uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems Chapter 2: Integration theory Section 2.5: L^{p}-spaces

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

2 Integration Theory

2.5. L^{p}-spaces

Problem 2.5.1 Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}$ be functions such that

$$
\varphi_{i} \in L^{p_{i}}(X, \mathcal{A}, \mu), \quad \frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{k}} \leq 1
$$

Then $\varphi_{1} \varphi_{2} \cdots \varphi_{k} \in L^{p}(X, \mathcal{A}, \mu)$ and $\left\|\varphi_{1} \varphi_{2} \cdots \varphi_{k}\right\|_{p} \leq\left\|\varphi_{1}\right\|_{p_{1}}\left\|\varphi_{2}\right\|_{p_{2}} \cdots\left\|\varphi_{k}\right\|_{p_{k}}$.
Hint: If $a_{1}, \cdots, a_{k} \geq 0$ and $\lambda_{1}+\cdots \lambda_{k}=1$, then $a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{k}^{\lambda_{k}} \leq \lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{k} a_{k}$.
Solution: If $\left\|\varphi_{i}\right\|_{p_{i}}=0$ for some i, then $\varphi_{i}=0$ a.e. and so the inequality is obvious. The result is also trivial if $\left\|\varphi_{i}\right\|_{p_{i}}=\infty$ for some i. Hence, we can assume that $0<\left\|\varphi_{i}\right\|_{p_{i}}<\infty$ for all $i \in\{1, \ldots, k\}$. Also, by homogeneity it suffices to prove that

$$
\left\|\varphi_{1} \varphi_{2} \cdots \varphi_{k}\right\|_{p} \leq 1, \quad \text { if }\left\|\varphi_{i}\right\|_{p_{i}}=1, \quad \text { for } i=1, \ldots, k
$$

From the convexity of the exponential function and using Jensen's inequality it is easy to check that

$$
\begin{equation*}
a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{k}^{\lambda_{k}} \leq \lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{k} a_{k}, \quad \text { if } a_{1}, \ldots, a_{k} \geq 0 \tag{1}
\end{equation*}
$$

Let us take $a_{i}=\left|\varphi_{i}(x)\right|^{p_{i}}$ and $\lambda_{i}=p / p_{i}, i=1, \ldots, k$. Then, using (1), we have

$$
\begin{aligned}
\left|\varphi_{1}(x) \varphi_{2}(x) \cdots \varphi_{k}(x)\right|^{p} & =\left|\varphi_{1}(x)\right|^{\lambda_{1} p_{1}}\left|\varphi_{2}(x)\right|^{\lambda_{2} p_{2}} \cdots\left|\varphi_{k}(x)\right|^{\lambda_{k} p_{k}} \\
& \leq \lambda_{1}\left|\varphi_{1}(x)\right|^{p_{1}}+\lambda_{2}\left|\varphi_{2}(x)\right|^{p_{2}}+\cdots+\lambda_{k}\left|\varphi_{k}(x)\right|^{p_{k}} \\
& =\frac{p}{p_{1}}\left|\varphi_{1}(x)\right|^{p_{1}}+\frac{p}{p_{2}}\left|\varphi_{2}(x)\right|^{p_{2}}+\cdots+\frac{p}{p_{k}}\left|\varphi_{k}(x)\right|^{p_{k}}
\end{aligned}
$$

and, as $\left\|\varphi_{i}\right\|_{p_{i}}=1$, we obtain integrating that

$$
\int_{X}\left|\varphi_{1}(x) \varphi_{2}(x) \cdots \varphi_{k}(x)\right|^{p} d \mu \leq \sum_{i=1}^{k} \frac{p}{p_{i}} \int_{X}\left|\varphi_{i}(x)\right|^{p_{i}} d \mu=\sum_{i=1}^{k} \frac{p}{p_{i}}=1 .
$$

Problem 2.5.2 Let $0<p<r<q \leq \infty$ and let $\varphi \in L^{p}(X, \mathcal{A}, \mu) \cap L^{q}(X, \mathcal{A}, \mu)$.
a) Prove that $\varphi \in L^{r}(X, \mathcal{A}, \mu)$ and

$$
\|\varphi\|_{r} \leq\|\varphi\|_{p}^{\theta}\|\varphi\|_{q}^{1-\theta}, \quad \text { where } \frac{1}{r}=\frac{\theta}{p}+\frac{1-\theta}{q}
$$

b) Prove also that $L^{r}(\mu) \subset L^{p}(\mu)+L^{q}(\mu)$.
c) Prove that $\lim _{r \rightarrow \infty}\|\varphi\|_{r}=\|\varphi\|_{\infty}$.

Hints: a) If $q=\infty$, then $|\varphi|^{r}=|\varphi|^{r-p}|\varphi|^{p} \leq\|\varphi\|_{\infty}^{r-p}|\varphi|^{p}$ and $\frac{1}{r}=\frac{\theta}{p}$. If $q<\infty$, then $\frac{p}{\theta r}$ and $\frac{q}{(1-\theta) r}$ are conjugate exponents and $|\varphi|^{r}=|\varphi|^{\theta r}|\varphi|^{(1-\theta) r}$. Apply Hölder's inequality. b) If $A=\{x \in X:|\varphi(x)| \leq 1\}$, then $\varphi=\varphi \chi_{A}+\varphi \chi_{A^{c}}$. c) By letting $r \rightarrow \infty$ in $\|\varphi\|_{r} \leq\|\varphi\|_{p}^{\theta}\|\varphi\|_{\infty}^{1-\theta}$ deduce that $\lim \sup _{r \rightarrow \infty}\|\varphi\|_{r} \leq\|\varphi\|_{\infty}$. Also, we can suppose that $\|\varphi\|_{\infty}>a>0$. Use Markov's inequality to deduce that $\|\varphi\|_{r} \geq a \mu(\{x:|\varphi(x)|>a\})^{1 / r}$ and by letting $r \rightarrow \infty$ and $a \rightarrow\|\varphi\|_{\infty}$ deduce that $\liminf _{r \rightarrow \infty}\|\varphi\|_{r} \geq\|\varphi\|_{\infty}$.

Problem 2.5.3 Let (X, \mathcal{A}, μ) be a measure space. For some measures the relation $p<q$ implies $L^{p} \subset L^{q}$. For others the relationship is reversed and there are some measures for which L^{p} does no contain L^{q} for $p \neq q$. Give examples of these situations:
a) If $\mu(X)<\infty$ and $1 \leq p<q \leq \infty$, then $L^{p}(\mu) \supset L^{q}(\mu)$ and $\|f\|_{p} \leq\|f\|_{q} \mu(X)^{\frac{1}{p}-\frac{1}{q}}$.
b) If $0<p<q \leq \infty$, then $\ell^{p} \subset \ell^{q}$ and $\left\|x_{n}\right\|_{q} \leq\left\|x_{n}\right\|_{p}$.
c) Show that $L^{p}(\mathbb{R}, \mathcal{B}(\mathbb{R}), m) \nsubseteq L^{q}(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ for $p \neq q$.

Hints: a) Use Hölder's inequality. b) Use part a) of problem 2.5.2. c) Consider the function $f(x)=\left|x\left(\log ^{2}|x|+1\right)\right|^{-1 / p}$.
Solution: a) If $q=\infty$, it is obvious. If $q<\infty$, we use Hölder's inequality with the conjugate exponents q / p and $(q / p)^{\prime}=q /(q-p)$:

$$
\|f\|_{p}^{p}=\int_{X}|f|^{p} \cdot 1 d \mu \leq\left\|\left||f|^{p}\left\|_{q / p}\right\| 1 \|_{(q / p)^{\prime}}=\left(\int_{X}|f|^{q} d \mu\right)^{p / q} \mu(X)^{(q-p) / q}\right.\right.
$$

and so $\|f\|_{p} \leq\|f\|_{q} \mu(X)^{\frac{1}{p}-\frac{1}{q}}$.
b) Obviously, $\left\|x_{n}\right\|_{\infty}=\sup _{n}\left|x_{n}\right| \Longrightarrow\left\|x_{n}\right\|_{\infty}^{p}=\left(\sup _{n}\left|x_{n}\right|\right)^{p} \leq \sum_{n}\left|x_{n}\right|^{p}=\left\|x_{n}\right\|_{p}^{p}$ and so $\left\|x_{n}\right\|_{\infty} \leq\left\|x_{n}\right\|_{p}$. The case $q<\infty$ follows from problem 2.5.2 and the inequality just proved $\left\|x_{n}\right\|_{\infty} \leq\left\|x_{n}\right\|_{p}:$

$$
\left\|x_{n}\right\|_{q} \leq\left\|x_{n}\right\|_{p}^{p / q}\left\|x_{n}\right\|_{\infty}^{1-p / q} \leq\left\|x_{n}\right\|_{p}^{p / q}\left\|x_{n}\right\|_{p}^{1-p / q}=\left\|x_{n}\right\|_{p}
$$

c) Let $f(x)=\frac{1}{\left|x\left(\log ^{2}|x|+1\right)\right|^{1 / p}}$ and let us assume that $p<q$. Then

$$
\int_{\mathbb{R}}|f(x)|^{p} d x=\int_{\mathbb{R}} \frac{d x}{|x|\left(\log ^{2}|x|+1\right)}=2 \int_{0}^{\infty} \frac{d x}{|x|\left(\log ^{2}|x|+1\right)}<\infty
$$

since

$$
\int_{0}^{\infty} \frac{d x}{|x|\left(\log ^{2}|x|+1\right)} \leq \int_{0}^{1 / 2} \frac{d x}{x \log ^{2} x}+\int_{1 / 2}^{2} \frac{d x}{x \log ^{2} x+1}+\int_{2}^{\infty} \frac{d x}{x \log ^{2} x}<\infty
$$

because using the monotone convergence theorem we have

$$
\begin{gathered}
\int_{0}^{1 / 2} \frac{d x}{x \log ^{2} x}=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1 / 2} \frac{d x}{x \log ^{2} x}=\lim _{\varepsilon \rightarrow 0^{+}}\left[\frac{-1}{\log x}\right]_{x=\varepsilon}^{x=1 / 2}=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\log \varepsilon}-\frac{1}{\log \frac{1}{2}}=\frac{1}{\log 2}<\infty, \\
\int_{1 / 2}^{2} \frac{d x}{x \log ^{2} x+1}<\infty, \quad \text { since } \frac{1}{x \log ^{2} x+1} \text { is continuous in }[1 / 2,2], \\
\int_{2}^{\infty} \frac{d x}{x \log ^{2} x}=\lim _{n \rightarrow \infty} \int_{2}^{N} \frac{d x}{x \log ^{2} x}=\lim _{N \rightarrow \infty}\left[\frac{-1}{\log x}\right]_{x=2}^{x=N}=\lim _{N \rightarrow \infty} \frac{1}{\log 2}-\frac{1}{\log N}=\frac{1}{\log 2}<\infty .
\end{gathered}
$$

We also have

$$
\int_{\mathbb{R}}|f(x)|^{q} d x=\int_{\mathbb{R}} \frac{d x}{|x|^{q / p}\left(\log ^{2}|x|+1\right)^{q / p}}=2 \int_{0}^{\infty} \frac{d x}{x^{q / p}\left(\log ^{2} x+1\right)^{q / p}}=\infty
$$

since, $\lim _{x \rightarrow 0^{+}} x^{\delta} \log x=0$ for all $\delta>0$, and so $\left(\log ^{2} x+1\right)^{q / p} \leq C(\delta) / x^{\delta}$ in $(0,1 / 2]$, and using the monotone convergence theorem we get that

$$
\begin{aligned}
\int_{0}^{1 / 2} \frac{d x}{x^{q / p}\left(\log ^{2} x+1\right)^{q / p}} & \geq C \int_{0}^{1 / 2} \frac{d x}{x^{q / p-\delta}}=C \lim _{\varepsilon \rightarrow 0^{+}} \int_{\varepsilon}^{1 / 2} \frac{d x}{x^{q / p-\delta}}=C \lim _{\varepsilon \rightarrow 0^{+}}\left[\frac{x^{1+\delta-q / p}}{1+\delta-q / p}\right]_{x=\varepsilon}^{x=1 / 2} \\
& =\frac{C}{q / p-1-\delta} \lim _{\varepsilon \rightarrow 0^{+}}\left(\frac{1}{\varepsilon^{q / p-\delta-1}}-2^{q / p-\delta-1}\right)=\infty
\end{aligned}
$$

if we choose $\delta>0$ small enough so that $1+\delta<q / p$.
Let us assume now that $q<p$. Then the same function f verifies that $f \notin L^{q}$, since $\lim _{x \rightarrow \infty} \log x / x^{\delta}=$ 0 for all $\delta>0$ and so $\left(\log ^{2} x+1\right)^{q / p} \leq C(\delta) x^{\delta}$ in $(1, \infty)$. Hence, using again the monotone convergence theorem we have that

$$
\begin{aligned}
\int_{1}^{\infty} \frac{d x}{x^{q / p}\left(\log ^{2} x+1\right)^{q / p}} & \geq C \int_{1}^{\infty} \frac{d x}{x^{q / p+\delta}}=C \lim _{N \rightarrow \infty}\left[\frac{x^{1-\delta-q / p}}{1-\delta-q / p}\right]_{x=1}^{x=N} \\
& =\frac{C}{1-\delta-q / p} \lim _{N \rightarrow \infty}\left(N^{1-\delta-q / p}-1\right)=\infty
\end{aligned}
$$

if we choose $\delta>0$ small enough so that $q / p+\delta<1$.
Problem 2.5.4 Let (X, \mathcal{A}, μ) be a measure space.
i) Prove that Hölder's inequality holds for the exponents $p=1$ and $q=\infty$: If f and g are measurable functions on X, then $\|f g\|_{1} \leq\|f\|_{1}\|g\|_{\infty}$.
ii) If $f \in L^{1}(\mu)$ and $g \in L^{\infty}(\mu)$, prove that $\|f g\|_{1}=\|f\|_{1}\|g\|_{\infty}$ iff $|g(x)|=\|g\|_{\infty}$ a.e. on the set where $f(x) \neq 0$.
iii) Prove that if $f \in L^{p}(\mu)$ and $g \in L^{\infty}(\mu)$, then $f g \in L^{p}(\mu)$ and $\|f g\|_{p} \leq\|f\|_{p}\|g\|_{\infty}$. When equality holds in this inequality?
iv) Prove that $\|\cdot\|_{\infty}$ is a norm on $L^{\infty}(\mu)$.
v) Prove that if $\mu(X)<\infty$ and $f \in L^{\infty}(\mu)$, then $f \in \cap_{p \geq 1} L^{p}(\mu)$. Prove that the reverse statement is false.
vi) Let $f \in L^{\infty}(\mu)$ and $\left\{f_{n}\right\}$ be a sequence in $L^{\infty}(\mu)$. Prove that $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ if and only if there exists $E \in \mathcal{A}$ such that $\mu\left(E^{c}\right)=0$ and $f_{n} \rightarrow f$ uniformly on E.
vii) The simple functions are dense in L^{∞} if $\mu(X)<\infty$: Each $f \in L^{\infty}$ can be approximated by a sequence of simple functions $\left\{s_{n}\right\} \subset L^{\infty}(\mu)$.

Hint: v) Consider the function $f(x)=\log x$ on $X=(0,1]$.
Solution: i) $\|f g\|_{1}=\int_{X}|f g| d \mu \leq \int_{X}|f|\|g\|_{\infty} d \mu=\|g\|_{\infty}\|f\|_{1}$.
ii) $\|f g\|_{1}=\|f\|_{1}\|g\|_{\infty} \Longleftrightarrow \int_{X}|f|\left(\|g\|_{\infty}-|g|\right) d \mu=0 \Longleftrightarrow\|g\|_{\infty}=|g(x)|$ a.e. on the set where $f(x) \neq 0$, as $\|g\|_{\infty}-|g| \geq 0$ a.e.
iii) $\|f g\|_{p}^{p}=\int_{X}|f g|^{p} d \mu \leq \int_{X}|f|^{p}\|g\|_{\infty}^{p} d \mu \leq\|g\|_{\infty}^{p}\|f\|_{p}^{p}$. Equality holds if and only if $\int_{X}|f|^{p}\left(\|g\|_{\infty}^{p}-\right.$ $\left.|g|^{p}\right) d \mu=0 \Longleftrightarrow|g|=\|g\|_{\infty}$ a.e. on the set where $f(x) \neq 0$, as $\|g\|_{\infty}^{p}-|g|^{p} \geq 0$ a.e.
iv) a) $\|g\|_{\infty}=0 \Longleftrightarrow|g|=0$ a.e. $\Longleftrightarrow g=0$ a.e. $\Longleftrightarrow g=0 \in L^{\infty}(\mu)$. b) $\|\lambda g\|_{\infty}=|\lambda|\|g\|_{\infty}$ because $|\lambda g(x)|=|\lambda||g(x)| \leq|\lambda|\|g\|_{\infty}$ a.e. and $\mu\left(\left\{x:|\lambda||g(x)|>|\lambda|\|g\|_{\infty}\right\}\right)=\mu(\{x:|g(x)|>$ $\left.\left.\|g\|_{\infty}\right\}\right)$. с) $|f+g| \leq|f|+|g| \Longrightarrow\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$.
v) $\|f\|_{p}^{p}=\int_{X}|f|^{p} d \mu \leq\|f\|_{\infty} \int_{X} d \mu=\|f\|_{\infty} \mu(X)<\infty, \forall 1 \leq p<\infty$. But, $f(x)=\log x \notin$ $L^{\infty}(0,1]$ but $f \in L^{p}(0,1]$ for all $1 \leq p<\infty: \int_{0}^{1}|\log x|^{p} d x \leq C \int_{0}^{\delta} \frac{1}{x^{\varepsilon p}} d x+\int_{\delta}^{1}|\log x|^{p} d x<\infty$ choosing ε so that $\varepsilon p<1$.
vi) (\Leftarrow) As $f_{n} \rightarrow f$ uniformly on E, given $\varepsilon>0, \exists N=N(\varepsilon)$ such that $\left|f_{n}(x)-f(x)\right|<\varepsilon$, $\forall n>N, \forall x \in E$ and therefore, as $\mu\left(E^{c}\right)=0$, we have that $\left\|f_{n}-f\right\|_{\infty} \leq \varepsilon, \forall n>N$. Hence, $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$.
(\Rightarrow) If $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$, then $\forall k \in \mathbb{N}, \exists N=N(k)$ such that $\left\|f_{n}-f\right\|_{\infty}<1 / k$, $\forall n>N(k)$. Hence, the set $E_{k, n}^{c}:=\left\{x \in X:\left\|f_{n}-f\right\|_{\infty} \geq 1 / k\right\}$ has $\mu\left(E_{k, n}^{c}\right)=0$. Hence, the set $E:=\left(\cup_{k, n} E_{k, n}^{c}\right)^{c}=\cap_{k, n} E_{k, n}$ verifies $\mu\left(E^{c}\right)=\mu\left(\cup_{k, n} E_{k, n}^{c}\right)=0$ and $\left|f_{n}(x)-f(x)\right|<1 / k$, $\forall n>N(k), \forall x \in E$. Therefore, $f_{n}-f \rightarrow 0$ as $n \rightarrow \infty$ uniformly on E, and $\mu\left(E^{c}\right)=0$.
vii) If $f \in L^{\infty}(\mu)$, then we can choose a bounded representative of f, i.e. we can assume that $|f| \leq\|f\|_{\infty}, \forall x \in X$. Also, it is enough to prove it for $f \geq 0$. In this case, there exists a sequence $\left\{s_{n}\right\}$ of simple functions such that $0 \leq s_{1} \leq s_{2} \leq \cdots \leq s_{n} \cdots \nearrow f$, as $n \rightarrow \infty$. But then $\left\|s_{n}-f\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$.

Problem 2.5.5 Let $1 \leq p<\infty$.
a) Show that if $\varphi \in L^{p}\left(\mathbb{R}^{N}\right)$ and φ is uniformly continuous, then $\lim _{|x| \rightarrow \infty} \varphi(x)=0$.
b) Show that this is false if one only assumes that φ is continuous.

Hint: a) Prove it by contradiction: if $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}^{N}$ is such that $\left|x_{n}\right| \rightarrow \infty$ and $\left|\varphi\left(x_{n}\right)\right| \geq$ $\delta>0$ for every n, then the uniform continuity of φ implies the existence of $R>0$ such that $|\varphi(x)| \geq \delta / 2$ in $B\left(x_{n}, R\right)$. Show that this yields $\int_{\mathbb{R}^{N}}|\varphi|^{p} d x=\infty$. b) Consider the function $\varphi(x)=\sum_{n=1}^{\infty} f_{n}(x-n)$, where

$$
f_{n}(x)= \begin{cases}n x+1, & \text { if }-1 / n \leq x \leq 0 \\ 1-n x, & \text { if } 0 \leq x \leq 1 / n \\ 0, & \text { if } x \notin(-1 / n, 1 / n)\end{cases}
$$

Solution: a) Let us suppose that $\lim _{|x| \rightarrow \infty} \varphi(x) \neq 0$. Then, given $\delta>0$, there exists a sequence $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}^{N}$ such that $\left|x_{n}\right| \rightarrow \infty$ and $\left|\varphi\left(x_{n}\right)\right| \geq \delta$ for every $n \in \mathbb{N}$. As φ is uniformly continuous we have that there exists $R=R(\delta)$ such that for all $n \in \mathbb{N}$, if $\left|x-x_{n}\right|<R$ then $\left|\varphi(x)-\varphi\left(x_{n}\right)\right|<\delta / 2$. But then, if $\left|x-x_{n}\right|<R$,

$$
\left||\varphi(x)|-\left|\varphi\left(x_{n}\right)\right|\right| \leq\left|\varphi(x)-\varphi\left(x_{n}\right)\right| \leq \frac{\delta}{2} \quad \Rightarrow \quad\left|\varphi\left(x_{n}\right)\right|-|\varphi(x)|<\frac{\delta}{2}
$$

and so

$$
|\varphi(x)|>\left|\varphi\left(x_{n}\right)\right|-\frac{\delta}{2} \geq \delta-\frac{\delta}{2}=\frac{\delta}{2}, \quad \forall x \in B\left(x_{n}, R\right), \forall n \in \mathbb{N}
$$

Therefore,

$$
\int_{\mathbb{R}^{N}}|\varphi(x)|^{p} d x \geq \sum_{n=1}^{\infty} \int_{B\left(x_{n}, R\right)}|\varphi(x)|^{p} d x \geq \sum_{n=1}^{\infty}\left(\frac{\delta}{2}\right)^{p} m\left(B\left(x_{n}, R\right)\right)=\infty
$$

since all the balls $B\left(x_{n}, R\right)$ have the same Lebesgue measure. But this is a contradiction with the assumption that $\varphi \in L^{p}\left(\mathbb{R}^{N}\right)$.
b) Let us consider the function $\varphi(x)$ given in the hint. Note that $f_{n}(0)=1$ and f_{n} is continuous, for all $n \in \mathbb{N}$. Since the supports of the functions $f_{n}(x-n)$ are $\left[n-\frac{1}{n}, n+\frac{1}{n}\right]$ for all $n \in \mathbb{N}$, they are disjoint. But then, for each $k \in \mathbb{N}$, we have that $\varphi(k)=f_{k}(0)=1$ and so $\lim _{k \rightarrow \infty} \varphi(k)=1 \neq 0$.
Problem 2.5.6 Suppose that $f_{n} \in L^{p}(\mu)$, for $n=1,2,3, \ldots$ and $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ and $f_{n} \rightarrow g$ a.e., as $n \rightarrow \infty$. What relation exists between f and g ?

Solution: As $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$ we now that there exists a subsequence $\left\{f_{n_{k}}\right\}_{k=1}^{\infty}$ such that $f_{n_{k}} \rightarrow f$ as $k \rightarrow \infty$ almost everywhere. Let $A:=\left\{x \in X: \lim _{k \rightarrow \infty} f_{n_{k}}(x) \neq f(x)\right\}$ and $B:=\left\{x \in X: \lim _{n \rightarrow \infty} f_{n}(x) \neq g(x)\right\}$. Then $A \cup B$ has zero μ-measure and, if $x \notin A \cup B$, then $\lim _{k \rightarrow \infty} f_{n_{k}}=g(x)$. Hence, $f(x)=g(x)$ for $x \in A \cup B$ and so, $f=g$ almost everywhere.

Problem 2.5.7 Suppose $\mu(X)=1$, and suppose f and g are positive measurable functions on X such that $f g \geq 1$. Prove that

$$
\int_{X} f d \mu \cdot \int_{X} g d \mu \geq 1
$$

Hint: Use Cauchy-Schwarz ineguality.
Solution: By Cauchy-Schwarz ineguality and, since $\sqrt{f g} \geq 1$, we get that

$$
\left(\int_{X} f d \mu\right)\left(\int_{X} g d \mu\right) \geq\left(\int_{X} \sqrt{f g} d \mu\right)^{2} \geq\left(\int_{X} 1 d \mu\right)^{2}=\mu(X)^{2}=1 .
$$

Problem 2.5.8 Suppose $\mu(X)=1$ and $h: X \longrightarrow[0, \infty]$ is measurable. If $A:=\int_{X} h d \mu$, prove that

$$
\sqrt{1+A^{2}} \leq \int_{X} \sqrt{1+h^{2}} d \mu \leq 1+A
$$

If μ is Lebesgue measure on $[0,1]$ and h is continuous, $h=f^{\prime}$, the above inequalities have a simple geometric interpretation. From this, conjecture (for general X) under what conditions on h equality can hold in either of the above inequalities, and prove your conjecture.
Hint: The first inequality follows from Jensen's inequality. The second one follows from the inequality $\sqrt{1+x^{2}} \leq 1+x$ for $x \geq 0$.
Solution: The function $\varphi(x):=\sqrt{1+x^{2}}$ is convex because $\varphi^{\prime \prime}(x)=\left(1+x^{2}\right)^{-3 / 2}>0$. Hence, by Jensen's inequality:

$$
\sqrt{1+A^{2}}=\varphi(A)=\varphi\left(\int_{X} h d \mu\right) \leq \int_{X}(\varphi \circ h) d \mu=\int_{X} \sqrt{1+h^{2}} d \mu .
$$

On the other hand, for $x \geq 0: 1+x^{2} \leq(1+x)^{2} \Longrightarrow \sqrt{1+x^{2}} \leq 1+x$. Therefore,

$$
\int_{X} \sqrt{1+h^{2}} d \mu \leq \int_{X}(1+h) d \mu=\mu(X)+\int_{X} h d \mu=1+A .
$$

If $X=[0,1], \mu$ is Lebesgue measure and $h=f^{\prime}$ is continuous, then $A=\int_{0}^{1} f^{\prime}(x) d x=f(1)-f(0)$. Hence, the second inequality means that the length of the graph of f is \leq than the length of the longer path from $(0, f(0))$ to $(1, f(1))$ which is $1+(f(1)-f(0))$, the sum of the legs of the right triangle with vertices $(0, f(0)),(1, f(0))$ and $(1, f(1))$. The first inequality means that the shortest path is the straight line joining $(0, f(0))$ with $(1, f(1))$.
These facts suggest that the second inequality is an equality iff $h=0$ a.e., that is to say, iff f is constant a.e., and the first one is an equality iff $h=A$ a.e.. Indeed, second inequality is
equality $\Longleftrightarrow \sqrt{1+x^{2}}=1+x$, for $x \geq 0 \Longleftrightarrow x=0$; first inequality is equality \Longleftrightarrow we have equality in Jensen's inequality $\Longleftrightarrow \varphi(A)=(\varphi \circ h)(x)$ a.e. $\Longleftrightarrow \sqrt{1+A^{2}}=\sqrt{1+(h(x))^{2}}$ a.e. $\Longleftrightarrow h(x)=A$ a.e..

Problem 2.5.9 Let f be a complex function, $f \neq 0$. Let us define the function $\varphi(p)=\|f\|_{p}^{p}$ for $0<p<\infty$ and let $E=\{p: \varphi(p)<\infty\}=\left\{p: f \in L^{p}(\mu)\right\}$. Prove that
a) If $r<p<s$ and $r, s \in E$, then $p \in E$.
b) $\log \varphi$ is convex in E.
c) Part a) implies that E is connected. Is E necessarily open? and closed? Can E be constituted by a single point? Can E be a any connected subset of $(0, \infty)$?
d) If $r<p<s$, then $\|f\|_{p} \leq \max \left\{\|f\|_{r},\|f\|_{s}\right\}$.

Hints: a) $t^{p} \leq \max \left(t^{r}, t^{s}\right) \leq t^{r}+t^{s}$. b) If $p=\lambda r+(1-\lambda) s$ with $0<\lambda<1$, apply Hölder's inequality (with the conjugate exponents $\alpha=1 / \lambda$ and $\beta=1 /(1-\lambda)$) to bound $\varphi(p)$ in terms of $\varphi(r)$ and $\varphi(s)$. d) Apply part b).
Solution: a) As $t^{p} \leq \max \left(t^{r}, t^{s}\right) \leq t^{r}+t^{s} \Longrightarrow|f|^{p} \leq|f|^{r}+|f|^{s} \Longrightarrow \varphi(p) \leq \varphi(r)+\varphi(s)<\infty$. Hence, $p \in E$.
b) Let $p=\lambda r+(1-\lambda) s$ with $0<\lambda<1$. As $\alpha=1 / \lambda$ and $\beta=1 /(1-\lambda)$ are conjugate exponents, by Hölder's inequality we get

$$
\begin{align*}
\int_{X}|f|^{p} d \mu & =\int_{X}|f|^{\lambda r}|f|^{(1-\lambda) s} d \mu \leq\left(\int_{X}\left(|f|^{\lambda r}\right)^{1 / \lambda} d \mu\right)^{\lambda}\left(\int_{X}\left(|f|^{(1-\lambda) s}\right)^{1 /(1-\lambda)} d \mu\right)^{1-\lambda} \tag{2}\\
& =\left(\int_{X}|f|^{r} d \mu\right)^{\lambda}\left(\int_{X}|f|^{s} d \mu\right)^{1-\lambda}
\end{align*}
$$

Hence, $\varphi(p) \leq \varphi(r)^{\lambda} \varphi(s)^{1-\lambda}$ and so $\log \varphi(p) \leq \lambda \varphi(r)+(1-\lambda) \log \varphi(s)$, i.e. $\log \varphi$ is convex.
c) E can be open, closed, unbounded and, even a single point, as the following examples show:

- $X=[0,1], f_{1}(x)=1 / x^{1 / a} \Longrightarrow E=(0, a)$.
- $X=[1, \infty), f_{2}(x)=1 / x^{1 / b} \Longrightarrow E=(b, \infty)$.
- $X=[0,1 / 2], f_{3}(x)=1 /\left(x \log ^{2} x\right)^{1 / c} \Longrightarrow E=(0, c]$.
- $X=[e, \infty), f_{4}(x)=1 /\left(x \log ^{2} x\right)^{1 / d} \Longrightarrow E=[d, \infty)$.
- $X=(0, \infty), f_{5}(x)=1 /\left(x\left(\log ^{2} x+1\right)\right)^{1 / p} \Longrightarrow E=\{p\}$.
d) If $\|f\|_{r} \leq\|f\|_{s}$ then, by (2), $\|f\|_{p}^{p} \leq\|f\|_{r}^{\lambda r}\|f\|_{s}^{(1-\lambda s} \leq\|f\|_{s}^{\lambda r}\|f\|_{s}^{(1-\lambda s}=\|f\|_{s}^{\lambda r+(1-\lambda) s}=\|f\|_{s}^{p}$.

Problem 2.5.10* Let (X, \mathcal{A}, μ) be a probability space, i.e. $\mu(X)=1$.
a) Prove that if φ is strictly convex: $\varphi(\lambda x+(1-\lambda) y)<\lambda \varphi(x)+(1-\lambda) \varphi(y)$ for $0<\lambda<1$, then equality holds in Jensen's inequality,

$$
\varphi\left(\int_{X} f d \mu\right) \leq \int_{X}(\varphi \circ f) d \mu, \quad \text { for } f \in L^{1}(\mu)
$$

if and only if f is constant almost everywhere.
b) If $0<p<q \leq \infty$ prove that $\|f\|_{p} \leq\|f\|_{q}$.
c) Use part a) to prove that $\|f\|_{p}=\|f\|_{q}$ if and only if f is constant almost everywhere.
d) Assume that $\|f\|_{r}<\infty$ for some $r>0$, and prove that

$$
\lim _{p \rightarrow 0}\|f\|_{p}=\exp \left(\int_{X} \log |f| d \mu\right)
$$

if $\exp (-\infty)$ is defined to be 0 .
Hints: a) If $f \neq 0$ a.e., then there exists $c \in \mathbb{R}$ such that $A=\{x:|f(x)|>c\}$ has $0<\mu(A)<1$. Take $\lambda=\mu(A), x=\frac{1}{\lambda} \int_{A} f d \mu, y=\frac{1}{1-\lambda} \int_{A^{c}} f d \mu$ and apply Jensen's inequality. To bound $\varphi(x)$ and $\varphi(y)$ apply again Jensen's inequality. Finally, deduce that Jensen's inequality for this f is strict. b) Apply Jensen's inequality to the convex function $\varphi(x)=x^{t}$ with $t=q / p>1$. c) $\varphi(x)=x^{t}$ is strictly convex. d) Apply Jensen's inequality with $\varphi(x)=-\log x$ and use that $\log x \leq x-1$ for $x \in(0, \infty)$ and that $\left(t^{p}-1\right) / t \rightarrow \log t$ as $p \rightarrow 0$. Use a convergence theorem.

Problem 2.5.11** Suppose $1<p<\infty, f \in L^{p}((0, \infty), \mathcal{B}, m)$ and let us define

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t \quad(0<x<\infty)
$$

a) Prove that the mapping $f \rightarrow F$ carries L^{p} into L^{p} and more concretely, prove Hardy's inequality:

$$
\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}
$$

b) Prove that equality holds in Hardy's inequality iff $f=0$ almost everywhere.
c) Prove that the constant $p /(p-1)$ cannot be replaced by a smaller one.
d) If $f>0$ and $f \in L^{1}$, prove that $F \notin L^{1}$.

Hints: a) Assume first that $f \geq 0$ and $f \in C_{c}((0, \infty))$. Integration by parts gives

$$
\int_{0}^{\infty} F^{p}(x) d x=-p \int_{0}^{\infty} F^{p-1}(x) x F^{\prime}(x) d x .
$$

Note that $x F^{\prime}=f-F$ and apply Hölder's inequality to $\int F^{p-1} f$. Then derive the general case. b) If equality holds for $f \geq 0$ deduce that we must have equality in

$$
\int_{0}^{\infty} F^{p}(x) d x=q \int_{0}^{\infty} f(x) F^{p-1} d x \leq q\|f\|_{p}\left(\int_{0}^{\infty} F^{p}(x) d x\right)^{1 / q}
$$

and therefore that $\exists \alpha \geq 0$ such that $\alpha f^{p}=F^{p}$, and from this that f is constant a.e. c) Take $f(x)=x^{-1 / p}$ on $[1, A], f(x)=0$ elsewhere, for large A. d) If $f \in L^{1}$ and $f \neq 0$ a.e., then $\exists x_{0}$ such that $\int_{0}^{x_{0}} f(t) d t>0$.

Problem 2.5.12 Let (X, \mathcal{A}, μ) be a measure space, $1 \leq p<\infty$ and let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions in $L^{p}(\mu)$ such that $f_{n} \rightarrow f$ almost everywhere, as $n \rightarrow \infty$.
a) If, for some $M \geq 0,\left\|f_{n}\right\|_{p} \leq M$ for all $n \in \mathbb{N}$, then $f \in L^{p}(\mu)$ and

$$
\|f\|_{p} \leq \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}
$$

b) If, for some $F \in L^{p}(\mu),\left|f_{n}(x)\right| \leq|F(x)|$ for all $n \in \mathbb{N}$ and almost every $x \in X$, then $f \in L^{p}(\mu)$ and $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$.
c) Prove that b) is false for $p=\infty$.

Hints: a) Use Fatou's lemma. b) Use dominated convergence theorem. c) Consider the sequence $f_{n}=\chi_{(0,1 / n)}$ in (0,1).
Solution: a) By Fatou's lemma:

$$
\int_{X}|f|^{p} d \mu=\int_{X} \lim _{n \rightarrow \infty}\left|f_{n}\right|^{p} d \mu \leq \liminf _{n \rightarrow \infty} \int_{X}\left|f_{n}\right|^{p} d \mu \leq M^{p}<\infty .
$$

Therefore, $f \in L^{p}(\mu)$ and $\|f\|_{p} \leq \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}$.
b) By the dominated convergence theorem:

$$
\int_{X}|f|^{p} d \mu=\int_{X} \lim _{n \rightarrow \infty}\left|f_{n}\right|^{p} d \mu=\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}\right|^{p} d \mu \leq \int_{X}|F|^{p} d \mu<\infty .
$$

Therefore, $f \in L^{p}(\mu)$ and, as $\left|f_{n}(x)-f(x)\right| \leq\left|f_{n}(x)\right|+|f(x)|$, then

$$
\left|f_{n}(x)-f(x)\right|^{p} \leq 2^{p-1}\left(\left|f_{n}(x)\right|^{p}+|f(x)|^{p}\right) \leq 2^{p}|F(x)|^{p} \in L^{1}(\mu),
$$

and again, by the dominated convergence theorem,

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right|^{p} d \mu=\int_{X} \lim _{n \rightarrow \infty}\left|f_{n}-f\right|^{p} d \mu=\int_{X} 0 d \mu=0
$$

c) Let $X=[0,1], f_{n}=\chi_{(0,1 / n)}$. Then $f_{n}(x) \rightarrow 0$ as $n \rightarrow \infty$ almost everywhere, $\left\|f_{n}\right\|_{\infty}=1$, $\left\|f_{n}-f\right\|_{\infty}=\left\|f_{n}\right\|_{\infty}=1$ and so $\left\|f_{n}-f\right\|_{\infty}$ does not converge to 0 as $n \rightarrow \infty$.

Problem 2.5.13* Let $0<p<\infty$ and $f, f_{n} \in L^{p}(X, \mathcal{A}, \mu)$.
a) If $1 \leq p \leq \infty$ and $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$, prove that $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$.
b) Let $c_{p}=\max \left\{1,2^{p-1}\right\}$. Prove that

$$
|a-b|^{p} \leq c_{p}\left(|a|^{p}+|b|^{p}\right)
$$

for arbitrary complex numbers a and b.
c) If $f_{n} \rightarrow f$ a.e. and $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$ as $n \rightarrow \infty$ prove that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$.
d) Prove that the conclusion of c) is false if the hypothesis $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$ is removed, even if $\mu(X)<\infty$.
e) Prove that the conclusion of c) is false if $p=\infty$

Hint: a) Prove that $\left|\|f\|_{p}-\|g\|_{p}\right| \leq\|f-g\|_{p}$ for $f, g \in L^{p}(\mu)$. b) Prove the cases $0<p \leq 1$ and $1<p<\infty$ separately. For the first one, consider the function $\phi(x)=(x+y)^{p}-x^{p}-y^{p}$ for $x \geq 0$ and fixed $y \geq 0$ and prove that φ is decreasing. For the second case, consider the function $\psi(x)=2^{p-1}\left(x^{p}+y^{p}\right)-(x+y)^{p}$ for $x \geq 0$ and fixed $y \geq 0$ and prove that ψ has an absolute minimum when $x=y$. c) Consider the function $h_{n}=c_{p}\left(|f|^{p}+\left|f_{n}\right|^{p}\right)-\left|f-f_{n}\right|^{p}$ and use Fatou's lemma as in the proof of the dominated convergence theorem.

