uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems
Chapter 2: Integration theory
Section 2.4: Decomposition of measures

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

BY N

2 Integration Theory

2.4. Decomposition of measures

Problem 2.4.1 Let μ, λ be measures defined on the same σ-algebra. Prove that if we have at the same time $\lambda \perp \mu$ and $\lambda \ll \mu$, then $\lambda \equiv 0$.
Solution: As $\lambda \perp \mu$ we have that $X=A \cup B$ with $A \cap B=\varnothing, \lambda(A)=0$ and $\mu(B)=0$. But then, as $\lambda \ll \mu$ we have that $\lambda(B)=0$. Hence, $\lambda(X)=\lambda(A)+\lambda(B)=0 \Longrightarrow \lambda \equiv 0$.

Problem 2.4.2 Let $X=[0,1], \mathcal{M}=\mathcal{B}([0,1]), m$ the Lebesgue measure on \mathcal{M}, μ the counting measure on \mathcal{M}.
a) Prove that $m \ll \mu$ but $d m \neq f d \mu$ for all f.
b) Prove that m has not Radon-Nikodym decomposition with respect to μ.
c) What hypothesis fails to apply in Radon-Nikodym theorem?

Hints: a) Suppose that there exists such an f. Then, there exists x_{0} such that $f\left(x_{0}\right) \neq 0$. Consider the set $A=\left\{x_{0}\right\}$. b) How must be a measure which is mutually orthogonal with μ ?
Solution: a) If $A \subset[0,1]$ verifies $\mu(A)=0$, then $A=\varnothing$ and so, $m(A)=0$. Hence, $m \ll \mu$. Now, let $f \neq 0$. Then $\exists x_{0} \in[0,1]$ such that $f\left(x_{0}\right) \neq 0$. Let $A=\left\{x_{0}\right\}$, then $m(A)=0$, but

$$
\int_{A} f d \mu=\int_{\left\{x_{0}\right\}} f d \mu=f\left(x_{0}\right) \neq 0 \quad \Longrightarrow \quad m(A) \neq \int_{A} f d \mu
$$

c) What is failing here to apply Radon-Nikodym theorem is that μ is not σ-finite.

Problem 2.4.3 Let (X, \mathcal{M}, μ) be a measure space. Let \mathcal{N} be a σ-subalgebra of \mathcal{M} and let ν be the restriction of μ to \mathcal{N}. If $0 \leq f \in L^{1}(\mu)$ prove that there exists $g \mathcal{N}$-measurable, $0 \leq g \in L^{1}(\nu)$, such that $\int_{E} f d \mu=\int_{E} g d \nu$ for all $E \in \mathcal{N}$. Besides, g is unique module alterations in ν-null sets.
Hint: Consider the measure $\lambda(E)=\int_{E} f d \mu$ for $E \in \mathcal{N}$. The function g is called the conditioned expected value $E(f \mid \mathcal{N})$ of f with respect to \mathcal{N}.
Solution: Let us define $\lambda(E)=\int_{E} f d \mu$ for $E \in \mathcal{N}$. Then λ is a positive finite measure in X. As $\lambda \ll \mu$, by Radon-Nikodym theorem, there exists an \mathcal{N}-measurable function, $g: \longrightarrow[0, \infty]$ such that $d \lambda=g d \nu$ or equivalently, such that

$$
\lambda(E)=\int_{E} g d \nu \quad \text { for all } E \in \mathcal{N} \quad \Longrightarrow \quad \int_{E} f d \mu=\int_{E} g d \nu \quad \text { for all } E \in \mathcal{N} .
$$

Observe that, as $f \in L^{1}(\mu)$, we have that also $g \in L^{1}(\nu)$. Besides, g is unique up to zero-measure sets, since

$$
\int_{E} g_{1} d \mu=\int_{E} g_{2} d \nu \quad \forall E \in \mathcal{N} \quad \Longrightarrow \quad \int_{E}\left(g_{1}-g_{2}\right) d \nu=0 \quad \forall E \in \mathcal{N} \quad \Longrightarrow \quad g_{1}=g_{2} \nu \text {-a.e.. }
$$

Problem 2.4.4 Let μ and ν be finite positive measures on the measurable space (X, \mathcal{A}). Show that there is a nonnegative measurable function f on X such that for all $A \in \mathcal{A}$

$$
\int_{A}(1-f) d \mu=\int_{A} f d \nu
$$

Hint: The statement is equivalent to $\mu(A)=\int_{A} f d(\mu+\nu)$.
Solution: Since μ and ν are positive, we have that $\mu \ll \mu+\nu$ and so, by Radon-Nikodym theorem, there exists a positive function $f \in L^{1}(\mu+\nu)$ such that

$$
\mu(A)=\int_{A} f d(\mu+\nu), \quad \forall A \in \mathcal{A} \quad \Longrightarrow \quad \int_{A}(1-f) d \mu=\int_{A} f d \nu, \quad \forall A \in \mathcal{A}
$$

Problem 2.4.5 Let m be the Lebesgue measure on the real line \mathbb{R}. For each Lebesgue measurable subset E of \mathbb{R} define

$$
\mu(E)=\int_{E} \frac{1}{1+x^{2}} d m(x)
$$

a) Show that $m \ll \mu$.
b) Compute the Radon-Nikodym derivative $h=d m / d \mu$.

Hints: a) Use Problem 2.1.1. b) Given a Lebesgue-measurable set E, consider the function $f(x)=\frac{1}{1+x^{2}} \chi_{E}(x)$ and use problem 2.2.21.
Solution: a) If $\mu(E)=0$ then, by problem 2.1.1, we have that $m\left(\left\{x \in E: \frac{1}{1+x^{2}} \neq 0\right\}\right)=0$ and so, $m(E)=0$. Hence, $m \ll \mu$.
b) As $m \ll \mu$, by Radon-Nikodym theorem, there exists a positive function $f \in L^{1}(\mu)$ such that, for any Lebesgue-measurable set E,

$$
m(E)=\int_{E} f(x) d \mu(x) \quad \text { and } \quad \int_{\mathbb{R}} g d m=\int_{\mathbb{R}} g f d \mu, \quad \forall g \in L^{1}(m) .
$$

by problem 2.2.21. Then, for any Lebesgue-measurable set E
$\mu(E)=\int_{E} \frac{1}{1+x^{2}} d m(x)=\int_{\mathbb{R}} \frac{1}{1+x^{2}} \chi_{E}(x) d m(x)=\int_{\mathbb{R}} \frac{f(x)}{1+x^{2}} \chi_{E}(x) d \mu(x)=\int_{E} \frac{f(x)}{1+x^{2}} d \mu(x)$, and so $\frac{f(x)}{1+x^{2}}=1$ a.e., that is to say $f(x)=1+x^{2}$ almost everywhere.

Problem 2.4.6 Let m be the Lebesgue measure on the real line \mathbb{R}. Consider a measurable function $f: \mathbb{R} \rightarrow[0, \infty]$ such that f and $1 / f$ are Lebesgue integrable on each bounded subset of \mathbb{R}. For each Lebesgue measurable subset of \mathbb{R} define

$$
\mu(E)=\int_{E} f(x) d m(x) .
$$

a) Show that $m \ll \mu$.
b) Compute the Radon-Nikodym derivative $h=d m / d \mu$.

Hint: Use the argument in the previous exercise.
Solution: b) $h(x)=1 / f(x)$.
Problem 2.4.7 Let us consider the increasing function $F(x)=\max \{0, x+[x]\}$, where $[x]$ denotes the integer part of x. Let μ_{F} be the Borel-Stieltjes measure associated to F.
a) Calculate $\mu_{F}((0,5]), \mu_{F}([4,8])$ and $\mu_{F}([3,7))$.
b) Prove that μ_{F} is not absolutely continuous with respect to Lebesgue measure.

Hint: b) Consider, for example, the set $A=\{1\}$.
Solution: a) $\mu_{F}((0,5])=10, \mu_{F}([4,8])=9, \mu_{F}([3,7))=8$.
b) If $A=\{1\}$, we have that $\mu_{F}(A)=F(1+)-F(1-)=2-1=1$ but $m(A)=0$.

Problem 2.4.8 Let μ_{F} be the Borel-Stieltjes measure associated to the increasing function

$$
F(x)= \begin{cases}0, & \text { if } x<0 \\ x, & \text { if } 0 \leq x<1 \\ 1, & \text { if } 1 \leq x\end{cases}
$$

a) Prove that $\mu_{F} \ll m$, being m the Lebesgue measure.
b) Is there the Radon-Nikodym derivative of μ_{F} with respect to m ?. If so, find it.
c) Let μ be the measure that counts rational numbers in $[0,1]$, that is to say that $\mu(A)=$ $\operatorname{card}(A \cap[0,1] \cap \mathbb{Q})$. Prove that $\mu_{F} \perp \mu$.

Hints: a) Given $I=[a, b)$, prove that $\mu_{F}(I) \leq m(I)$ since $x-F(x)$ is increasing. Apply Caratheodory-Hopf's theorem. b) Use problem 2.2 .25 . c) Consider the set $[0,1] \cap \mathbb{Q}$.

Solution: a) Since F is continuous we have that

$$
\mu_{F}([a, b))=F(b)-F(a) \leq b-a=m([a, b))
$$

because $F(x) \leq x, \forall x \in \mathbb{R}$. In fact, the function $f(x):=x-F(x)$ is continuous and increasing. Hence, f define a Borel-Stieltjes measure μ_{f} and, by Caratheodory-Hopf's theorem we have that $\mu_{f}=m-\mu_{F} \geq 0$. Hence, $0 \leq \mu \leq m \Longrightarrow \mu_{F} \ll m$.
b) Hence, there exists the Radon-Nikodym derivative of μ_{F} with respect to m. By problem 2.2 .25 we have that

$$
\mu_{F}=F^{\prime} d m=\chi_{(0,1)} d m
$$

c) Let $B=[0,1] \cap \mathbb{Q}$. As $m(\mathbb{Q})=0$ we have that $m(B)=0$ and, by part a) that $\mu_{F}(B)=0$. On the other hand, $\mu\left(B^{c}\right)=\operatorname{card}\left(B^{c} \cap[0,1] \cap \mathbb{Q}\right)=\operatorname{card}(\varnothing)=0$. Hence, $\mu_{F} \perp \mu$.

Problem 2.4.9 Let us define the increasing function

$$
F(x)= \begin{cases}e^{x}, & \text { if } x<0 \\ 2+\arctan x, & \text { if } x \geq 0\end{cases}
$$

and let μ_{F} be the associated Borel-Stieltjes measure.
a) Calculate $\mu_{F}((0,1]), \mu_{F}((-2,0]), \mu_{F}(0)$ and $\mu_{F}(\mathbb{R})$.
b) Prove that $\mu_{F}=f(x) d x+\delta_{0}$, for certain $f \geq 0$, and being δ_{0} the δ-Dirac measure at $x=0$.
c) Is true that $\mu_{F} \ll d x$?

Hint: b) Observe that $\delta_{0}=\mu_{H}$ with H the Heaviside function: $H=\chi_{[0, \infty)}$ and apply Exercise 2.2 .25 to μ_{F-H}.

Solution: a) $\mu_{f}((0,1])=\pi / 4, \mu_{f}((-2,0])=2-1 / e^{2}, \mu_{f}(0)=1, \mu_{f}(\mathbb{R})=2+\pi / 2$. b) As $\delta_{0}=\mu_{H}$ with H the Heaviside function $H(x)=1$ for $x \geq 0$ and $H(x)=0$ for $x<0$, then

$$
\mu_{F}-\delta_{0}=\mu_{F}-\mu_{H}=\mu_{F-H}
$$

and by problem 2.2.25 we have that

$$
\mu_{F}-\delta_{0}=f d x, \text { where } f(x)=(f-H)^{\prime}(x)= \begin{cases}e^{x}, & \text { if } x<0 \\ \frac{1}{1+x^{2}}, & \text { if } x>0\end{cases}
$$

c) No, consider the set $E=\{0\}$. Then, $m(A)=0$ but $\mu_{F}(A)=F\left(0^{+}\right)-F\left(0^{-}\right)=2-1=1 \neq 0$.

Problem 2.4.10 Let us consider the increasing function

$$
F(x)= \begin{cases}0, & \text { if } x<0 \\ x^{2} / 2, & \text { if } 0 \leq x<1, \\ 1, & \text { if } 1 \leq x,\end{cases}
$$

and let μ_{F} be the Borel-Stieltjes measure associated to F.
a) Prove that μ_{F} is not absolutely continuous with respect to Lebesgue measure m.
b) Find the Radon-Nikodym decomposition of μ_{F} with respect to m.

Hint: b) Use problem 2.2.25 on $(-\infty, 1)$ and on $(1, \infty)$.
Solution: a) Let $E=\{1\}$. Then, $m(E)=0$ but $\mu_{F}(E)=F\left(1^{+}\right)-F\left(1^{-}\right)=1-1 / 2=1 / 2 \neq 0$.
b) Using problem 2.2 .25 we get that $\mu_{F}=f^{\prime} d m+\lambda$ with $f(x)=F^{\prime}(x)=x \chi_{(0,1)}(x)$, and $\lambda=\frac{1}{2} \delta_{1}$.

