, d\mu(x) = \int_E \frac{f(x)}{1+x^2} \, d\mu(x) \, d\mu(x) \, d\mu(x) = \int_E \frac{f(x)}{1+x^2} \, d\mu(x) \, d\mu(x) \, d\mu(x) = \int_E \frac{f(x)}{1+x^2} \, d\mu(x) \, d\mu(x) \, d\mu(x) \, d\mu(x) = \int_E \frac{f(x)}{1+x^2} \, d\mu(x) \,$$

and so $\frac{f(x)}{1+x^2} = 1$ a.e., that is to say $f(x) = 1 + x^2$ almost everywhere.

Problem 2.4.6 Let *m* be the Lebesgue measure on the real line \mathbb{R} . Consider a measurable function $f : \mathbb{R} \to [0, \infty]$ such that f and 1/f are Lebesgue integrable on each bounded subset of \mathbb{R} . For each Lebesgue measurable subset of \mathbb{R} define

$$\mu(E) = \int_E f(x) \, dm(x) \, .$$

- a) Show that $m \ll \mu$.
- b) Compute the Radon-Nikodym derivative $h = dm/d\mu$.

Hint: Use the argument in the previous exercise. Solution: b) h(x) = 1/f(x).

Problem 2.4.7 Let us consider the increasing function $F(x) = \max\{0, x + [x]\}$, where [x] denotes the integer part of x. Let μ_F be the Borel-Stieltjes measure associated to F.

- a) Calculate $\mu_F((0,5])$, $\mu_F([4,8])$ and $\mu_F([3,7))$.
- b) Prove that μ_F is not absolutely continuous with respect to Lebesgue measure.

Hint: b) Consider, for example, the set $A = \{1\}$. Solution: a) $\mu_F((0,5]) = 10$, $\mu_F([4,8]) = 9$, $\mu_F([3,7)) = 8$. b) If $A = \{1\}$, we have that $\mu_F(A) = F(1+) - F(1-) = 2 - 1 = 1$ but m(A) = 0.

Problem 2.4.8 Let μ_F be the Borel-Stieltjes measure associated to the increasing function

$$F(x) = \begin{cases} 0, & \text{if } x < 0, \\ x, & \text{if } 0 \le x < 1 \\ 1, & \text{if } 1 \le x. \end{cases}$$

- a) Prove that $\mu_F \ll m$, being m the Lebesgue measure.
- b) Is there the Radon-Nikodym derivative of μ_F with respect to m?. If so, find it.
- c) Let μ be the measure that counts rational numbers in [0, 1], that is to say that $\mu(A) = \operatorname{card}(A \cap [0, 1] \cap \mathbb{Q})$. Prove that $\mu_F \perp \mu$.

Hints: a) Given I = [a, b), prove that $\mu_F(I) \leq m(I)$ since x - F(x) is increasing. Apply Caratheodory-Hopf's theorem. b) Use problem 2.2.25. c) Consider the set $[0, 1] \cap \mathbb{Q}$.

Solution: a) Since F is continuous we have that

$$\mu_F([a,b)) = F(b) - F(a) \le b - a = m([a,b))$$

because $F(x) \leq x, \forall x \in \mathbb{R}$. In fact, the function f(x) := x - F(x) is continuous and increasing. Hence, f define a Borel-Stieltjes measure μ_f and, by Caratheodory-Hopf's theorem we have that $\mu_f = m - \mu_F \geq 0$. Hence, $0 \leq \mu \leq m \implies \mu_F \ll m$.

b) Hence, there exists the Radon-Nikodym derivative of μ_F with respect to m. By problem 2.2.25 we have that

$$\mu_F = F' \, dm = \chi_{(0,1)} \, dm \, .$$

c) Let $B = [0,1] \cap \mathbb{Q}$. As $m(\mathbb{Q}) = 0$ we have that m(B) = 0 and, by part a) that $\mu_F(B) = 0$. On the other hand, $\mu(B^c) = \operatorname{card} (B^c \cap [0,1] \cap \mathbb{Q}) = \operatorname{card} (\emptyset) = 0$. Hence, $\mu_F \perp \mu$.

Problem 2.4.9 Let us define the increasing function

$$F(x) = \begin{cases} e^x, & \text{if } x < 0, \\ 2 + \arctan x, & \text{if } x \ge 0, \end{cases}$$

and let μ_F be the associated Borel-Stieltjes measure.

- a) Calculate $\mu_F((0,1]), \, \mu_F((-2,0]), \, \mu_F(0) \text{ and } \mu_F(\mathbb{R}).$
- b) Prove that $\mu_F = f(x) dx + \delta_0$, for certain $f \ge 0$, and being δ_0 the δ -Dirac measure at x = 0.
- c) Is true that $\mu_F \ll dx$?

Hint: b) Observe that $\delta_0 = \mu_H$ with H the Heaviside function: $H = \chi_{[0,\infty)}$ and apply Exercise 2.2.25 to μ_{F-H} .

Solution: a) $\mu_f((0,1]) = \pi/4$, $\mu_f((-2,0]) = 2 - 1/e^2$, $\mu_f(0) = 1$, $\mu_f(\mathbb{R}) = 2 + \pi/2$. b) As $\delta_0 = \mu_H$ with H the Heaviside function H(x) = 1 for $x \ge 0$ and H(x) = 0 for x < 0, then

$$\mu_F - \delta_0 = \mu_F - \mu_H = \mu_{F-H}$$

and by problem 2.2.25 we have that

$$\mu_F - \delta_0 = f \, dx \,, \text{ where } f(x) = (f - H)'(x) = \begin{cases} e^x \,, & \text{if } x < 0 \,, \\ \frac{1}{1 + x^2} \,, & \text{if } x > 0 \,. \end{cases}$$

c) No, consider the set $E = \{0\}$. Then, m(A) = 0 but $\mu_F(A) = F(0^+) - F(0^-) = 2 - 1 = 1 \neq 0$. **Problem 2.4.10** Let us consider the increasing function

$$F(x) = \begin{cases} 0, & \text{if } x < 0, \\ x^2/2, & \text{if } 0 \le x < 1, \\ 1, & \text{if } 1 \le x, \end{cases}$$

and let μ_F be the Borel-Stieltjes measure associated to F.

- a) Prove that μ_F is not absolutely continuous with respect to Lebesgue measure m.
- b) Find the Radon-Nikodym decomposition of μ_F with respect to m.

Hint: b) Use problem 2.2.25 on $(-\infty, 1)$ and on $(1, \infty)$. *Solution:* a) Let $E = \{1\}$. Then, m(E) = 0 but $\mu_F(E) = F(1^+) - F(1^-) = 1 - 1/2 = 1/2 \neq 0$. b) Using problem 2.2.25 we get that $\mu_F = f' dm + \lambda$ with $f(x) = F'(x) = x\chi_{(0,1)}(x)$, and $\lambda = \frac{1}{2}\delta_1$.