uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems

Chapter 3: Integrals depending on a parameter
Section 3.1: Continuity and differentiability

Professors: Domingo Pestana Galván

José Manuel Rodríguez García

3 Parametric integrals

3.1 Continuity and differentiability

Problem 3.1.1 Let $f(x, y)=\log \left(x^{2}+y^{2}\right)$ for $y \in(0,1)$ and $x>0$.
a) Prove that $\varphi(x)=\int_{0}^{1} f(x, y) d y$ is well defined and is derivable. Prove that $\varphi^{\prime}(x)=$ $\int_{0}^{1} \frac{\partial f}{\partial x} d y$ and calculate $\varphi^{\prime}(x)$.
b) Prove that $\varphi(x)$ is continuous at $x_{0}=0$ and that $\varphi(0)=-2$.
c) Compute $\varphi(x)$ integrating by parts.

Hint: $f(x, \cdot)$ is continuous on $[0,1]$ for fixed $x>0$. Besides $\left|\frac{\partial}{\partial x}[f(x, y)]\right| \leq \frac{2}{x_{0}} \in L^{1}(0,1)$ for $x \geq x_{0}>0$. Hence, F is derivable on $\left(x_{0}, \infty\right)$ for all $x_{0}>0$ and so it is derivable on $(0, \infty)$.
Solution: a) For each fixed $x>0$, the function $f_{x}(y)=\log \left(x^{2}+y^{2}\right)$ is continuous on $[0,1]$. Hence, $\varphi(x)$ is well defined. Now, fixed $x_{0}>0$, we have

$$
\frac{\partial}{\partial x}\left[\log \left(x^{2}+y^{2}\right)\right]=\frac{2 x}{x^{2}+y^{2}} \leq \frac{2 x}{x^{2}}=\frac{2}{x} \leq \frac{2}{x_{0}} \in L^{1}(0,1), \quad \text { if } x>x_{0}
$$

Hence, by the theorem on differentiation of parametric integrals, we have that $\varphi(x)$ is derivable on $\left(x_{0}, 1\right)$, for all $x_{0}>0$. Therefore $\varphi(x)$ is derivable on $(0,1)$ and
$\varphi^{\prime}(x)=\int_{0}^{1} \frac{\partial}{\partial x}\left[\log \left(x^{2}+y^{2}\right)\right] d y=\int_{0}^{1} \frac{2 x}{x^{2}+y^{2}} d y=\left[2 \arctan \frac{y}{x}\right]_{y=0}^{y=1}=2 \arctan \frac{1}{x}=\pi-2 \arctan x$.
b) As $\log y^{2} \leq \log \left(x^{2}+y^{2}\right) \leq \log \left(1+y^{2}\right)$ if $x \in[0,1]$ and f_{x} is increasing on $[0,1]$, we have that $\left|\log \left(x^{2}+y^{2}\right)\right| \leq \max \left\{\log \left(1+y^{2}\right),\left|\log y^{2}\right|\right\}=\max \left\{\log \left(1+y^{2}\right), 2 \log (1 / y)\right\}$ for all $x \in(0,1]$. Now the equation $1+y^{2}=1 / y^{2}$ has the unique solution $y_{0}=\sqrt{(\sqrt{5}-1) / 2}$ in $(0,1)$, and therefore

$$
\left|\log \left(x^{2}+y^{2}\right)\right| \leq g(y):= \begin{cases}2 \log (1 / y), & \text { if } y \leq y_{0} \\ \log \left(1+y^{2}\right), & \text { if } y \geq y_{0}\end{cases}
$$

But $\log \left(1+y^{2}\right)$ is continuous on $\left[y_{0}, 1\right]$ and so, $g \in L^{1}\left[y_{0}, 1\right]$. Also, using the monotone convergence theorem and integrating by parts:

$$
\int_{0}^{y_{0}} \log \frac{1}{y} d y=\lim _{N \rightarrow \infty} \int_{1 / N}^{y_{0}} \log \frac{1}{y} d y=\lim _{N \rightarrow \infty}\left[y \log \frac{1}{y}\right]_{y=1 / N}^{y=y_{0}}+1<\infty
$$

since, by L'Hopital rule, $\lim _{N \rightarrow \infty} N \log N=0$. Therefore, $g \in L^{1}(0,1]$ and by the theorem on continuity of parametric integrals, φ is continuous at $x_{0}=0$ and

$$
\varphi(0)=\lim _{x \rightarrow 0^{+}} \varphi(x)=\int_{0}^{1} \lim _{x \rightarrow 0^{+}} \log \left(x^{2}+y^{2}\right) d y=\int_{0}^{1} \log y^{2} d y .
$$

Using now the monotone convergence theorem and integrating again by parts we get that:

$$
\varphi(0)=2 \lim _{N \rightarrow \infty} \int_{1 / N}^{1} \log y d y=2 \lim _{N \rightarrow \infty}[y \log y]_{y=1 / N}^{y=1}-2=2 \lim _{N \rightarrow \infty} \frac{1}{N} \log N-2=0-2=-2 .
$$

c) Integrating by parts taking $u=\arctan x, v^{\prime}=1 \Longrightarrow u^{\prime}=1 /\left(1+x^{2}\right), v=x$:

$$
\begin{aligned}
\varphi(x) & =\pi x-2 \int \arctan x d x=\pi x-2 x \arctan x+\int \frac{2 x}{1+x^{2}} d x \\
& =\pi x-2 x \arctan x+\log \left(x^{2}+1\right)+c .
\end{aligned}
$$

But using that $\varphi(0)=-2$ we obtain that $c=-2$. Hence, $\varphi(x)=\pi x-2 x \arctan x+\log \left(x^{2}+1\right)-2$.

Problem 3.1.2 Let $F, G: \mathbb{R} \longrightarrow \mathbb{R}$ defined as

$$
F(x)=\left(\int_{0}^{x} e^{-t^{2}} d t\right)^{2} \quad \text { and } \quad G(x)=\int_{0}^{1} \frac{e^{-x^{2}\left(1+t^{2}\right)}}{1+t^{2}} d t
$$

Prove that:
a) $F^{\prime}(x)+G^{\prime}(x)=0$, for all $x \in \mathbb{R}$. Justify why you can apply the theorem on differentiation of parametric integrals.
b) $F(x)+G(x)=\pi / 4$, for all $x \in \mathbb{R}$.
c) Deduce that $\int_{0}^{\infty} e^{-t^{2}} d t=\sqrt{\pi} / 2$.

Hints: a) $\left|\frac{\partial}{\partial x}\left[\frac{e^{-x^{2}\left(1+t^{2}\right)}}{1+t^{2}}\right]\right|=\left|2 x e^{-x^{2}\left(1+t^{2}\right)}\right| \leq 2 \in L^{1}[0,1]$ for $x \in \mathbb{R}$. c) Let $x \rightarrow \infty$ in b) by applying monotone convergence.
Solution: a) Using the Fundamental Theorem of Calculus we have that F is derivable on \mathbb{R} and $F^{\prime}(x)=2 e^{-x^{2}} \int_{0}^{x} e^{-t^{2}} d t$. On the other hand, for all $x \in \mathbb{R}$:

$$
\left|\frac{\partial}{\partial x}\left[\frac{e^{-x^{2}\left(1+t^{2}\right)}}{1+t^{2}}\right]\right|=\left|2 x e^{-x^{2}\left(1+t^{2}\right)}\right| \leq 2 \in L^{1}[0,1] .
$$

Hence, using the theorem on differentiation of parametric integrals, G is derivable on \mathbb{R} and:

$$
G^{\prime}(x)=\int_{0}^{1} \frac{\partial}{\partial x}\left[\frac{e^{-x^{2}\left(1+t^{2}\right)}}{1+t^{2}}\right] d t=-2 x \int_{0}^{1} e^{-x^{2}\left(1+t^{2}\right)} d t=-2 x e^{-x^{2}} \int_{0}^{1} e^{-x^{2} t^{2}} d t=-2 e^{-x^{2}} \int_{0}^{x} e^{-t^{2}} d t
$$

where we have done the change of variable $u=x$.
b) As $F^{\prime}(x)+G^{\prime}(x)=0$ for all $x \in(0, \infty)$, we deduce that $F(x)+G(x)=k \in \mathbb{R}$. But then $k=F(0)+G(0)=0+[\arctan t]_{t=0}^{t=1}=\arctan 1=\pi / 4$.
c) We have that $\lim _{x \rightarrow \infty}(F(x)+G(x))=\pi / 4$ and so, by the monotone convergence theorem,

$$
\left(\int_{0}^{\infty} e^{-t^{2}} d t\right)^{2}+\lim _{x \rightarrow \infty} \int_{0}^{1} \frac{e^{-x^{2}\left(1+t^{2}\right)}}{1+t^{2}} d t=\frac{\pi}{4} \Longrightarrow\left(\int_{0}^{\infty} e^{-t^{2}} d t\right)^{2}+0=\frac{\pi}{4}
$$

Problem 3.1.3 Calculate $F(s)=\int_{0}^{\infty} e^{-x} \sin (s x) d x$, and, justifying all the steps, from the obtained result calculate

$$
G(s)=\int_{0}^{\infty} x e^{-x} \cos (s x) d x
$$

Hints: Use integration by parts to evaluate $F(s) ; G(s)$ is derivable since $\left|\frac{\partial}{\partial s}\left[e^{-x} \sin (s x)\right]\right| \leq$ $x e^{-x} \in L^{1}(0, \infty)$.
Solution: First of all, integrating twice by parts and using the monotone convergence theorem, it is easy to obtain that $F(s)=s /\left(1+s^{2}\right)$.
On the other hand, as $\left|\frac{\partial}{\partial s}\left[e^{-x} \sin (s x)\right]\right|=\left|x e^{-x} \cos (s x)\right| \leq x e^{-x} \in L^{1}(0, \infty)$, by the theorem on differentiation of parametric integrals we have that
$F^{\prime}(s)=\int_{0}^{\infty} \frac{\partial}{\partial s}\left[e^{-x} \sin (s x)\right] d x=\int_{0}^{\infty} x e^{-x} \cos (s x) d x=G(s) \Longrightarrow G(s)=\frac{d}{d s}\left[\frac{s}{1+s^{2}}\right]=\frac{1-s^{2}}{\left(1+s^{2}\right)^{2}}$.

Problem 3.1.4

a) Assuming that we can apply the Fundamental Theorem of Calculus and the theorem on parametric derivation, prove that:

$$
F(x)=\int_{a}^{f(x)} g(x, t) d t \quad \Longrightarrow \quad F^{\prime}(x)=g(x, f(x)) f^{\prime}(x)+\int_{a}^{f(x)} \frac{\partial g}{\partial x}(x, t) d t
$$

b) Prove that

$$
\int_{0}^{\pi /(4 a)} \frac{x}{\cos ^{2} a x} d x=\frac{1}{2 a^{2}}\left(\frac{\pi}{2}-\log 2\right), \quad \text { for } a>0
$$

Hints: a) Consider the function $G(u, v)=\int_{a}^{v} g(u, t) d t$ and apply the chain rule. b) Use the previous part to calculate the derivative of $\int_{0}^{\pi /(4 a)} \tan a x d x$ with respect to a.
Solution: a) Let $G(u, v)=\int_{a}^{u} g(v, t) d t$. Then, by the Fundamental Theorem of Calculus, $\frac{\partial G}{\partial u}=g(v, u)$ and, by the theorem on differentiation of parametric integrals, $\frac{\partial G}{\partial v}=\int_{a}^{u} \frac{\partial g}{\partial v}(v, t) d t$. Finally, as $F(x)=G(f(x), x), u=f(x), v=x$, by the chain rule:

$$
F^{\prime}(x)=\frac{\partial G}{\partial u} f^{\prime}(x)+\frac{\partial G}{\partial v}=g(x, f(x)) f^{\prime}(x)+\int_{a}^{f(x)} \frac{\partial g}{\partial x}(x, t) d t
$$

b) Let $F(a):=\int_{0}^{\pi /(4 a)} \tan a x d x$. First of all, let us observe that if $x \in[0, \pi /(4 a)]$, then $a x \in[0, \pi / 4]$ and $\tan a x$ is continuous on this interval. Hence, $F(a)$ is well-defined. Secondly, we can compute the value of $F(a)$:

$$
F(a)=\int_{0}^{\pi /(4 a)} \frac{\sin a x}{\cos a x} d x=-\frac{1}{a}[\log (\cos a x)]_{x=0}^{x=\pi /(4 a)}=\frac{1}{2 a} \log 2 .
$$

Thirdly, let us fix $a_{0}>0$ and let $a>a_{0}>0$. As

$$
\left|\frac{\partial}{\partial a}(\tan a x)\right|=\frac{x}{\cos ^{2} a x} \leq \frac{x}{\cos ^{2}(\pi / 4)}=2 x \in L^{1}\left[0, \pi /\left(4 a_{0}\right)\right],
$$

using part a) we obtain that $F(a)$ is derivable on $\left(a_{0}, \infty\right)$ for every $a_{0}>0$ and so, derivable on $(0, \infty)$ and
$F^{\prime}(a)=\tan \left(a \frac{\pi}{4 a}\right)\left(\frac{-\pi}{4 a^{2}}\right)+\int_{0}^{\frac{\pi}{4 a}} \frac{x}{\cos ^{2} a x} d x \Longrightarrow \int_{0}^{\frac{\pi}{4 a}} \frac{x}{\cos ^{2} a x} d x=\frac{\pi}{4 a^{2}}-\frac{1}{2 a^{2}} \log 2=\frac{1}{2 a^{2}}\left(\frac{\pi}{2}-\log 2\right)$.

Problem 3.1.5 Prove that

$$
J(a)=\int_{0}^{a} \frac{d x}{\left(a^{2}+x^{2}\right)^{2}}=\frac{\pi+2}{8 a^{3}}, \quad \text { for } a>0
$$

Hint: $\left|\frac{\partial}{\partial a}\left[\frac{1}{x^{2}+a^{2}}\right]\right|=\frac{2 a}{\left(x^{2}+a^{2}\right)^{2}} \leq \frac{2 M}{\left(x^{2}+\varepsilon^{2}\right)^{2}} \in L^{1}(0, \infty)$ for $a \in[\varepsilon, M]$.
Solution: Let $F(a):=\int_{0}^{a} \frac{d x}{x^{2}+a^{2}}$ for $a>0$.
First of all, $\left|\frac{\partial}{\partial a}\left[\frac{1}{x^{2}+a^{2}}\right]\right|=\frac{2 a}{\left(x^{2}+a^{2}\right)^{2}} \leq \frac{2 M}{\left(x^{2}+\varepsilon^{2}\right)^{2}} \in L^{1}(0, \infty)$ for $a \in[\varepsilon, M]$, and so, by the theorem on differentiation of parametric integrals, F is derivable on (ε, M) for all $\varepsilon, M>0$. Hence, F is derivable on $(0, \infty)$ and by part a) of problem 3.1.4 we have that

$$
F^{\prime}(a)=\frac{1}{2 a^{2}}-2 a \int_{0}^{a} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}} .
$$

But $F(a)=\frac{1}{a}\left[\arctan \frac{x}{a}\right]_{x=0}^{x=a}=\frac{\pi}{4 a}$. Therefore

$$
-\frac{\pi}{4 a^{2}}=\frac{1}{2 a^{2}}-2 a \int_{0}^{a} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}} \Longrightarrow \int_{0}^{a} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}=\frac{\pi+2}{8 a^{3}} .
$$

Problem 3.1.6 Let $F(\alpha)=\int_{0}^{\infty} \frac{e^{-\alpha x}-e^{-x}}{x} d x$.
a) Study when the integral converges.
b) Calculate $F^{\prime}(\alpha)$ explicitly and then calculate $F(\alpha)$.
c) Obtain the successive derivatives $F^{(k)}(\alpha)$ and calculate $\int_{0}^{\infty} x^{n} e^{-x} d x$.

Hints: a) $\lim _{x \rightarrow 0^{+}} \frac{e^{-\alpha x}-e^{-x}}{x}=1-\alpha$ and so, $\int_{0}^{1} \frac{e^{-a x}-e^{-x}}{x} d x<\infty$. Also, $\int_{1}^{\infty}\left|\frac{e^{-\alpha x}-e^{-x}}{x}\right| d x \leq$ $\int_{0}^{\infty}\left(e^{-\alpha x}+e^{-x}\right) d x<\infty$ if $\alpha>0$. b) $\left|\frac{\partial}{\partial \alpha}\left[\frac{e^{-\alpha x}-e^{-x}}{x}\right]\right| \leq e^{-\alpha_{0} x} \in L^{1}(0, \infty)$ for $\alpha>\alpha_{0}>0$ and so F is derivable on $\left(\alpha_{0}, \infty\right)$ for all $\alpha_{0}>0$. c) Derive both members of the identity $F^{\prime}(\alpha)=-\int_{0}^{\infty} e^{-\alpha x} d x=-1 / \alpha$.
Solution: a) Using L'Hopital rule we get that $\lim _{x \rightarrow 0^{+}}\left(e^{-\alpha x}-e^{-x}\right) / x=\lim _{x \rightarrow 0^{+}}-\alpha e^{-\alpha x}+e^{-x}=$ $1-\alpha$. Hence, $f(x)=\left(e^{-\alpha x}-e^{-x}\right) / x$ is continuous at $x=0$ (defining $f(0)=1-\alpha$) and so, $\int_{0}^{1}\left(\left(e^{-\alpha x}-e^{-x}\right) / x\right) d x<\infty$. Also, $\int_{1}^{\infty}\left|\left(e^{-\alpha x}-e^{-x}\right) / x\right| d x \leq \int_{1}^{\infty}\left(e^{-\alpha x}+e^{-x}\right) d x<\infty$ if $\alpha>0$. Finally, if $\alpha<0$, then $\lim _{x \rightarrow+\infty} f(x)=\infty$ and, if $\alpha=0$ then, as $\lim _{x \rightarrow+\infty} e^{-x}=0$, we have that $\left(1-e^{-x}\right) / x>(1-\varepsilon) / x$ for $x>M=M(\varepsilon)$ and so $\int_{M}^{\infty}\left[\left(1-e^{-x}\right) / x\right] d x=\infty$. Therefore, $F(\alpha)$ converges (and so is well-defined) only for $\alpha>0$.
b) We have that $\left|\frac{\partial}{\partial \alpha}\left[\frac{e^{-\alpha x}-e^{-x}}{x}\right]\right|=e^{-\alpha x} \leq e^{-\alpha_{0} x} \in L^{1}(0, \infty)$ for $\alpha>\alpha_{0}>0$ and so F is derivable on $\left(\alpha_{0}, \infty\right)$ for all $\alpha_{0}>0$. Hence, F is derivable on $(0, \infty)$ and, as in problem 2.1.8, we have that

$$
F^{\prime}(\alpha)=\int_{0}^{\infty} \frac{\partial}{\partial \alpha}\left[\frac{e^{-\alpha x}-e^{-x}}{x}\right] d x=-\int_{0}^{\infty} e^{-\alpha x} d x=-\frac{1}{\alpha}
$$

Hence, $F(\alpha)=-\int \frac{1}{\alpha} d \alpha=c-\log \alpha$. But, if $\alpha=1$, then $f(x)=0$ and so, $F(1)=0$. Hence, $F(\alpha)=-\log \alpha=\log \frac{1}{\alpha}$.
c) It is easy to prove by induction that $F^{(k)}(\alpha)=(-1)^{k} \frac{(k-1)!}{\alpha^{k}}$ for all $k \in \mathbb{N}$. On the other hand, we have that for $\alpha>\alpha_{0}$ and $k \in \mathbb{N}$:

$$
\left|\frac{\partial^{k}}{\partial a^{k}}\left(x^{k-1} e^{-\alpha x}\right)\right|=x^{k} e^{-\alpha x} \leq x^{k} e^{-\alpha_{0} x} \in L^{1}(0, \infty)
$$

Hence, by the theorem on differentiation of parametric integrals, $F^{(k)}(\alpha)$ is derivable on $\left(\alpha_{0}, \infty\right)$ for all $\alpha_{0}>0$ and so it is derivable on $(0, \infty)$ and, for all $k \geq 1$,

$$
F^{(k+1)}(\alpha)=(-1)^{k} \int_{0}^{\infty} \frac{\partial}{\partial a}\left(x^{k-1} e^{-\alpha x}\right) d x=(-1)^{k+1} \int_{0}^{\infty} x^{k} e^{-\alpha x} d x \Longrightarrow \int_{0}^{\infty} x^{k} e^{-\alpha x} d x=\frac{k!}{\alpha^{k+1}} .
$$

Problem 3.1.7 Prove that for $a>0$ and $b>0$:

$$
F(a, b)=\int_{0}^{\infty}\left(e^{-a^{2} / x^{2}}-e^{-b^{2} / x^{2}}\right) d x=\sqrt{\pi}(b-a) .
$$

Hint: $\left|\frac{\partial}{\partial a}\left[e^{-a^{2} / x^{2}}-e^{-b^{2} / x^{2}}\right]\right| \leq \frac{2 a}{x^{2}} e^{-a_{0}^{2} / x^{2}} \in L^{1}(0, \infty)$ for $a \geq a_{0}>0$. Hence, F is derivable on $\left[a_{0}, \infty\right)$ for all $a_{0}>0$ and so it is derivable on $(0, \infty)$. To compute $\frac{\partial}{\partial a} F(a, b)$ change variables to $t=1 / x$. Recall that $\int_{0}^{\infty} e^{-t^{2}} d t=\sqrt{\pi} / 2$ and observe that $F(a, a)=0$.
Solution: First of all, $F(a, b)$ is well-defined since making the change of variable $t=1 / x$:

$$
\int_{0}^{1} e^{-a^{2} / x^{2}} d x=\int_{1}^{\infty} \frac{1}{t^{2}} e^{-a^{2} t^{2}} d t \leq \int_{1}^{\infty} e^{-a^{2} t^{2}} d t \leq \int_{1}^{\infty} e^{-a^{2} t} d t<\infty
$$

by problem 2.1.8, and similarly $\int_{0}^{1} e^{-b^{2} / x^{2}} d x<\infty$. Besides, using again problem 2.1.8,

$$
\int_{1}^{\infty}\left(e^{-a^{2} / x^{2}}-e^{-b^{2} / x^{2}}\right) d x \leq \int_{1}^{\infty} \frac{C}{x^{2}} d x<\infty
$$

because, from the Taylor expansion of e^{t}, we have that $e^{-a^{2} / x^{2}}-e^{-b^{2} / x^{2}}=\frac{b^{2}-a^{2}}{x^{2}}+o\left(\frac{1}{x^{2}}\right) \leq \frac{C}{x^{2}}$, $\forall x \in \mathbb{R}$.
On the other hand, we have that $\left|\frac{\partial}{\partial a}\left[e^{-a^{2} / x^{2}}-e^{-b^{2} / x^{2}}\right]\right|=\frac{2 a}{x^{2}} e^{-a^{2} / x^{2}} \leq \frac{2 a}{x^{2}} e^{-a_{0}^{2} / x^{2}} \in L^{1}(0, \infty)$ for $a \geq a_{0}>0$, since making $t=1 / x$ we get that

$$
\int_{1}^{\infty} \frac{1}{x^{2}} e^{-a_{0}^{2} / x^{2}} d x=\int_{0}^{1} e^{-a_{0}^{2} t^{2}} d t<\infty
$$

because $e^{-a_{0}^{2} t^{2}}$ is continuous on $[0,1]$, and

$$
\int_{0}^{1} \frac{1}{x^{2}} e^{-a_{0}^{2} / x^{2}} d x=\int_{1}^{\infty} e^{-a_{0}^{2} t^{2}} d t \leq \int_{1}^{\infty} e^{-a_{0}^{2} t} d t<\infty
$$

by problem 2.1.8. Hence, by the theorem on differentiation of parametric integrals, F is derivable with respect to a on $\left(a_{0}, \infty\right)$ for all $a_{0}>0$ and so it is derivable on $(0, \infty)$. Besides,

$$
\frac{\partial F}{\partial a}=-\int_{0}^{\infty} \frac{2 a}{x^{2}} e^{-a^{2} / x^{2}} d x=-2 \int_{0}^{\infty} e^{-t^{2}} d t=-\sqrt{\pi}
$$

where we have done the change of variable $t=a / x$ and we have used the problem 2.3.1. Hence, $F(a, b)=-\sqrt{\pi} a+C(b)$. But for $a=b$ it is clear that $F(a, a)=0 \Longrightarrow-\sqrt{\pi} b+C(b)=0$ and so, $C(b)=\sqrt{\pi} b$ and finally, we obtain that $F(a, b)=\sqrt{\pi}(b-a)$.

Problem 3.1.8 Explain in the following cases why we can differentiate the parametric integral and why they are well-defined. Obtain explicitly the function deriving with respect to the parameter and integrating later with respect to it:
i) $F(s)=\int_{0}^{\pi / 2} \log \left(\frac{1+s \cos x}{1-s \cos x}\right) \frac{d x}{\cos x}$, with $|s|<1$.
ii) $G(a)=\int_{0}^{\infty} \log \left(1+\frac{a^{2}}{x^{2}}\right) d x$, with $a \in \mathbb{R}$.
iii) $H(p)=\int_{0}^{1} \frac{x^{p}-1}{\log x} d x$, with $p>-1$.
iv) $I(\lambda)=\int_{0}^{\pi / 2} \frac{\log \left(1-\lambda^{2} \sin ^{2} x\right)}{\sin x} d x$, with $|\lambda|<1$.
v) $K(x)=\int_{0}^{\infty} e^{-t^{2}-x^{2} / t^{2}} d t$, with $x \in \mathbb{R}$.

Hints: i) $\left|\frac{\partial}{\partial s}\left[\log \left(\frac{1+s \cos x}{1-s \cos x}\right) \frac{1}{\cos x}\right]\right| \leq \frac{2}{1-s_{0}^{2} \cos ^{2} x} \in L^{1}(0, \pi / 2)$ if $|s| \leq s_{0}<1$. ii) Since G is an even function, it is enough to consider the case $a \geq 0 ;\left|\frac{\partial}{\partial a}\left[\log \left(1+\frac{a^{2}}{x^{2}}\right)\right]\right|=\frac{2|a|}{x^{2}+a^{2}} \leq \frac{2 M}{x^{2}+\varepsilon^{2}} \in L^{1}(0, \infty)$ if $|a| \in[\varepsilon, M]$. iii) $\left|\frac{\partial}{\partial p}\left[\frac{x^{p}-1}{\log x}\right]\right|=x^{p} \in L^{1}(0,1)$ since $p>-1$. iv) $\left|\frac{\partial}{\partial \lambda}\left[\frac{\log \left(1-\lambda^{2} \sin ^{2} x\right)}{\sin x}\right]\right|=$ $\frac{2|\lambda||\sin x|}{1-\lambda^{2} \sin ^{2} x} \leq \frac{2}{1-\lambda_{0} \sin ^{2} x} \in L^{1}(0, \pi / 2)$ if $|\lambda|<\lambda_{0}<1$. v) $\left|\frac{\partial}{\partial x}\left[e^{-t^{2}-x^{2} / t^{2}}\right]\right| \leq \frac{2 M}{t^{2}}\left(e^{-t^{2}} \chi_{[1, \infty)}(t)+\right.$ $\left.e^{-\varepsilon^{2} / t^{2}} \chi_{(0,1)}(t)\right) \in L^{1}(0, \infty)$ if $|x| \in[\varepsilon, M]$. To compute $K^{\prime}(x)$ change variables to $s=x / t$ and prove that $K^{\prime}(x)=-2 K(x)$. Note that $K(x)$ is even and so it is enough to compute it for $x \geq 0$. Solutions: i) First of all, using L'Hopital rule,

$$
\begin{aligned}
& \lim _{x \rightarrow \pi / 2} \log \left(\frac{1+s \cos x}{1-s \cos x}\right) \frac{1}{\cos x}=\lim _{x \rightarrow \pi / 2} \frac{\log (1+s \cos x)-\log (1-s \cos x)}{\cos x} \\
& \quad=\lim _{x \rightarrow \pi / 2} \frac{\frac{-s \sin x}{1+s \cos x}-\frac{s \sin x}{1-s \cos x}}{-\sin x}=\lim _{x \rightarrow \pi / 2}\left(\frac{-s}{1+s \cos x}-\frac{s}{1-s \cos x}\right)=-2 s
\end{aligned}
$$

and so, the integrand is continuous on $[0, \pi / 2]$ and $F(s)$ is well defined. On the other hand, as

$$
\begin{aligned}
\left|\frac{\partial}{\partial s}\left[\log \left(\frac{1+s \cos x}{1-s \cos x}\right) \frac{1}{\cos x}\right]\right| & =\left|\left[\frac{\cos x}{1+s \cos x}-\frac{-\cos x}{1-s \cos x}\right] \frac{1}{\cos x}\right| \\
& =\frac{2}{1-s^{2} \cos ^{2} x} \leq \frac{2}{1-s_{0}^{2} \cos ^{2} x} \in L^{1}(0, \pi / 2)
\end{aligned}
$$

for $|s| \leq s_{0}<1$. Hence, by the theorem on differentiation of parametric integrals, $F(s)$ is derivable on $\left(-s_{0}, s_{0}\right)$ for all $s_{0}<1$, and so $F(s)$ is derivable on $(-1,1)$. Besides,

$$
F^{\prime}(s)=\int_{0}^{\pi / 2} \frac{\partial}{\partial s}\left[\log \left(\frac{1+s \cos x}{1-s \cos x}\right) \frac{1}{\cos x}\right] d x=\int_{0}^{\pi / 2} \frac{2}{1-s^{2} \cos ^{2} x} d x
$$

and making the change of variable $t=\tan x$, and using the monotone convergence theorem, we have that

$$
\begin{aligned}
F^{\prime}(s) & =\int_{0}^{\infty} \frac{2}{1-\frac{s^{2}}{1+t^{2}}} \frac{d t}{1+t^{2}}=\int_{0}^{\infty} \frac{2}{1-s^{2}+t^{2}} d t=\frac{2}{1-s^{2}} \int_{0}^{\infty} \frac{d t}{1+\left(\frac{t}{\sqrt{1-s^{2}}}\right)^{2}} \\
& =\lim _{N \rightarrow \infty} \frac{2}{1-s^{2}} \int_{0}^{N} \frac{d t}{1+\left(\frac{t}{\sqrt{1-s^{2}}}\right)^{2}}=\lim _{N \rightarrow \infty} \frac{2}{\sqrt{1-s^{2}}}\left[\arctan \left(\frac{t}{\sqrt{1-s^{2}}}\right)\right]_{t=0}^{t=N}=\frac{\pi}{\sqrt{1-s^{2}}}
\end{aligned}
$$

Hence, $F(s)=\pi \arcsin s+c$. But, from the definition of $F(s)$ it is clear that $F(0)=0$, and so $c=0$. Therefore, $F(s)=\pi \arcsin s$.
ii) Using the Taylor expansion of $\log (1+t)$ around $t=0$ we get that $\log \left(1+\frac{a^{2}}{x^{2}}\right)=\frac{a^{2}}{x^{2}}+o\left(\frac{1}{x^{2}}\right)$ as $x \rightarrow \infty$ for each fixed $a \in \mathbb{R}$. Hence,

$$
\int_{1}^{\infty} \log \left(1+\frac{a^{2}}{x^{2}}\right) d x \leq C \int_{1}^{\infty} \frac{1}{x^{2}} d x<\infty
$$

Also,

$$
\int_{0}^{1} \log \left(1+\frac{a^{2}}{x^{2}}\right) d x=\int_{0}^{1} \log \left(x^{2}+a^{2}\right) d x-2 \int_{0}^{1} \log x d x<\infty
$$

since $\log \left(x^{2}+a^{2}\right)$ is continuous on $[0,1]$ if $a \neq 0$, and integrating by parts and using the monotone convergence theorem and L'Hopital rule:

$$
\int_{0}^{1} \log x d x=\lim _{\varepsilon \rightarrow 0^{+}}[x \log x-x]_{x=\varepsilon}^{x=1}=-1-\lim _{\varepsilon \rightarrow 0^{+}} \varepsilon \log \varepsilon=-1>-\infty .
$$

Hence, $\log \left(1+a^{2} / x^{2}\right) \in L^{1}(0, \infty)$ and so, $G(a)$ is well-defined. On the other hand, as

$$
\frac{\partial}{\partial a}\left[\log \left(1+\frac{a^{2}}{x^{2}}\right)\right]=\frac{2 a}{x^{2}+a^{2}} \leq \frac{2 M}{x^{2}+\varepsilon^{2}} \in L^{1}(0, \infty)
$$

for all $a \in[\varepsilon, M]$ with $0<\varepsilon<M<\infty$, using the theorem on differentiation of parametric integrals we deduce that $G(a)$ is derivable on (ε, M) for all ε and M and therefore, since G is also even, is derivable on $\mathbb{R} \backslash\{0\}$ and

$$
G^{\prime}(a)=\int_{0}^{\infty} \frac{\partial}{\partial a}\left[\log \left(1+\frac{a^{2}}{x^{2}}\right)\right] d x=\int_{0}^{\infty} \frac{2 a}{x^{2}+a^{2}} d x
$$

Therefore,

$$
G^{\prime}(a)=\int_{0}^{\infty} \frac{2 a}{x^{2}+a^{2}} d x=2\left[\arctan \frac{x}{a}\right]_{x=0}^{x=\infty}=2 \frac{\pi}{2}=\pi .
$$

This implies that $G(a)=\pi a+c$ for $a>0$, where c is a constant.
Since G is derivable on $\mathbb{R} \backslash\{0\}$, it is a continuous function on $\mathbb{R} \backslash\{0\}$. Let us prove that G is also continuous at 0 : Consider a with $|a|<1$. If $x \geq 1$, then

$$
\log \left(1+\frac{a^{2}}{x^{2}}\right) d x \leq \frac{C}{x^{2}} \in L^{1}(1, \infty)
$$

If $0<x<1$, then

$$
\log \left(1+\frac{a^{2}}{x^{2}}\right) d x \leq \log \left(1+\frac{1}{x^{2}}\right) d x \in L^{1}(0,1)
$$

As G is continuous on \mathbb{R}, we deduce that $G(0)=c$. But, it is clear from the definition of G that $G(0)=0$. Hence, $G(a)=\pi a$ for $a \geq 0$. Since $G(a)$ is an even function, we conclude that $G(a)=\pi|a|$ for $a \in \mathbb{R}$.
iii) First of all, if $p \geq 0$ we have that $\lim _{x \rightarrow 0^{+}} \frac{x^{p}-1}{\log x}=0$ and so the integrand is continuous on $[0,1]$. If $-1<p<0$, let $q=-p \in(0,1)$. Then

$$
\frac{x^{p}-1}{\log x}=\frac{x^{-q}-1}{\log x}=\frac{1-x^{q}}{\log x} \frac{1}{x^{q}} \leq C \frac{1}{x^{q}} \in L^{1}[0,1] .
$$

Hence, in any case, $H(p)$ is well defined for $p>-1$. On the other hand, as $p>-1$ we have that

$$
\left|\frac{\partial}{\partial p}\left[\frac{x^{p}-1}{\log x}\right]\right|=x^{p} \leq x^{p_{0}} \in L^{1}(0,1) \quad \forall p \geq p_{0}>-1
$$

and so, by the theorem on derivation of parametric integrals, we conclude that $H(p)$ is derivable on $\left(p_{0}, \infty\right) \forall p_{0}>-1$. Consequently, $H(p)$ is derivable on $(-1, \infty)$. Also, this same theorem gives that

$$
H^{\prime}(p)=\int_{0}^{1} \frac{\partial}{\partial p}\left[\frac{x^{p}-1}{\log x}\right] d x=\int_{0}^{1} x^{p} d x=\left[\frac{x^{p+1}}{p+1}\right]_{x=0}^{x=1}=\frac{1}{p+1},
$$

and therefore

$$
H(p)=\int \frac{1}{p+1} d p=\log (p+1)+c
$$

As $H(0)=\int_{0}^{1} 0 d x=0$, we obtain that $0=H(0)=\log 1+c=0+c=c$ and therefore $H(p)=\log (p+1)$.
iv) First of all, applying L'Hopital rule, we have that

$$
\lim _{x \rightarrow 0^{+}} \frac{\log \left(1-\lambda^{2} \sin ^{2} x\right)}{\sin x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{-2 \lambda^{2} \sin x \cos x}{1-\lambda^{2} \sin ^{2} x}}{\cos x}=0
$$

and so $\frac{\log \left(1-\lambda^{2} \sin ^{2} x\right)}{\sin x}$ is continuous on $[0, \pi / 2]$ and $I(\lambda)$ is well-defined. On the other hand,

$$
\left|\frac{\partial}{\partial \lambda}\left[\frac{\log \left(1-\lambda^{2} \sin ^{2} x\right)}{\sin x}\right]\right|=\frac{2|\lambda||\sin x|}{1-\lambda^{2} \sin ^{2} x} \leq \frac{2}{1-\lambda_{0}^{2} \sin ^{2} x} \in L^{1}(0, \pi / 2), \quad \text { if }|\lambda| \leq \lambda_{0}<1
$$

because $\frac{2}{1-\lambda_{0}^{2} \sin ^{2} x}$ is continuous on $[0, \pi / 2]$. Hence, by the theorem on differentiability of parametric integrals, we have that $I(\lambda)$ is derivable on $\left(-\lambda_{0}, \lambda_{0}\right)$ for all $\lambda_{0} \in(-1,1)$ and so it is derivable on $(-1,1)$. Besides,

$$
I^{\prime}(\lambda)=\int_{0}^{\pi / 2} \frac{\partial}{\partial \lambda}\left[\frac{\log \left(1-\lambda^{2} \sin ^{2} x\right)}{\sin x}\right] d x=-\int_{0}^{\pi / 2} \frac{2 \lambda \sin x}{1-\lambda^{2} \sin ^{2} x} d x
$$

Changing variables to $t=\cos x$ we obtain that

$$
\begin{aligned}
I^{\prime}(\lambda) & =-\int_{0}^{1} \frac{2 \lambda}{1-\lambda^{2}\left(1-t^{2}\right)} d t=-\int_{0}^{1} \frac{2 \lambda}{1-\lambda^{2}+\lambda^{2} t^{2}} d t=-\frac{2 \lambda}{1-\lambda^{2}} \int_{0}^{1} \frac{d t}{1+\left(\frac{\lambda t}{\sqrt{1-\lambda^{2}}}\right)^{2}} \\
& =-\frac{2}{\sqrt{1-\lambda^{2}}}\left[\arctan \frac{\lambda t}{\sqrt{1-\lambda^{2}}}\right]_{t=0}^{t=1}=-\frac{2}{\sqrt{1-\lambda^{2}}} \arctan \frac{\lambda}{\sqrt{1-\lambda^{2}}} .
\end{aligned}
$$

But, if $\alpha:=\arctan \frac{\lambda}{\sqrt{1-\lambda^{2}}} \Longrightarrow \tan \alpha=\frac{\lambda}{\sqrt{1-\lambda^{2}}} \Longrightarrow \sec ^{2} \alpha=\frac{1}{1-\lambda^{2}} \Longrightarrow \cos ^{2} \alpha=1-\lambda^{2} \Longrightarrow$ $\alpha=\arcsin \lambda$ and so $I^{\prime}(\lambda)=-\frac{2}{\sqrt{1-\lambda^{2}}} \arcsin \lambda \Longrightarrow I(\lambda)=-(\arcsin \lambda)^{2}+c$. But, from the definition of $I(\lambda)$, we have that $I(0)=0$. Hence, $c=0$ and so $I(\lambda)=-(\arcsin \lambda)^{2}$.
v) First of all $e^{-t^{2}-x^{2} / t^{2}} \leq e^{-t^{2}} \in L^{1}(0, \infty)$ and so $K(x)$ is well-defined and continuous on \mathbb{R}. Also, $K(x)$ is even and therefore, it is enough to compute it for $x \geq 0$. Now, given $0<\varepsilon \leq x \leq$ M, we have that

$$
\left|\frac{\partial}{\partial x}\left[e^{-t^{2}-x^{2} / t^{2}}\right]\right|=\left|-\frac{2 x}{t^{2}} e^{-t^{2}-x^{2} / t^{2}}\right| \leq \frac{2 M}{t^{2}}\left(e^{-t^{2}} \chi_{[1, \infty)}(t)+e^{-\varepsilon^{2} / t^{2}} \chi_{(0,1)}(t)\right) \in L^{1}(0, \infty),
$$

Hence, by the theorem on differentiation of parametric integrals, $K(x)$ is derivable on (ε, M) for all $\varepsilon, M>0$ and so it is derivable on $(0, \infty)$. Besides,

$$
K^{\prime}(x)=\int_{0}^{\infty} \frac{\partial}{\partial x}\left[e^{-t^{2}-x^{2} / t^{2}}\right] d t=-\int_{0}^{\infty} \frac{2 x}{t^{2}} e^{-t^{2}-x^{2} / t^{2}} d t=-2 \int_{0}^{\infty} e^{-x^{2} / s^{2}-s^{2}} d s=-2 K(x)
$$

Hence, $K^{\prime}(x) / K(x)=-2$ for $x>0$ and so $\log K(x)=-2 x+c \Longrightarrow K(x)=C e^{-2 x}$. But, from the definition, we have that $K(0)=\int_{0}^{\infty} e^{-t^{2}} d t=\sqrt{\pi} / 2$ by problem 2.3.1. As K is continuous, we conclude that $C=\sqrt{\pi} / 2$ and that $K(x)=\frac{\sqrt{\pi}}{2} e^{-2 x}$ for $x \geq 0$ and, by symmetry, that $K(x)=\frac{\sqrt{\pi}}{2} e^{-2|x|}$ for $x \in \mathbb{R}$.

Problem 3.1.9 Obtain explicitly the function $F(t)$ justifying all the steps:

$$
F(t)=\int_{0}^{\infty} e^{-t x} \frac{\sin x}{x} d x, \quad \forall t>0
$$

Hint: As $\left|\frac{\partial}{\partial t}\left[e^{-t x} \frac{\sin x}{x}\right]\right| \leq e^{-t x} \leq e^{-\varepsilon x} \in L^{1}(0, \infty)$ for $t \in(\varepsilon, \infty)$, we have that $F(t)$ is derivable on (ε, ∞) for all $\varepsilon>0$ and so it is derivable on $(0, \infty)$.
Solution: First of all, $\left|e^{-t x} \frac{\sin x}{x}\right| \leq e^{-t x} \in L^{1}(0, \infty)$ because $|\sin x / x| \leq 1$ and by problem 2.1.8. Hence, $F(t)$ is well defined. On the other hand,

$$
\left|\frac{\partial}{\partial t}\left[e^{-t x} \frac{\sin x}{x}\right]\right|=\left|-x e^{-t x} \frac{\sin x}{x}\right| \leq e^{-t x} \leq e^{-\varepsilon x} \in L^{1}(0, \infty)
$$

for all $t \in(\varepsilon, \infty)$. Hence, by the theorem on differentiation of parametric integrals, $F(t)$ is derivable on (ε, ∞) for all $\varepsilon>0$ and so it is derivable on ($0, \infty$). Besides,

$$
F^{\prime}(t)=\int_{0}^{\infty} \frac{\partial}{\partial t}\left[e^{-t x} \frac{\sin x}{x}\right] d x=-\int_{0}^{\infty} e^{-t x} \sin x d x
$$

Integrating twice by parts and using the dominated convergence theorem we get that

$$
\begin{aligned}
F^{\prime}(t) & =\lim _{N \rightarrow \infty}\left[e^{-t x} \cos x\right]_{x=0}^{x=N}+\lim _{N \rightarrow \infty} t \int_{0}^{N} e^{-t x} \cos x d x \\
& =-1+\lim _{N \rightarrow \infty} t\left[e^{-t x} \sin x\right]_{x=0}^{x=N}+\lim _{N \rightarrow \infty} t^{2} \int_{0}^{N} e^{-t x} \sin x d x=-1-t^{2} F^{\prime}(t)
\end{aligned}
$$

Hence, $F^{\prime}(t)=-\frac{1}{1+t^{2}} \Longrightarrow F(t)=c-\arctan t$. But, from the definition and using the dominated convergence theorem, it is easy to check that $\lim _{t \rightarrow \infty} F(t)=0$. Therefore, as $\lim _{t \rightarrow \infty} \arctan t=$ $\pi / 2$, we conclude that $c=\pi / 2$ and so that $F(t)=\frac{\pi}{2}-\arctan t$.

Problem 3.1.10 Prove that

$$
\int_{0}^{\infty} \frac{1-\mathrm{e}^{-x^{2}}}{x^{2}} d x=\sqrt{\pi}
$$

Hint: Consider the function $F(t)=\int_{0}^{\infty} \frac{1-\mathrm{e}^{-t x^{2}}}{x^{2}} d x$ for $t>0$ and proceed in a similar way to the previous problems.
Solution: Let $F(t):=\int_{0}^{\infty} \frac{1-\mathrm{e}^{-t x^{2}}}{x^{2}} d x$ for $t>0$ and $f(x, t)=\frac{1-\mathrm{e}^{-t x^{2}}}{x^{2}}$.

First of all, as $\lim _{x \rightarrow 0^{+}} \frac{1-e^{-t x^{2}}}{x^{2}}=t$, we have that $f(x, t)$ is continuous on $x \in[0,1]$ and so $\int_{0}^{1} \frac{1-\mathrm{e}^{-t x^{2}}}{x^{2}} d x<\infty$. Also $\int_{1}^{\infty} \frac{1-\mathrm{e}^{-t x^{2}}}{x^{2}} d x \leq \int_{1}^{\infty} \frac{d x}{x^{2}}<\infty$. Hence, $F(t)$ is well-defined. On the other hand,

$$
\frac{\partial}{\partial t}\left[\frac{1-\mathrm{e}^{-t x^{2}}}{x^{2}}\right]=e^{-t x^{2}} \leq e^{-\varepsilon x^{2}} \in L^{1}(0, \infty), \quad \text { for all } t>\varepsilon
$$

since $e^{-\varepsilon x^{2}}$ is continuous and so integrable on $[0,1]$ and, if $x \in(1, \infty)$, then $e^{-\varepsilon x^{2}} \leq e^{-\varepsilon x} \in$ $L^{1}(1, \infty)$ by problem 2.1.8. Hence, by the theorem on differentiation of parametric integrals, $F(t)$ is derivable on (ε, ∞) for all $\varepsilon>0$, and so it is derivable on $(0, \infty)$. Besides,

$$
F^{\prime}(t)=\int_{0}^{\infty} \frac{\partial}{\partial t}\left[\frac{1-\mathrm{e}^{-t x^{2}}}{x^{2}}\right] d x=\int_{0}^{\infty} \mathrm{e}^{-t x^{2}} d x=\frac{1}{\sqrt{t}} \int_{0}^{\infty} e^{-u^{2}} d u=\frac{1}{\sqrt{t}} \frac{\sqrt{\pi}}{2}=\frac{1}{2} \sqrt{\frac{\pi}{t}},
$$

where we have done the change of variable $u=\sqrt{t} x$ and we have used the problem 2.3.1. Hence, $F(t)=\sqrt{\pi t}+c$.
But, from the Taylor expansion of $f(x, t)$ around $x=0$ we have, for given $\varepsilon>0$, that there exists $\delta>0$ such that $f(x, t) \leq t+\varepsilon \leq 1+\varepsilon$ for $x \in(0, \delta)$ and $t \in[0,1]$. Hence, we have that

$$
f(x, t) \leq g(x):=(1+\varepsilon) \chi_{(0, \delta)}+\frac{1}{x^{2}} \chi_{[\delta, \infty)} \in L^{1}(0, \infty)
$$

and so, by the theorem on continuity of parametric integrals, $F(t)$ is continuous on $[0,1]$. Besides,

$$
0=F(0)=\lim _{t \rightarrow 0^{+}} F(t)=\lim _{t \rightarrow 0^{+}} \sqrt{\pi t}+c=c \quad \Longrightarrow \quad c=0
$$

and

$$
\int_{0}^{\infty} \frac{1-\mathrm{e}^{-x^{2}}}{x^{2}} d x=F(1)=\sqrt{\pi}
$$

Problem 3.1.11 Let $F(\lambda)=\int_{0}^{\infty} \frac{d x}{x^{2}+\lambda}$. Write the derivatives of F, and later prove that for all $\lambda>0$,

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+\lambda\right)^{n+1}}=\frac{1 \cdot 3 \cdots(2 n-1)}{2^{n} n!} \frac{\pi}{2 \lambda^{n+1 / 2}}=\frac{(2 n)!\pi}{(n!)^{2}(2 \sqrt{\lambda})^{2 n+1}} .
$$

Hints: First of all, it is easy to calculate $F(\lambda)$ and then all its derivatives $F^{(n)}(\lambda)$. Also, $\left|\frac{\partial}{\partial \lambda}\left[\frac{1}{x^{2}+\lambda}\right]\right|=\frac{1}{\left(x^{2}+\lambda\right)^{2}} \leq \frac{1}{\left(x^{2}+\lambda_{0}\right)^{2}} \in L^{1}(0, \infty)$ for $\lambda>\lambda_{0}>0$. Hence, F is derivable on $\left(\lambda_{0}, \infty\right)$ for all $\lambda_{0}>0$ and so it is derivable on $(0, \infty)$. Similarly, we can see that F is infinitely derivable on $(0, \infty)$, and its derivatives can be calculated by parametric derivation: $F^{(n)}(\lambda)=$ $\int_{0}^{\infty} \frac{\partial^{n}}{\partial \lambda^{n}}\left[\frac{1}{x^{2}+\lambda}\right] d x$.
Solution: First of all,

$$
\left|\frac{\partial}{\partial \lambda}\left[\frac{1}{x^{2}+\lambda}\right]\right|=\frac{1}{\left(x^{2}+\lambda\right)^{2}} \leq \frac{1}{\left(x^{2}+\lambda_{0}\right)^{2}} \in L^{1}(0, \infty), \quad \text { for all } \lambda>\lambda_{0}>0
$$

Hence, by the theorem on differentiation of parametric integrals, $F(\lambda)$ is derivable on $\left(\lambda_{0}, \infty\right)$ for all $\lambda_{0}>0$ and so it is derivable on $(0, \infty)$. Besides, $F^{\prime}(\lambda)=\int_{0}^{\infty} \frac{-1}{\left(x^{2}+\lambda\right)^{2}} d x$. Similarly,

$$
\left|\frac{\partial}{\partial \lambda}\left[\frac{1}{\left(x^{2}+\lambda\right)^{2}}\right]\right|=\frac{2}{\left(x^{2}+\lambda\right)^{3}} \leq \frac{1}{\left(x^{2}+\lambda_{0}\right)^{3}} \in L^{1}(0, \infty), \quad \text { for all } \lambda>\lambda_{0}>0
$$

and $F^{\prime}(\lambda)$ is again derivable on $(0, \infty)$ and $F^{\prime \prime}(\lambda)=\int_{0}^{\infty} \frac{2}{\left(x^{2}+\lambda\right)^{3}}$. Proceeding by induction, it is easy to obtain that $F(\lambda)$ is C^{∞} on $(0, \infty)$ and, for all $n \in \mathbb{N}$,

$$
\begin{equation*}
F^{(n)}(\lambda)=(-1)^{n} n!\int_{0}^{\infty} \frac{d x}{\left(x^{2}+\lambda\right)^{n+1}} \tag{1}
\end{equation*}
$$

But using the monotone convergence theorem and integrating directly, we have

$$
F(\lambda)=\lim _{N \rightarrow \infty} \int_{0}^{N} \frac{d x}{x^{2}+\lambda}=\frac{1}{\sqrt{\lambda}} \lim _{N \rightarrow \infty}\left[\arctan \frac{x}{\sqrt{\lambda}}\right]_{x=0}^{x=N}=\frac{\pi}{2 \sqrt{\lambda}}
$$

and proceeding again by induction, it is easy to obtain that, for all $n \in \mathbb{N}$,

$$
\begin{equation*}
F^{(n)}(\lambda)=(-1)^{n} \frac{\pi}{2} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{n}(\sqrt{\lambda})^{2 n+1}} \tag{2}
\end{equation*}
$$

From (1) and (2) we obtain that

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+\lambda\right)^{n+1}}=\frac{(-1)^{n}}{n!} F^{(n)}(\lambda)=\frac{(2 n)!\pi}{2^{n+1} 2^{n}(n!)^{2}} \frac{1}{(\sqrt{\lambda})^{2 n+1}}=\frac{(2 n)!\pi}{(n!)^{2}(2 \sqrt{\lambda})^{2 n+1}}
$$

Problem 3.1.12 Let

$$
F(x)=\int_{0}^{2 x} \frac{\log (1+2 x t)}{1+t^{2}} d t, \quad x \geq 0
$$

a) Check that F is derivable on $(0, \infty)$ and prove that

$$
F^{\prime}(x)=\frac{\log \left(1+4 x^{2}\right)}{1+4 x^{2}}+\frac{4 x}{1+4 x^{2}} \arctan 2 x
$$

b) Using the previous part, prove that

$$
F(x)=\log \sqrt{1+4 x^{2}} \arctan 2 x
$$

Hints: a) $\left|\frac{\partial}{\partial x}\left[\frac{\log (1+2 x t)}{1+t^{2}}\right]\right| \leq \frac{2 t}{\left(1+t^{2}\right)\left(1+2 x_{0} t\right)} \in L^{1}(0, \infty)$, for $x>x_{0}>0$. Hence, F is derivable on $\left(x_{0}, \infty\right)$ for all $x_{0}>0$ and so it is derivable on $(0, \infty)$. To calculate $F^{\prime}(x)$ use decomposition on simple fractions. b) Integrate by parts.
Solution: a) First of all,

$$
\frac{\partial}{\partial x}\left[\frac{\log (1+2 x t)}{1+t^{2}}\right]=\frac{1}{1+t^{2}} \frac{2 t}{1+2 x t} \leq \frac{2 t}{\left(1+t^{2}\right)\left(1+2 x_{0} t\right)} \in L^{1}(0, \infty), \quad \text { for all } x \geq x_{0}>0
$$

Hence, by the theorem on differentiation of parametric integrals, $F(x)$ is derivable on $\left(x_{0}, \infty\right)$ for all $x_{0}>0$ and so it is derivable on $(0, \infty)$. Besides, by part a) of problem 3.1.4

$$
F^{\prime}(x)=2 \frac{\log \left(1+4 x^{2}\right)}{1+4 x^{2}}+\int_{0}^{2 x} \frac{2 t}{\left(1+t^{2}\right)(1+2 x t)} d t
$$

Decomposing into simple fractions, we have that

$$
\frac{2 t}{\left(1+t^{2}\right)(1+2 x t)}=\frac{A t+B}{1+t^{2}}+\frac{C}{1+2 x t}, \quad \text { with } A=\frac{2}{1+4 x^{2}}, B=-C=\frac{4 x}{1+4 x^{2}}
$$

Hence,

$$
\begin{aligned}
F^{\prime}(x)= & 2 \frac{\log \left(1+4 x^{2}\right)}{1+4 x^{2}}+\frac{1}{1+4 x^{2}} \int_{0}^{2 x} \frac{2 t}{1+t^{2}} d t+\frac{4 x}{1+4 x^{2}} \int_{0}^{2 x} \frac{d t}{1+t^{2}}-\frac{2}{1+4 x^{2}} \int_{0}^{2 x} \frac{2 x d t}{1+2 x t} \\
= & 2 \frac{\log \left(1+4 x^{2}\right)}{1+4 x^{2}}+\frac{1}{1+4 x^{2}}\left[\log \left(1+t^{2}\right)\right]_{t=0}^{t=2 x}+\frac{4 x}{1+4 x^{2}}[\arctan t]_{t=0}^{t=2 x} \\
& -\frac{2}{1+4 x^{2}}[\log (1+2 x t)]_{t=0}^{t=2 x}=\frac{\log \left(1+4 x^{2}\right)}{1+4 x^{2}}+\frac{4 x}{1+4 x^{2}} \arctan 2 x .
\end{aligned}
$$

b) Integrating by parts with $u=\log \left(1+4 x^{2}\right)$ and $v^{\prime}=1 /\left(1+4 x^{2}\right)$, we obtain that

$$
\int \frac{\log \left(1+4 x^{2}\right)}{1+4 x^{2}} d x=\frac{1}{2} \log \left(1+4 x^{2}\right) \arctan 2 x-\int \frac{4 x}{1+4 x^{2}} \arctan 2 x d x
$$

and so

$$
F(x)=\int \frac{\log \left(1+4 x^{2}\right)}{1+4 x^{2}} d x+\int \frac{4 x}{1+4 x^{2}} \arctan 2 x d x=\log \sqrt{1+4 x^{2}} \arctan 2 x+c
$$

But, from the definition of $F(x)$, we know that $F(0)=0$ and so, $c=0$.

Problem 3.1.13* Prove that

$$
\int_{0}^{\pi} \frac{\log (1+\cos x)}{\cos x} d x=\frac{\pi^{2}}{2}
$$

calculating first

$$
F(t):=\int_{0}^{\pi} \frac{\log (1+t \cos x)}{\cos x} d x \quad \text { for }|t| \leq 1
$$

Hints: $\left|\frac{\partial}{\partial t}\left[\frac{\log (1+t \cos x)}{\cos x}\right]\right|=\frac{1}{1+t \cos x}$ which is continuous for $|t|<1$, and so it belongs to $L^{1}(0, \pi)$. This means that $F(t)$ is derivable on $(-1,1)$. Compute $F(t)$ by using parametric derivation and calculate $F^{\prime}(t)=\pi / \sqrt{1-t^{2}}$ (change variables to $u=\tan (x / 2)$). Now, if $0 \leq t \leq 1$, we have that $f(x, t)=\frac{\log (1+t \cos x)}{\cos x}$ verifies, for $x \in[0, \pi / 2)$, that $f(x, t) \leq \frac{\log (1+\cos x)}{\cos x}$ which is continuous at $x=\pi / 2$ and so it belongs to $L^{1}[0, \pi / 2)$, and for $x \in(\pi / 2, \pi)$ that $f(x, t) \leq$ $g(x):=\frac{1}{|\cos x|} \log \frac{1}{1-|\cos x|}$. But $g(x)$ is continuous at $x=\pi / 2$ and $\log \frac{1}{1-|\cos x|} \in L^{1}[\pi / 2, \pi)$ since $\lim _{x \rightarrow \pi^{-}} \frac{\log (1+\cos x)}{(\pi-x)^{-\varepsilon}}=0$ for each $\varepsilon>0$. Hence, $F(t)$ is continuous on $[0,1]$ and $F(1)=$ $\lim _{t \rightarrow 1^{-}} F(t)$.
Solution: $F(t)=\pi \operatorname{arcsen} t$.
Problem 3.1.14* Let us consider the function

$$
F(x)=\int_{0}^{1} \frac{(\log (1-x t))^{2}}{t} d t
$$

a) Find the values of x such that $F(x)$ is defined.
b) Calculate $F^{\prime}(x)$ justifying why you can derive. Evaluate the resulting integral.
c) Study the increasing and decreasing intervals of F.

Hints: a) As $\lim _{z \rightarrow 0^{+}}(\log (1-z)) / z=1$ we have $\log (1-z) \leq C z$ for $0<z<\delta$. As $\lim _{z \rightarrow 0^{+}} z^{\varepsilon} \log z=0$ we have $|\log z| \leq z^{-\varepsilon}$ for $0<z<\delta^{\prime}$. b) If $x<x_{0}<1$, then $\frac{\partial}{\partial x}\left(\frac{(\log (1-x t))^{2}}{t}\right) \leq$ $2 \frac{1}{1-x_{0} t} \log \frac{1}{1-x_{0} t}$ which is continuous for $t \in[0,1]$. To evaluate F^{\prime}, integrate by parts.
Solution: a) $F(x)<\infty$ for $x \in(-\infty, 1]$. b) F is derivable for $x \in(-\infty, 1)$ and $F^{\prime}(x)=$ $(\log (1-x))^{2} / x$. c) F decreases on $(-\infty, 0)$ and increases on $(0,1)$.

Problem 3.1.15** Given $a>0, b>0$, prove that

$$
\int_{0}^{\infty} \frac{\cos a x-\cos b x}{x^{2}} d x=\frac{\pi}{2}(b-a) .
$$

Hints: Consider the function $f(x, t)=\frac{\cos a x-\cos b x}{x^{2}} e^{-t x}$. Then $\left|\frac{\partial}{\partial t} f(x, t)\right| \leq \frac{|\cos a x-\cos b x|}{x} e^{-t_{0} x} \in$ $L^{1}(0, \infty)$ for $t \geq t_{0}>0$. Hence, $F(t)=\int_{0}^{x \infty} f(x, t) d x$ is derivable on $(0, \infty)$. Even more, as $\left|\frac{\partial^{2}}{\partial t^{2}} f(x, t)\right| \leq 2 e^{-t_{0} x} \in L^{1}(0, \infty)$ for $t \geq t_{0}>0$, we also have that $F(t)$ is twice derivable on $(0, \infty)$. Also, as $|f(x, t)| \leq \frac{|\cos a x-\cos b x|}{x^{2}} \in L^{1}(0, \infty)$ for $t \geq 0$, we have that F is continuous on $[0, \infty)$ and so, $F(0)=\lim _{t \rightarrow 0^{+}} F(t)$. To compute $F^{\prime \prime}(t)$, integrate by parts and prove that $F^{\prime \prime}(t)=\frac{t}{t^{2}+a^{2}}-\frac{t}{t^{2}+b^{2}}$. Hence, $F^{\prime}(t)=\log \sqrt{\frac{t^{2}+a^{2}}{t^{2}+b^{2}}}+c_{1}$. By dominated convergence we have that $\lim _{t \rightarrow \infty} F^{\prime}(t)=0$ and so we deduce that $c_{1}=0$. Integrate again by parts to obtain $F(t)=t \log \sqrt{\frac{t^{2}+a^{2}}{t^{2}+b^{2}}}+a \arctan \frac{t}{a}-b \arctan \frac{t}{b}+c_{2}$. Finally, again by dominated convergence $\lim _{t \rightarrow \infty} F(t)=0$ and so $c_{2}=\frac{\pi}{2}(b-a)$, since $\lim _{t \rightarrow \infty} t \log \frac{t^{2}+a^{2}}{t^{2}+b^{2}}=0$ by L'Hopital Rule.

