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2 Integration Theory

2.5. LP-spaces
Problem 2.5.1 Let @1, @9, ..., @k be functions such that
. 1 1
i € LP(X, Ap),  —=—+—+-+—<1.

Then @102 r € LP(X, A, p) and [lo102 - @rllp < lle1llp: lle2llps - - - [lorllpy, -

Hint: If a1,--- ,a > 0and Ay +--- A\ = 1, then ai‘lay---ag’“ < \aj + Xag + -+ Apag

Solution: If ||¢;||p, = 0 for some ¢, then ¢; = 0 a.e. and so the inequality is obvious. The result
is also trivial if ||¢;||,, = oo for some i. Hence, we can assume that 0 < |[¢;i]|p,, < oo for all
i€ {l,...,k}. Also, by homogeneity it suffices to prove that

lerpa--rlly <1, if [l@llp, =1, fori=1,... k.
From the convexity of the exponential function and using Jensen’s inequality it is easy to check

that

ai‘lag‘Q-'-agkS)\lal—f-)\gag—l—---—i—)\kak, ifar,...,ar > 0. (1)

Let us take a; = |p;(x)|P" and \; = p/pi, i = 1,..., k. Then, using (1), we have

p1()p2(x) - on(@) [P = |1 (@) NP o (@) 22 - - o () PP
S Alea(@)[P1 4 Az [pa ()72 + - 4 Ak |r () [P

p p p
= —lpr(@)[" + = lpa(@)[”? + - + — [oox(a) [
p1 P2 Dk

and, as [|¢;i||p, = 1, we obtain integrating that

k k
[ @@ enta)lr an < ;;’/X o= 1.

Problem 2.5.2 Let 0 <p<r <g<ooandlet p € LP(X, A u)NLUX, A, pn).
a) Prove that p € L"(X, A, p) and

1 6 1-86
< lelllllgll2 = here — = - 4 —
lelle < liellpllelly ™, where == 24 —
b) Prove also that L" () C LP(u) + L(w).
c¢) Prove that lim, o [|¢|lr = [|¢|co-
Hints: a) If ¢ = oo, then |¢|" = |o|"P|plP < |l¢|5”|¢P and + = %. If ¢ < oo, then /-

and ﬁ are conjugate exponents and |¢|” = || |17, Apply Holder’s inequality. b) If

A={z € X: |p(z)] <1}, then ¢ = px,, + @X,.- ¢) By letting r — oo in [lo]l, < [[elpllells’
deduce that limsup,_, ||¢|lr < ||¢]lco- Also, we can suppose that ||¢]|s > a > 0. Use Markov’s
inequality to deduce that |||, > au({z : |o(z)| > a})*/" and by letting 7 — 0o and @ — ||¢]|ee
deduce that liminf, . ||¢|lr > |[¢]lco-
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Problem 2.5.3 Let (X, A, 1) be a measure space. For some measures the relation p < ¢ implies
LP C L4. For others the relationship is reversed and there are some measures for which LP does
no contain LY for p # q. Give examples of these situations:

3 =
Q=

) TE u(X) < 00 and 1 < p < g < oo, then LP(u) > L9(u) and |1 < || fllg ()
b) If 0 < p < ¢ < oo, then 7 C ¢9 and ||z, ||q < ||zn]lp -
c¢) Show that LP(R, B(R),m) € LY(R, B(R), m) for p # q.

Hints: a) Use Holder’s inequality. b) Use part a) of problem 2.5.2. c) Consider the function
f(a) = |z(log? |x] + 1)|71/7.

Solution: a) If ¢ = oo, it is obvious. If ¢ < co, we use Holder’s inequality with the conjugate
exponents q/p and (q/p)" = q/(q — p):

/
1 £115 = /X |fIP-1dup < H|f|qu/p HlH(q/p), = (/X |f’qd,u)p qlu(X)(q—p)/q

D=
Q|-

and so [ f[l, < [[fllg #(X)
b) Obviously, [[znllec = sup, [zn] = [znlS = (sup,|za|)? < 35, [znlP = |znllp and so
|Znlloo < ||Znllp- The case ¢ < oo follows from problem 2.5.2 and the inequality just proved

[Znlloo < ”anp:

lzally < llal/Uzallic?’® < llzall/Nanlly ™/ = llall,.

1
c) Let f(z) = (o2 T D7 and let us assume that p < ¢g. Then
dx & dx
|f(:r)|pdx:/ :2/ < oo
/R r |z| (log?|z| + 1) o || (log?|lz| +1)
since

/°° dx - /1/2 de /2 de /°° do
_— 00
o |z|(log?|z|+1) ~ Jo wlog’z  Jipazlogilz+1 ) =xlog’x

because using the monotone convergence theorem we have

V2 g 12 g —1 qe=1/2 1 1 1
/ 5— = lim 5— = lim [ } = lim — T = < o0,
o xlog®z e—0t ). zlogz 0t Llogxla=c e—0t loge  logs; log2
2
d 1
/ 271: < 00, since ————— is continuous in [1/2,2],
12 vlog”r +1 zlogx +1
*  dx , N dx , —1 qe=N 1 1 1
5— = lim 5— = lim [ } = lim — = < 00.
o xlogx n—oo Jo xlog“r N—oo log zlz=2 N—oco log2  log N log 2

We also have

dr o0 dx
9y = =2 =
/]R |f(2)|? dz /IR |z[/? (log?|z| + 1)a/? /0 x4/? (log*x + 1)4/P OO
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since, lim,_,o+ 2% logz = 0 for all § > 0, and so (log®z + 1)¥/? < C(8) /2’ in (0,1/2], and using
the monotone convergence theorem we get that

1/2 d 1/2 d 1/2 d 14+0—q/p z=1/2
/ 21’ > C/ _or C lim e C lim [xi]
o x9/?(log*x + 1)4/p 0o xe/p=9 es0t J.  xe/P—o =0+t L1+ 0 —q/pla=e

C 1
— ; _ 9q9/p—56-1) _
q/p—l—dal—lgl+ <6‘I/P—5—1 2 ) >

if we choose 6 > 0 small enough so that 1+ 6 < q/p.

Let us assume now that ¢ < p. Then the same function f verifies that f ¢ L, since lim,_,o0 log /2% =
0 for all § > 0 and so (log?z 4 1)%/P < C(6) 2° in (1,00). Hence, using again the monotone con-
vergence theorem we have that

00 dx > dx xl—é—q/p =N
> —_— = i —_—
/1 1a/P (log2x—|—1)Q/P - C/l 14/p+0 C]\}gnoo [1—5—q/p:|cc:1

C
=~ 1 N1-0—a/p _ 1) =
1-0 — q/p Noo ( ) =00

if we choose ¢ > 0 small enough so that ¢q/p+d < 1.

Problem 2.5.4 Let (X, A, ) be a measure space.

i) Prove that Holder’s inequality holds for the exponents p = 1 and ¢ = oco: If f and g are
measurable functions on X, then || fg|l1 < [|f]l1]|9]]co-

ii) If f € L'(p) and g € L>(p), prove that || fglly = [|fll1l9ll iff [9(z)| = llg]lc a.e. on the
set where f(x) # 0.

iii) Prove that if f € LP(p) and g € L*(u), then fg € LP(p) and || fgllp < || fllpllglloc. When
equality holds in this inequality?
iv) Prove that || - ||eo is @ norm on L*(u).

v) Prove that if u(X) < oo and f € L*(u), then f € Np>1LP(p). Prove that the reverse
statement is false.

vi) Let f € L*°(u) and {f,} be a sequence in L>°(u). Prove that || f, — f|lco — 0 if and only
if there exists £ € A such that u(E°¢) =0 and f,, — f uniformly on E.

vii) The simple functions are dense in L if u(X) < oo: Each f € L* can be approximated
by a sequence of simple functions {s,} C L*>(u).

Hint: v) Consider the function f(z) =logz on X = (0, 1].
Solution: i) [ fgll = [y |fgldn < [x |[f1gllec dr = llgllsoll fI]1-

i) [fgll = lfllillgle <= Jx IfI(lgllc — lgD)dn=0 <= llgllc = |g(z)| a.e. on the set where
f(x) #0, as ||glloc — |g[ = 0 ace.

iii) || fgllp = [x [fglPdn < [y [fPllgll5edn < |lgllo]| f][5- Equality holds if and only if [y |f[(lg[[%—
lg|P)du =0 <= |g| = ||g]lcc a.e. on the set where f(z) # 0, as ||g|[5% — |g|? > 0 a.e.

iv) a) [lgllec =0 < [g| =0ae. <= g=0ae <= g=0¢€L®n) b)[Agllec = [Alllglloe
because |A g(z)| = [Al |g()] < [Alllglloc a-e. and u({z : [Allg(2)] > |Alllglleo}) = p({z - |g(2)] >
gl })- ) If + gl < [fI+ 9] == If + glloo < | flloc + llglloo-
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V) Il = S [fPdp < NIfllse [x div = [Iflloo(X) < 00, V1 < p < 0. But, f(z) = logz ¢
L‘X’(O 1] but f € LP(0,1] for all 1 < p < oc: fo |log z|Pdx < Cfo = dm—i—f(S |log z|Pdx < oo
choosing ¢ so that ep < 1.

vi) (<) As f, — f uniformly on E, given € > 0, 3 N = N(¢) such that |f,(z) — f(z)| < e,
Vn > N, Vx € E and therefore, as u(E€) = 0, we have that || f,, — f|leoc < e, Vn > N. Hence,
| frn = flloo = 0 as n — oc.

(=) If |fn— flloo =@ 0 as n — oo, then Yk € N, 3 N = N(k) such that || f, — flleo < 1/k,
Vn > N(k). Hence, the set B = {x € X : ||fn — flloo > 1/k} has p(Ef,) = 0. Hence, the
set B = (UpnBS ) = MgpnBpy verifies u(E€) = p(UpnES ) = 0 and |fu(z) — f(2)] < 1/k,
Vn>N(k),Vx € E. Therefore, f, — f — 0 as n — oo uniformly on E, and u(E€) = 0.

vii) If f € L®(u), then we can choose a bounded representative of f, i.e. we can assume that
Il < Ifllo, Y& € X. Also, it is enough to prove it for f > 0. In this case, there exists a
sequence {s,} of simple functions such that 0 < s; < s9 < -+ < 5,--- N f, as n — oo. But
then [|sp, — fllooc = 0 as n — oo.

Problem 2.5.5 Let 1 < p < oo.

a) Show that if ¢ € LP(RY) and ¢ is uniformly continuous, then lim,| o0 p(z) = 0.

b) Show that this is false if one only assumes that ¢ is continuous.

Hint: a) Prove it by contradiction: if {z,}2%, C R is such that |z,| — oo and |p(z,)| >
d > 0 for every n, then the uniform continuity of ¢ implies the existence of R > 0 such that
lo(x)] > 6/2 in B(xp, R). Show that this yields [pn |¢[Pdz = co. b) Consider the function

p(z) = Zzozl fn(x —n), where

nr+1, if —1/n<2z<0,
fa@)=<1—nz, f0<z<1/n,
0, ifx ¢ (—=1/n,1/n).

Solution: a) Let us suppose that lim|y_,. ¢(x) # 0. Then, given § > 0, there exists a sequence
{r,}%2, C RY such that |z,| — oo and |p(z,)| > & for every n € N. As ¢ is uniformly
continuous we have that there exists R = R(d) such that for all n € N, if |z — z,| < R then
lo(z) — ¢(x,)| < /2. But then, if |z — z,| < R,

S Jelen)] - o) < 2

|lo(@)] = le(za)l] < lp(2) = p(an)| < 5

and so

5
()| > |p(zn)| — =5, VeeBnR), VneN.

Therefore,

/ )Pdz > 2/ )Pdy > Z B(zn, R)) = o0,

('ITL?R)

since all the balls B(x,, R) have the same Lebesgue measure. But this is a contradiction with
the assumption that ¢ € LP(RY).
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b) Let us consider the function ¢(z) given in the hint. Note that f,,(0) = 1 and f,, is continuous,
for all n € N. Since the supports of the functions f,(z—n) are [n— %, n—i—%] for all n € N, they are
disjoint. But then, for each k£ € N, we have that ¢(k) = fx(0) = 1 and so lim_,~ @(k) =1 # 0.

Problem 2.5.6 Suppose that f, € LP(u), for n =1,2,3,... and ||f, — fll, = 0 and f, = g
a.e., as n — 0o. What relation exists between f and g7

Solution: As ||f, — fllp = 0 as n — oo we now that there exists a subsequence {f,, }?°, such
that f,, — f as k — oo almost everywhere. Let A := {x € X : limy_, fn,(z) # f(z)} and
B:={z e X : lim, o fn(z) # g(x)}. Then AU B has zero u-measure and, if v ¢ AU B, then
limy o0 fn, = g(z). Hence, f(z) = g(x) for x € AU B and so, f = g almost everywhere.

Problem 2.5.7 Suppose pu(X) =1, and suppose f and g are positive measurable functions on

X such that fg > 1. Prove that
/fdu : /gduzl-
X X

Hint: Use Cauchy-Schwarz ineguality.
Solution: By Cauchy-Schwarz ineguality and, since v/fg > 1, we get that

(/de“>(/xgd“) = (/X\/Edﬂ)zz (/){161”)2:”()()2:1‘

Problem 2.5.8 Suppose ;(X) =1 and h: X — [0, 00] is measurable. If A := [, hdpu, prove

that
\/1+A2§/ V1+h2du<1+A.
X

If p is Lebesgue measure on [0,1] and h is continuous, h = f’, the above inequalities have a
simple geometric interpretation. From this, conjecture (for general X) under what conditions
on h equality can hold in either of the above inequalities, and prove your conjecture.

Hint: The first inequality follows from Jensen’s inequality. The second one follows from the
inequality v1 + 22 <1+ x for x > 0.

Solution: The function op(z) := v/1 4 22 is convex because ¢ (z) = (1 + 22)~3/2 > 0. Hence, by
Jensen’s inequality:

1+A2:gp(A):<p(/ hdu)ﬁ/(g&Oh)du:/ V14 h2du.
X X X
On the other hand, for z > 0: 1+ 22 < (1+2)?> = V1 + 22 < 1+ . Therefore,

/ \/l—I—th,u,g/(l—i-h)d,u:,u(X)—i-/ hdp=1+A.

X X X

If X = [0, 1],  is Lebesgue measure and h = f’ is continuous, then A = fol f(x)dz = f(1)— f(0).
Hence, the second inequality means that the length of the graph of f is < than the length of
the longer path from (0, f(0)) to (1, f(1)) which is 1 + (f(1) — f(0)), the sum of the legs of the
right triangle with vertices (0, £(0)), (1, f(0)) and (1, f(1)). The first inequality means that the
shortest path is the straight line joining (0, f(0)) with (1, f(1)).

These facts suggest that the second inequality is an equality iff h = 0 a.e., that is to say, iff
f is constant a.e., and the first one is an equality iff h = A a.e.. Indeed, second inequality is
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equality <= V1+22=1+x, forz >0 < 1z = 0; first inequality is equality <= we have
equality in Jensen’s inequality <= @(A) = (poh)(z) a.e. > V1+ A2=./1+ (h(z))? a.e.
< h(zr) =Aae.

Problem 2.5.9 Let f be a complex function, f # 0. Let us define the function ¢(p) = || |5
forO<p<ooandlet E={p: p(p) <oo}={p: feLP(n)}. Prove that

a) Ifr<p<sandr,s€FE, thenpe€ E.

b) log ¢ is convex in E.

c) Part a) implies that E is connected. Is E necessarily open? and closed? Can E be
constituted by a single point? Can E be a any connected subset of (0,00)?

d) Ifr <p <s, then || fll, <max{|[fll[[f]ls}-

Hints: a) t? < max(t",t°) <t"+¢°. b) If p= A+ (1 — A)s with 0 < X\ < 1, apply Hélder’s
inequality (with the conjugate exponents &« = 1/A and = 1/(1 — \)) to bound ¢(p) in terms
of ¢(r) and ¢(s). d) Apply part b).

Solution: a) As tP < max(t",t°) <t" +t° = |f|P <|f|"+|f]° = @) < p(r) + ¢(s) < .
Hence, p € E.

b) Let p=Ar+(1—=X)swith0 <A< 1. Asa=1/Xand 8 =1/(1—\) are conjugate exponents,
by Holder’s inequality we get

Jopdn = [P0 ([ ) ([ Qi sa-a)

= ([ rran) ([ isran)

Hence, ¢(p) < p(r) o(s)' = and so log o(p) < Ap(r) + (1 — A) log ¢(s), i.e. logy is convex.

(2)

¢) E can be open, closed, unbounded and, even a single point, as the following examples show:
e X =1[0,1], fi(z) =1/2z'/* —= E=(0,a).

e X =[1,00), fo(z) =1/2'/* = E = (b,00).

e X =1(0,1/2], f3(x) = 1/(zlog?x)V/* = E = (0,d.

e X =[e,00), fa(z) =1/(zlog’z)/? — E = [d,00).

e X = (0,00), f5(z) = 1/(z(log’x +1))V/? — E = {p}.

r 1-Xs r 1-Xs Ar4+(1—=XN)s
d) IF | fll» < | flls then, by (2), [IFIB < A1 1S < I 1A = AR = 7.
Problem 2.5.10* Let (X, A, i) be a probability space, i.e. u(X) = 1.

a) Prove that if ¢ is strictly convex: @(Ax + (1 — N)y) < Ap(z) + (1 — A)p(y) for 0 < X < 1,
then equality holds in Jensen’s inequality,

¢(/deu)§/x(900f)du, for f € L'(p),

if and only if f is constant almost everywhere.
b) If 0 < p < ¢ < oo prove that ||f|l, < fllq-

c) Use part a) to prove that ||f|, = || f]|; if and only if f is constant almost everywhere.
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d) Assume that || f||, < oo for some r > 0, and prove that

ti 171, = exp ([ 1og1 1)

if exp (—o0) is defined to be 0.

Hints: a) If f # 0 a.e., then there exists ¢ € R such that A = {z : |f(z)| > ¢} has 0 < p(A4) < 1.
Take A = u(A), z = %fA fdu, y= ﬁ J4e fdp and apply Jensen’s inequality. To bound ¢(z)
and ¢(y) apply again Jensen’s inequality. Finally, deduce that Jensen’s inequality for this f is
strict. b) Apply Jensen’s inequality to the convex function p(x) = z! with t = ¢/p > 1. ¢)
o(z) = at is strictly convex. d) Apply Jensen’s inequality with ¢(z) = —logx and use that
logz < x —1 for x € (0,00) and that (¥ — 1)/t — logt as p — 0. Use a convergence theorem.

Problem 2.5.11** Suppose 1 < p < oo, f € LP((0,00),B,m) and let us define

F(m):;/oxf(t)dt (0 <z < o0).

a) Prove that the mapping f — F' carries L” into LP and more concretely, prove Hardy’s

inequality: »
[ F]lp < o1 1 £1lp -

b) Prove that equality holds in Hardy’s inequality iff f = 0 almost everywhere.

c¢) Prove that the constant p/(p — 1) cannot be replaced by a smaller one.
d) If f >0and f € L', prove that F ¢ L.

Hints: a) Assume first that f > 0 and f € C.((0,00)). Integration by parts gives
/ FP(x)dx = —p/ FPl(z)aF () dx .
0 0

Note that 2F" = f — F and apply Holder’s inequality to [ FP=1f Then derive the general case.
b) If equality holds for f > 0 deduce that we must have equality in

/OOO FP(z) de = q/ooo Flz)FPVdz < qu”p(/ooo FP(z) dm)

and therefore that 3 o > 0 such that af? = FP, and from this that f is constant a.e. c¢) Take
f(z) =z7YP on [1, A], f(z) = 0 elsewhere, for large A. d) If f € L' and f # 0 a.e., then 3 x
such that [ f(t)dt > 0.

1/q

Problem 2.5.12 Let (X, A, 1) be a measure space, 1 < p < oo and let {f,}22; be a sequence
of functions in LP(u) such that f,, — f almost everywhere, as n — co.

a) If, for some M >0, || fnllp < M for all n € N, then f € LP(u) and

1Ly < Y inf |l

b) If, for some F' € LP(u), |fo(z)|] < |F(x)| for all n € N and almost every = € X, then
feLP(p) and ||fr — fll, = 0 as n — oo.
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c¢) Prove that b) is false for p = co.

Hints: a) Use Fatou’s lemma. b) Use dominated convergence theorem. c) Consider the sequence
Jn= X(0,1/n) in (07 1)
Solution: a) By Fatou’s lemma:

/ |f]pdu:/ lim |fn|pd,u§liminf/ | frlP dp < MP < oo

Therefore, f € LP(p) and || f]|, < liminf || f,]],.
n— o0

b) By the dominated convergence theorem:

Jusran= [t igapda =t [ (npdus [ FPdu<oo.
Therefore, f € LP(4) and, as |fu(z) = f(@)] < [fa(@)] + |f(x)], then
|fa(2) = f(@)P < 2271 (| ful@) P + | f(2)P) < 2P|F(2)P € LY (n),
and again, by the dominated convergence theorem,
1 — = 1 — p e 1 — p e e
T 1= Sl = Jim [ 1= P d= [ i g P de= [ odu=o,

¢) Let X = [0,1], fo = X(./n)- Then fo(z) — 0 as n — oo almost everywhere, |[fnlc = 1,
| frn = flloo = || fnllooc = 1 and so || fr, — f|lco does not converge to 0 as n — oo.
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Problem 2.5.13" Let 0 <p <oc and f, f, € LP(X, A, u).

a) If 1 <p <ooand|f,— fl[, = 0asn— oo, prove that ||f.|l, = || fllp-
b) Let ¢, = max{1,2P~1}. Prove that

ja =" < ¢ (la]” + [b[")

for arbitrary complex numbers a and b.

c) If f, = fae. and ||full, = || fllp as n — oo prove that lim,, s || fn — fllp = 0.

d) Prove that the conclusion of c) is false if the hypothesis || fn|[, —= || f||p is removed, even if
u(X) < oo.

e) Prove that the conclusion of ¢) is false if p = oo

Hint: a) Prove that || f||, — ||g||p| < ||f —gllp for f,g € LP(p). b) Prove the cases 0 < p <1
and 1 < p < oo separately. For the first one, consider the function ¢(x) = (x + y)? — 2P — P
for x > 0 and fixed y > 0 and prove that ¢ is decreasing. For the second case, consider the
function ¥(z) = 2P~ 1 (2P + yP) — (z + y)? for z > 0 and fixed y > 0 and prove that v has an
absolute minimum when z = y. ¢) Consider the function h,, = ¢, (|f|? + |[fal?) — |f — fu|P and
use Fatou’s lemma as in the proof of the dominated convergence theorem.



