uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems

Chapter 3: Integrals depending on a parameter
Section 3.2: Fourier transform

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

2 Integrals depending on a parameter

3.2. Fourier transform

Problem 3.2.1 Prove that if $f \in L^{1}(\mathbb{R})$ and $f>0$, then $|\hat{f}(\omega)|<\hat{f}(0)$ for every $\omega \neq 0$.
Hint: The inequality $|\hat{f}(\omega)| \leq \hat{f}(0)$ is easy. If α denotes the complex argument of $\hat{f}(\omega)$, then $|\hat{f}(\omega)|=\hat{f}(\omega) e^{-i \alpha}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i(\omega x-\alpha)} d x$. Now, take real parts in the equality $|\hat{f}(\omega)|=\hat{f}(0)$ to conclude that, a fortiori, $\omega=0$.
Solution: First of all, as $f>0$, we have that

$$
|\hat{f}(\omega)| \leq \frac{1}{2 \pi} \int_{-\infty}^{\infty}|f(x)|\left|e^{i \omega x}\right| d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) d x=\hat{f}(0)
$$

On the other hand, let $\hat{f}(\omega)=|\hat{f}(\omega)| e^{i \alpha}$ (α is the argument of the complex number $\left.\hat{f}(\omega)\right)$. Then

$$
|\hat{f}(\omega)|=\hat{f}(\omega) e^{-i \alpha}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i(\omega x-\alpha)} d x
$$

If $|\hat{f}(\omega)|=\hat{f}(0)$, then

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i(\omega x-\alpha)} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) d x
$$

Taking now real parts, we obtain that

$$
\int_{-\infty}^{\infty} f(x) \cos (\omega x-\alpha) d x=\int_{-\infty}^{\infty} f(x) d x
$$

and so

$$
\int_{-\infty}^{\infty} f(x)(1-\cos (\omega x-\alpha)) d x=0
$$

But $f(x)(1-\cos (\omega x-\alpha)) \geq 0$ for all x. Hence, we must have that

$$
1-\cos (\omega x-\alpha)=0 \quad \text { a.e. } x \quad \Longrightarrow \quad \omega x-\alpha=2 \pi k \quad \text { a.e. } x, \text { for some } k \in \mathbb{Z} \quad \Longrightarrow \quad \omega=0 .
$$

Problem 3.2.2 Given $\alpha>0$, compute the Fourier transform of the following functions:

1) $f(x)=e^{-\alpha|x|}$,
2) $f(x)=\frac{2 \alpha}{x^{2}+\alpha^{2}}$,
3) $f(x)=\chi_{[-\alpha, \alpha]}(x)$,
4) $f(x)=x \chi_{[-\alpha, \alpha]}(x)$,
5) $f(x)=\chi_{[0, \alpha]}(x)-\chi_{[-\alpha, 0]}(x)$,
6) $f(x)=|x| \chi_{[-\alpha, \alpha]}(x)$,
7) $f(x)=\delta_{0}(x)$,
8) $f(x)=\frac{\sin \alpha x}{x}$,
9) $f(x)=(\alpha-|x|) \chi_{[-\alpha, \alpha]}$,
10) $f(x)=\frac{\alpha}{\left(x-x_{0}\right)^{2}+\alpha^{2}}+\frac{\alpha}{\left(x+x_{0}\right)^{2}+\alpha^{2}}$,
11) $f(x)=\sqrt{\frac{\pi}{\alpha}} e^{-i \pi / 4} e^{i x^{2} /(4 \alpha)}$,
12) $f(x)=\frac{\alpha}{\left(x-x_{0}\right)^{2}+\alpha^{2}}-\frac{\alpha}{\left(x+x_{0}\right)^{2}+\alpha^{2}}$,
13) $f(x)=\frac{1}{\left(x^{2}+\alpha^{2}\right)\left(x^{2}+\beta^{2}\right)}$,
14) $f(x)=\frac{1}{x}$,
15) $f(x)=\delta_{x_{0}}+\delta_{-x_{0}}$,
16) $f(x)=\delta_{x_{0}}-\delta_{-x_{0}}$,
17) $f(x)=e^{-\pi(x-3)^{2}}$,
18) $f(x)=e^{-i \pi(x+1)^{2}}$.

Solutions: 1) Applying directly the definition of the Fourier transform we obtain

$$
\begin{aligned}
\mathcal{F}\left[e^{-\alpha|x|}\right](\omega) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\alpha|x|} e^{i \omega x} d x=\frac{1}{2 \pi} \int_{0}^{\infty} e^{-\alpha x} e^{i \omega x} d x+\frac{1}{2 \pi} \int_{-\infty}^{0} e^{\alpha x} e^{i \omega x} d x \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} e^{(i \omega-\alpha) x} d x+\frac{1}{2 \pi} \int_{-\infty}^{0} e^{(i \omega+\alpha) x} d x \\
& =\frac{1}{2 \pi}\left(\left[\frac{e^{(i \omega-\alpha) x}}{i \omega-\alpha}\right]_{x=0}^{x=\infty}+\left[\frac{e^{(i \omega+\alpha) x}}{i \omega+\alpha}\right]_{x=-\infty}^{x=0}\right)=\frac{1}{2 \pi}\left(\frac{-1}{i \omega-\alpha}+\frac{1}{i \omega+\alpha}\right) \\
& =\frac{\alpha}{\pi\left(\omega^{2}+\alpha^{2}\right)}
\end{aligned}
$$

2) Using the previous problem, we have:

$$
\mathcal{F}^{-1}\left[\frac{\alpha}{\pi\left(\omega^{2}+\alpha^{2}\right)}\right](x)=e^{-\alpha|x|} \quad \Rightarrow \quad \mathcal{F}^{-1}\left[\frac{\alpha}{\pi\left(x^{2}+\alpha^{2}\right)}\right](\omega)=e^{-\alpha|\omega|}
$$

Taking this result into account and using the theorem on the inverse Fourier transform, we get

$$
\mathcal{F}\left[\frac{2 \alpha}{x^{2}+\alpha^{2}}\right](\omega)=\frac{1}{2 \pi} \mathcal{F}^{-1}\left[\frac{2 \alpha}{x^{2}+\alpha^{2}}\right](-\omega)=\mathcal{F}^{-1}\left[\frac{\alpha}{\pi\left(x^{2}+\alpha^{2}\right)}\right](-\omega)=e^{-\alpha|-\omega|}=e^{-\alpha|\omega|}
$$

3) Applying the definition of the Fourier transform we obtain

$$
\begin{aligned}
\mathcal{F}\left[\chi_{[-\alpha, \alpha]}(x)\right](\omega) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \chi_{[-\alpha, \alpha]}(x) e^{i \omega x} d x=\frac{1}{2 \pi} \int_{-\alpha}^{\alpha} e^{i \omega x} d x \\
& =\frac{1}{2 \pi}\left[\frac{e^{i \omega x}}{i \omega}\right]_{x=-\alpha}^{x=\alpha}=\frac{e^{i \alpha \omega}-e^{-i \alpha \omega}}{2 \pi i \omega}=\frac{\sin \alpha \omega}{\pi \omega}
\end{aligned}
$$

4) As $\mathcal{F}\left[\chi_{[-\alpha, \alpha]}(x)\right](\omega)=\frac{\sin \alpha \omega}{\pi \omega}$ by the previous problem and the property 7 of the Fourier transform, we conclude that

$$
\mathcal{F}\left[x \chi_{[-\alpha, \alpha]}(x)\right](\omega)=-i \frac{d}{d \omega}\left(\mathcal{F}\left[\chi_{[-\alpha, \alpha]}(x)\right](\omega)\right)=-i \frac{d}{d \omega}\left(\frac{\sin \alpha \omega}{\pi \omega}\right)=i \frac{\sin \alpha \omega-\alpha \omega \cos \alpha \omega}{\pi \omega^{2}}
$$

5) Applying the definition of the Fourier transform we obtain

$$
\begin{aligned}
\mathcal{F}\left[\chi_{[0, \alpha]}(x)-\chi_{[-\alpha, 0]}(x)\right](\omega) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\chi_{[0, \alpha]}(x)-\chi_{[-\alpha, 0]}(x)\right) e^{i \omega x} d x \\
& =\frac{1}{2 \pi} \int_{0}^{\alpha} e^{i \omega x} d x-\frac{1}{2 \pi} \int_{-\alpha}^{0} e^{i \omega x} d x \\
& =\frac{1}{2 \pi}\left[\frac{e^{i \omega x}}{i \omega}\right]_{x=0}^{x=\alpha}-\frac{1}{2 \pi}\left[\frac{e^{i \omega x}}{i \omega}\right]_{x=-\alpha}^{x=0}=\frac{e^{i \alpha \omega}-1-1+e^{-i \alpha \omega}}{2 \pi i \omega} \\
& =i \frac{1-\cos \alpha \omega}{\pi \omega}
\end{aligned}
$$

6) As $\mathcal{F}\left[\chi_{[0, \alpha]}(x)-\chi_{[-\alpha, 0]}(x)\right](\omega)=i \frac{1-\cos \alpha \omega}{\pi \omega}$ by the previous problem and

$$
|x| \chi_{[-\alpha, \alpha]}(x)=x\left(\chi_{[0, \alpha]}(x)-\chi_{[-\alpha, 0]}(x)\right)
$$

the property 7 of the Fourier transform we conclude that

$$
\begin{aligned}
\mathcal{F}\left[|x| \chi_{[-\alpha, \alpha]}(x)\right](\omega) & =\mathcal{F}\left[x\left(\chi_{[0, \alpha]}(x)-\chi_{[-\alpha, 0]}(x)\right)\right](\omega) \\
& =-i \frac{d}{d \omega}\left(\mathcal{F}\left[\chi_{[0, \alpha]}(x)-\chi_{[-\alpha, 0]}(x)\right](\omega)\right)=\frac{d}{d \omega}\left(\frac{1-\cos \alpha \omega}{\pi \omega}\right) \\
& =\frac{\alpha \omega \sin \alpha \omega+\cos \alpha \omega-1}{\pi \omega^{2}}
\end{aligned}
$$

7) Applying the definitions of the Fourier transform and the Dirac delta, we obtain that

$$
\mathcal{F}[\delta(x)](\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta(x) e^{i \omega x} d x=\left.\frac{1}{2 \pi} e^{i \omega x}\right|_{x=0}=\frac{1}{2 \pi} .
$$

8) $\frac{1}{2} \chi_{[-\alpha, \alpha]}(\omega)$. 9) $\frac{1-\cos \alpha \omega}{\pi \omega^{2}}$. 10) $e^{-\alpha|\omega|} \cos x_{0} \omega$. 11) $e^{-i \alpha \omega^{2}}$. 12) $i e^{-\alpha|\omega|} \sin x_{0} \omega$.
9) $\frac{1}{2 \alpha \beta\left(\alpha^{2}-\beta^{2}\right)}\left(\alpha e^{-\beta|\omega|}-\beta e^{-\alpha|\omega|}\right)$. 14) $-i / 2$ if $\omega<0,0$ if $\omega=0, i / 2$ if $\omega>0$. 15) $\frac{1}{\pi} \cos x_{0} \omega$. 16) $\frac{i}{\pi} \sin x_{0} \omega$. 17) $\frac{1}{2 \pi} e^{i 3 \omega} e^{-\omega^{2} /(4 \pi)}$. 18) $\frac{1}{2 \pi} e^{-i(\omega+\pi / 4)} e^{i \omega^{2} /(4 \pi)}$.

Problem 3.2.3 Calculate the Fourier transform of the Gaussian function $f(x)=e^{-x^{2}}$.
Hint: Note that the imaginary part of $\hat{f}(\omega)$ is zero. To compute the real part use the theorem on derivation of parametric integrals $\left(\left|\frac{\partial}{\partial \omega}\left[e^{-x^{2}} \cos (\omega x)\right]\right| \leq|x| e^{-x^{2}} \in L^{1}(\mathbb{R})\right)$. Integrating by parts prove that $\frac{d}{d \omega}[\hat{f}(\omega)]=-\frac{\omega}{2} \hat{f}(\omega)$. Recall that $\int_{\mathbb{R}} e^{-x^{2}} d x=\sqrt{\pi}$.
Solution: We have that

$$
\mathcal{F}\left[e^{-x^{2}}\right](\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-x^{2}} e^{i \omega x} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-x^{2}} \cos \omega x d x=\frac{1}{\pi} \int_{0}^{\infty} e^{-x^{2}} \cos \omega x d x
$$

since $\int_{-\infty}^{\infty} e^{-x^{2}} \sin \omega x d x=0$ because $e^{-x^{2}} \sin \omega x$ is an odd function. Now, as

$$
\left|\frac{\partial}{\partial \omega}\left(e^{-x^{2}} \cos \omega x\right)\right|=\left|e^{-x^{2}}(-x) \sin \omega x\right| \leq x e^{-x^{2}} \in L^{1}(0, \infty),
$$

we can use the theorem on differentiation of parametric integrals obtaining

$$
\frac{d}{d \omega}(\hat{f}(\omega))=\frac{1}{\pi} \int_{0}^{\infty} \frac{\partial}{\partial \omega}\left(e^{-x^{2}} \cos \omega x\right) d x=\frac{-1}{\pi} \int_{0}^{\infty} x e^{-x^{2}} \sin \omega x d x
$$

Integrating by parts with $u=\sin \omega x, v^{\prime}=x e^{-x^{2}}$, and using the dominated convergence theorem, we obtain that

$$
\frac{d}{d \omega}(\hat{f}(\omega))=\lim _{N \rightarrow \infty} \frac{1}{2 \pi}\left[e^{-x^{2}} \sin \omega x\right]_{x=0}^{x=N}-\frac{\omega}{2 \pi} \int_{0}^{\infty} e^{-x^{2}} \cos \omega x d x=-\frac{\omega}{2} \hat{f}(\omega) .
$$

Hence, $\hat{f}^{\prime}(\omega) / \hat{f}(\omega)=-\omega / 2 \Longrightarrow \log \hat{f}(\omega)=-\omega^{2} / 4+c \Longrightarrow \hat{f}(\omega)=C e^{-\omega^{2} / 4}$. But

$$
\hat{f}(0)=\frac{1}{\pi} \int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{\pi} \frac{\sqrt{\pi}}{2}=\frac{1}{2 \sqrt{\pi}} \quad \Longrightarrow \quad \hat{f}(\omega)=\frac{1}{2 \sqrt{\pi}} e^{-\omega^{2} / 4}
$$

Problem 3.2.4 For $\alpha>0$, calculate the integral

$$
\int_{-\infty}^{\infty} \frac{\sin ^{2} \alpha x}{x^{2}} d x
$$

Hint: Use Plancherel's theorem and part 8) of Exercise 3.2.2.
Solution: Applying Plancherel's theorem and part 8) of Exercise 3.2.2 we obtain that

$$
\int_{-\infty}^{\infty}\left(\frac{\sin \alpha x}{x}\right)^{2} d x=2 \pi \int_{-\infty}^{\infty}\left(\frac{1}{2} \chi_{[-\alpha, \alpha]}(\omega)\right)^{2} d \omega=\frac{\pi}{2} \int_{-\alpha}^{\alpha} d \omega=\alpha \pi .
$$

Problem 3.2.5 Find a particular solution of the equation $u^{\prime \prime}-u=f(x)$ by taking Fourier transforms in both sides of the equation.

Solution: Taking Fourier transforms in both members of the equation $u^{\prime \prime}-u=f(x)$ we obtain that

$$
-\omega^{2} \mathcal{F}[u](\omega)-\mathcal{F}[u](\omega)=\mathcal{F}[f](\omega) \quad \Rightarrow \quad \mathcal{F}[u](\omega)=\frac{-1}{\omega^{2}+1} \mathcal{F}[f](\omega)
$$

As we know by the part 1) of problem 3.2.2. that $\mathcal{F}\left[e^{-|x|}\right](\omega)=1 /\left(\pi\left(\omega^{2}+1\right)\right)$, we deduce using the property 6 on the Fourier transform of a convolution, that

$$
\begin{aligned}
\mathcal{F}[u](\omega) & =-\pi \mathcal{F}\left[e^{-|x|}\right](\omega) \mathcal{F}[f](\omega)=-\pi \mathcal{F}\left[e^{-|x|} * f\right](\omega) \\
u(x) & =-\pi\left(e^{-|x|} * f\right)(x)=\frac{-1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} f(y) d y
\end{aligned}
$$

Problem 3.2.6 Find a solution of the initial value problem for the heat equation on $\mathbb{R} \times(0, \infty)$ by taking Fourier transforms in the x-variable in both members of the equations:

$$
\begin{cases}\frac{\partial}{\partial t} u(x, t)=k \frac{\partial^{2}}{\partial x^{2}} u(x, t), & \text { if } x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x), & \text { if } x \in \mathbb{R}\end{cases}
$$

Solution: Let us denote by $U(\omega, t)$ and $F(\omega)$ the Fourier transforms in the variable x of the functions $u(x, t)$ and $f(x)$, respectively. Applying the Fourier transform in the variable x to both members of the equations, we obtain

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} U(\omega, t)=-k \omega^{2} U(\omega, t) \\
U(\omega, 0)=F(\omega)
\end{array}\right.
$$

For each fixed ω, we can see the equation $\frac{\partial}{\partial t} U(\omega, t)=-k \omega^{2} U(\omega, t)$ as an ordinary differential equation. The general solution of this equation is $U(\omega, t)=A e^{-k \omega^{2} t}$, where A is a constant (with respect to the variable t, and so A can depend on the variable ω). Substituting the initial condition $U(\omega, 0)=F(\omega)$ we obtain that $A=F(\omega)$ and so $U(\omega, t)=F(\omega) e^{-k \omega^{2} t}$. If we define the function $K_{t}(x)$ through the following formula, using the result of problem 3.2.3 it is easy to obtain that:

$$
K_{t}(x)=\sqrt{\frac{\pi}{k t}} e^{-x^{2} /(4 k t)}, \quad \mathcal{F}\left[K_{t}\right](\omega)=e^{-k \omega^{2} t}
$$

Then, using the property on the Fourier transform of a convolution:

$$
\begin{aligned}
\mathcal{F}[u](\omega) & =\mathcal{F}\left[K_{t}\right](\omega) \mathcal{F}[f](\omega)=\mathcal{F}\left[K_{t} * f\right](\omega) \\
u(x, t) & =\left(K_{t} * f\right)(x)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} /(4 k t)} f(y) d y
\end{aligned}
$$

Problem 3.2.7 Find a solution of the initial value problem for the diffusion equation with convection:

$$
\begin{cases}\frac{\partial}{\partial t} u(x, t)=k \frac{\partial^{2}}{\partial x^{2}} u(x, t)+c \frac{\partial}{\partial x} u(x, t), & \text { if } x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x), & \text { if } x \in \mathbb{R}\end{cases}
$$

Solution: We denote by $U(\omega, t)$ and $F(\omega)$ the Fourier transforms in the variable x of the functions $u(x, t)$ and $f(x)$, respectively. Applying the Fourier transform in the variable x to both members of the equations, we obtain

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} U(\omega, t)=-k \omega^{2} U(\omega, t)-i c \omega U(\omega, t) \\
U(\omega, 0)=F(\omega)
\end{array}\right.
$$

For each fixed ω, we have the differential equation $\frac{\partial}{\partial t} U(\omega, t)=-\left(k \omega^{2}+i c \omega\right) U(\omega, t)$, whose general solution is $U(\omega, t)=A e^{-\left(k \omega^{2}+i c \omega\right) t}$, where A is a constant (with respect to the variable t, and so A can depend on the variable ω). Substituting the initial condition $U(\omega, 0)=F(\omega)$ we obtain that $A=F(\omega)$ and so $U(\omega, t)=F(\omega) e^{-k \omega^{2} t} e^{-i c t \omega}$. If we define the function $K_{t}(x)$ through the following expression (as in the previous problem), using the result of problem 3.2.3 it is easy to obtain that:

$$
K_{t}(x)=\sqrt{\frac{\pi}{k t}} e^{-x^{2} /(4 k t)}, \quad \mathcal{F}\left[K_{t}\right](\omega)=e^{-k \omega^{2} t}
$$

Hence, using the property 3 of the Fourier transform, we obtain $\mathcal{F}\left[K_{t}(x+c t)\right](\omega)=e^{-k \omega^{2} t} e^{-i c t \omega}$. Finally, using the property on the Fourier transform of a convolution, we get

$$
\begin{aligned}
\mathcal{F}[u](\omega) & =\mathcal{F}\left[K_{t}(x+c t)\right](\omega) \mathcal{F}[f](\omega)=\mathcal{F}\left[K_{t}(x+c t) * f\right](\omega) \\
u(x, t) & =\left(K_{t}(x+c t) * f\right)(x)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x+c t-y)^{2} /(4 k t)} f(y) d y
\end{aligned}
$$

Problem 3.2.8 Find a solution of the initial value problem for the diffusion equation with convection:

$$
\begin{cases}\frac{\partial}{\partial t} u(x, t)=\frac{\partial^{2}}{\partial x^{2}} u(x, t)-2 \frac{\partial}{\partial x} u(x, t), & \text { if } x \in \mathbb{R}, t>0 \\ u(x, 0)=e^{-x^{2}}, & \text { if } x \in \mathbb{R}\end{cases}
$$

Solution: Using the previous problem we know that

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-(x-2 t-y)^{2} /(4 t)} e^{-y^{2}} d y=\frac{e^{-(x-2 t)^{2} /(4 t)}}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\left[(1+4 t) y^{2}-2(x-2 t) y\right] /(4 t)} d y
$$

As

$$
\begin{aligned}
(1+4 t) y^{2}-2(x-2 t) y & =(1+4 t)\left(y^{2}-2 \frac{x-2 t}{1+4 t} y+\frac{(x-2 t)^{2}}{(1+4 t)^{2}}-\frac{(x-2 t)^{2}}{(1+4 t)^{2}}\right) \\
& =(1+4 t)\left(y-\frac{x-2 t}{1+4 t}\right)^{2}-\frac{(x-2 t)^{2}}{1+4 t} .
\end{aligned}
$$

We have with the change of variables $v=y-(x-2 t) /(1+4 t)$ and $w=v \sqrt{1+4 t} / \sqrt{4 t}$, and using again the problem 3.2.3 that

$$
\begin{aligned}
u(x, t) & =\frac{e^{-(x-2 t)^{2} /(4 t)}}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-(1+4 t)(y-(x-2 t) /(1+4 t))^{2} /(4 t)} e^{(x-2 t)^{2} /(4 t(1+4 t))} d y \\
& =\frac{e^{-(x-2 t)^{2} /(1+4 t)}}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-(1+4 t) v^{2} /(4 t)} d v \\
& =\frac{e^{-(x-2 t)^{2} /(1+4 t)}}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-w^{2}} \frac{\sqrt{4 t}}{\sqrt{1+4 t}} d w=\frac{1}{\sqrt{1+4 t}} e^{-(x-2 t)^{2} /(1+4 t)}
\end{aligned}
$$

Problem 3.2.9 Find a solution of the initial value problem for the diffusion equation with absorption:

$$
\begin{cases}\frac{\partial}{\partial t} u(x, t)=k \frac{\partial^{2}}{\partial x^{2}} u(x, t)-c u(x, t), & \text { if } x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x), & \text { if } x \in \mathbb{R}\end{cases}
$$

Solution: We denote by $U(\omega, t)$ and $F(\omega)$ the Fourier transforms in the variable x of the functions $u(x, t)$ and $f(x)$, respectively. Applying the Fourier transform in the variable x to both members of the equations, we obtain

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} U(\omega, t)=-k \omega^{2} U(\omega, t)-c U(\omega, t) \\
U(\omega, 0)=F(\omega)
\end{array}\right.
$$

For each fixed ω, we have the ordinary differential equation $\frac{\partial}{\partial t} U(\omega, t)=-\left(k \omega^{2}+c\right) U(\omega, t)$, whose general solution is $U(\omega, t)=A e^{-\left(k \omega^{2}+c\right) t}$, where A is a constant (with respect to the variable t, and so A can depend on thea variable ω). Substituting the initial condition $U(\omega, 0)=F(\omega)$ we obtain that $A=F(\omega)$ and so $U(\omega, t)=e^{-c t} F(\omega) e^{-k \omega^{2} t}$. If we define the function $K_{t}(x)$ through the following expression, as in the previous problems, using the result of problem 3.2.3 it is easy to obtain that:

$$
K_{t}(x)=\sqrt{\frac{\pi}{k t}} e^{-x^{2} /(4 k t)}, \quad \mathcal{F}\left[K_{t}\right](\omega)=e^{-k \omega^{2} t}
$$

Then using the property on the Fourier transform of a convolution, we deduce that

$$
\begin{aligned}
\mathcal{F}[u](\omega) & =e^{-c t} \mathcal{F}\left[K_{t}\right](\omega) \mathcal{F}[f](\omega)=e^{-c t} \mathcal{F}\left[K_{t} * f\right](\omega), \\
u(x, t) & =e^{-c t}\left(K_{t} * f\right)(x)=\frac{e^{-c t}}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} /(4 k t)} f(y) d y
\end{aligned}
$$

Problem 3.2.10 Find the solution of the initial value problem for the wave equation on $\mathbb{R} \times(0, \infty)$:

$$
\begin{cases}\frac{\partial^{2}}{\partial t^{2}} u(x, t)=c^{2} \frac{\partial^{2}}{\partial x^{2}} u(x, t), & \text { if } x \in \mathbb{R}, t>0 \\ u(x, 0)=f(x), & \text { if } x \in \mathbb{R}, \\ \frac{\partial}{\partial t} u(x, 0)=g(x), & \text { if } x \in \mathbb{R} .\end{cases}
$$

Solution: Let us denote by $U(\omega, t), F(\omega)$ and $G(\omega)$ the Fourier transforms in the variable x of the functions $u(x, t), f(x)$ and $g(x)$, respectively. Applying the Fourier transform in the variable x to both members of the equations, we obtain that

$$
\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial t^{2}} U(\omega, t)=-c^{2} \omega^{2} U(\omega, t) \\
U(\omega, 0)=F(\omega) \\
\frac{\partial}{\partial t} U(\omega, 0)=G(\omega)
\end{array}\right.
$$

For each fixed ω, we have the ordinary differential equation $\frac{\partial^{2}}{\partial t^{2}} U(\omega, t)=-c^{2} \omega^{2} U(\omega, t)$, whose general solution is $U(\omega, t)=A \cos (c \omega t)+B \sin (c \omega t)$, where A and B are constants (with respect to the variable t, and so A and B can depend on the variable ω). Substituting the initial conditions $U(\omega, 0)=F(\omega)$ and $\frac{\partial}{\partial t} U(\omega, 0)=G(\omega)$ we obtain that $A=F(\omega)$ and $B=G(\omega) /(c \omega)$; Hence, $U(\omega, t)=F(\omega) \cos (c \omega t)+G(\omega) \frac{\sin (c \omega t)}{c \omega}$.
If we define the function $E_{t}(x)$ through the following expression, the part 3 of problem 3.2.2 gives:

$$
E_{t}(x)=\frac{\pi}{c} \chi_{[-c t, c t]}(x), \quad \mathcal{F}\left[E_{t}(x)\right](\omega)=\frac{\sin (c \omega t)}{c \omega} .
$$

From this last equality and property 9 of the Fourier transform we deduce

$$
\mathcal{F}\left[\frac{\partial E_{t}}{\partial t}\right](\omega)=\frac{\partial}{\partial t}\left(\mathcal{F}\left[E_{t}\right](\omega)\right)=\frac{\partial}{\partial t}\left(\frac{\sin (c \omega t)}{c \omega}\right)=\cos (c \omega t) .
$$

Then, using the linearity of the Fourier transform and the property on the Fourier transform of a convolution, we get

$$
\begin{aligned}
\mathcal{F}[u](\omega) & =\mathcal{F}\left[\frac{\partial E_{t}}{\partial t}\right](\omega) \mathcal{F}[f](\omega)+\mathcal{F}\left[E_{t}\right](\omega) \mathcal{F}[g](\omega)=\mathcal{F}\left[\frac{\partial E_{t}}{\partial t} * f+E_{t} * g\right](\omega), \\
u(x, t) & =\left(\frac{\partial E_{t}}{\partial t} * f\right)(x)+\left(E_{t} * g\right)(x)=\frac{\partial}{\partial t}\left(E_{t} * f\right)(x)+\left(E_{t} * g\right)(x)
\end{aligned}
$$

As

$$
\begin{aligned}
& \left(E_{t} * g\right)(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} g(x-y) \frac{\pi}{c} \chi_{[-c t, c t]}(y) d y=\frac{1}{2 c} \int_{-c t}^{c t} g(x-y) d y=\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s, \\
& \left(E_{t} * f\right)(x)=\frac{1}{2 c} \int_{x-c t}^{x+c t} f(s) d s, \quad \frac{\partial}{\partial t}\left(E_{t} * f\right)(x)=\frac{1}{2}(f(x+c t)+f(x-c t)),
\end{aligned}
$$

we obtain that

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

This expression is known as D'Alembert's formula.
Problem 3.2.11 Prove that if f is of C^{2}-class (continuous with two continuous derivatives) on \mathbb{R} and g is of C^{1}-class (continuous with one continuous derivative) on \mathbb{R}, then D'Alembert's formula

$$
u(x, t)=\frac{1}{2}(f(x+c t)+f(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

which has been obtained in the previous problem, is effectively a solution of the initial value problem for the wave equation on $\mathbb{R} \times(0, \infty)$.
Solution: As f belongs to the class C^{2} and g to the class C^{1}, we have that

$$
\begin{aligned}
\frac{\partial u}{\partial x}(x, t) & =\frac{1}{2}\left(f^{\prime}(x+c t)+f^{\prime}(x-c t)\right)+\frac{1}{2 c}(g(x+c t)-g(x-c t)), \\
\frac{\partial^{2} u}{\partial x^{2}}(x, t) & =\frac{1}{2}\left(f^{\prime \prime}(x+c t)+f^{\prime \prime}(x-c t)\right)+\frac{1}{2 c}\left(g^{\prime}(x+c t)-g^{\prime}(x-c t)\right), \\
\frac{\partial u}{\partial t}(x, t) & =\frac{c}{2}\left(f^{\prime}(x+c t)-f^{\prime}(x-c t)\right)+\frac{1}{2}(g(x+c t)+g(x-c t)), \\
\frac{\partial^{2} u}{\partial t^{2}}(x, t) & =\frac{c^{2}}{2}\left(f^{\prime \prime}(x+c t)+f^{\prime \prime}(x-c t)\right)+\frac{c}{2}\left(g^{\prime}(x+c t)-g^{\prime}(x-c t)\right),
\end{aligned}
$$

and so,

$$
\frac{\partial^{2} u}{\partial t^{2}}(x, t)=c^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t) .
$$

Substituting $t=0$ in $u(x, t)$ and $\frac{\partial}{\partial t} u(x, t)$ we get

$$
\begin{aligned}
u(x, 0) & =\frac{1}{2}(f(x)+f(x))+\frac{1}{2 c} \int_{x}^{x} g(s) d s=f(x), \\
\frac{\partial u}{\partial t}(x, 0) & =\frac{c}{2}\left(f^{\prime}(x)-f^{\prime}(x)\right)+\frac{1}{2}(g(x)+g(x))=g(x) .
\end{aligned}
$$

Hence, D'Alembert's formula provides a solution of the initial value problem for the wave equation on $\mathbb{R} \times(0, \infty)$.

Problem 3.2.12 Find the solution of the initial value problem for the non-homogeneous wave equation on $\mathbb{R} \times \mathbb{R}$:

$$
\begin{cases}\frac{\partial^{2}}{\partial t^{2}} u(x, t)=\frac{\partial^{2}}{\partial x^{2}} u(x, t)+6, & \text { if } x \in \mathbb{R}, t \in \mathbb{R} \\ u(x, 0)=x^{2}, & \text { if } x \in \mathbb{R}, \\ \frac{\partial}{\partial t} u(x, 0)=4 x, & \text { if } x \in \mathbb{R} .\end{cases}
$$

Solution: It is easy to check that $u_{0}(x, t)=3 t^{2}$ is a particular solution of the non-homogeneous equation $\frac{\partial^{2}}{\partial t^{2}} u(x, t)=\frac{\partial^{2}}{\partial x^{2}} u(x, t)+6$, since $\frac{\partial^{2}}{\partial t^{2}} u(x, t)=6$ and $\frac{\partial^{2}}{\partial x^{2}} u(x, t)=0$.
It is also easy to see that the function v defined as $v(x, t)=u(x, t)-u_{0}(x, t)=u(x, t)-3 t^{2}$ is a solution of the initial value problem for the homogeneous wave equation:

$$
\begin{cases}\frac{\partial^{2}}{\partial t^{2}} v(x, t)=\frac{\partial^{2}}{\partial x^{2}} v(x, t), & \text { if } x \in \mathbb{R}, t>0 \\ v(x, 0)=u(x, 0)-u_{0}(x, 0)=x^{2}, & \text { if } x \in \mathbb{R} \\ \frac{\partial}{\partial t} v(x, 0)=\frac{\partial}{\partial t} u(x, 0)-\frac{\partial}{\partial t} u_{0}(x, 0)=4 x, & \text { if } x \in \mathbb{R}\end{cases}
$$

since

$$
\begin{gathered}
\frac{\partial^{2} u}{\partial t^{2}}(x, t)=\frac{\partial^{2} u}{\partial x^{2}}(x, t)+6 \\
\Rightarrow \quad \frac{\partial^{2} v}{\partial t^{2}} v(x, t)+\frac{\partial^{2} u_{0}}{\partial t^{2}}(x, t)=\frac{\partial^{2} v}{\partial x^{2}}(x, t)+\frac{\partial^{2} u_{0}}{\partial x^{2}}(x, t)+6 \\
\Rightarrow \quad \frac{\partial^{2} v}{\partial t^{2}} v(x, t)+6=\frac{\partial^{2} v}{\partial x^{2}}(x, t)+6 \quad \Rightarrow \quad \frac{\partial^{2} v}{\partial t^{2}} v(x, t)=\frac{\partial^{2} v}{\partial x^{2}}(x, t)
\end{gathered}
$$

Hence, D'Alembert's formula (see previous problems) gives

$$
\begin{aligned}
v(x, t) & =\frac{1}{2}(f(x+t)+f(x-t))+\frac{1}{2} \int_{x-t}^{x+t} g(s) d s \\
& =\frac{1}{2}\left((x+t)^{2}+(x-t)^{2}\right)+\frac{1}{2} \int_{x-t}^{x+t} 4 s d s \\
& =x^{2}+t^{2}+\left[s^{2}\right]_{s=x-t}^{s=x+t}=x^{2}+t^{2}+4 x t
\end{aligned}
$$

Then our solution u is

$$
u(x, t)=v(x, t)+u_{0}(x, t)=x^{2}+4 t^{2}+4 x t=(x+2 t)^{2} .
$$

FOURIER TRANSFORMS TABLE $\quad\left(x_{0} \in \mathbb{R}, \alpha, \beta>0\right)$
(TF1) $\mathcal{F}\left[e^{-\alpha x^{2}}\right](\omega)=\frac{1}{\sqrt{4 \pi \alpha}} e^{-\omega^{2} /(4 \alpha)}$,
(TF2) $\mathcal{F}\left[\sqrt{\frac{\pi}{\alpha}} e^{-x^{2} /(4 \alpha)}\right](\omega)=e^{-\alpha \omega^{2}}$,
(TF3) $\mathcal{F}\left[e^{-\alpha|x|}\right](\omega)=\frac{\alpha}{\pi\left(\omega^{2}+\alpha^{2}\right)}$,
(TF4) $\mathcal{F}\left[\frac{2 \alpha}{x^{2}+\alpha^{2}}\right](\omega)=e^{-\alpha|\omega|}$,
(TF5) $\mathcal{F}\left[\chi_{[-\alpha, \alpha]}(x)\right](\omega)=\frac{\sin \alpha \omega}{\pi \omega}, \quad$ if $\chi_{[a, b]}(x)= \begin{cases}1, & \text { if } x \in[a, b], \\ 0, & \text { if } x \notin[a, b],\end{cases}$
(TF6) $\mathcal{F}\left[\frac{\sin \alpha x}{x}\right](\omega)=\frac{1}{2} \chi_{[-\alpha, \alpha]}(\omega)$,
(TF7) $\mathcal{F}\left[x \chi_{[-\alpha, \alpha]}(x)\right](\omega)=i \frac{\sin \alpha \omega-\alpha \omega \cos \alpha \omega}{\pi \omega^{2}}$,
(TF8) $\mathcal{F}\left[\chi_{[0, \alpha]}(x)-\chi_{[-\alpha, 0]}(x)\right](\omega)=i \frac{1-\cos \alpha \omega}{\pi \omega}$,
(TF9) $\mathcal{F}\left[|x| \chi_{[-\alpha, \alpha]}(x)\right](\omega)=\frac{\alpha \omega \sin \alpha \omega+\cos \alpha \omega-1}{\pi \omega^{2}}$,
(TF10) $\mathcal{F}\left[(\alpha-|x|) \chi_{[-\alpha, \alpha]}(x)\right](\omega)=\frac{1-\cos \alpha \omega}{\pi \omega^{2}}=\frac{\sin ^{2}(\alpha \omega / 2)}{2 \pi \omega^{2}}$,
(TF11) $\mathcal{F}\left[e^{-i \alpha x^{2}}\right](\omega)=\frac{1}{\sqrt{4 \pi \alpha}} e^{-i \pi / 4} e^{i \omega^{2} /(4 \alpha)}$,
(TF12) $\mathcal{F}\left[\sqrt{\frac{\pi}{\alpha}} e^{-i \pi / 4} e^{i x^{2} /(4 \alpha)}\right](\omega)=e^{-i \alpha \omega^{2}}$,
(TF13) $\mathcal{F}\left[\frac{\alpha}{\left(x-x_{0}\right)^{2}+\alpha^{2}}+\frac{\alpha}{\left(x+x_{0}\right)^{2}+\alpha^{2}}\right](\omega)=e^{-\alpha|\omega|} \cos x_{0} \omega$,
4) $\mathcal{F}\left[\frac{\alpha}{\left(x-x_{0}\right)^{2}+\alpha^{2}}-\frac{\alpha}{\left(x+x_{0}\right)^{2}+\alpha^{2}}\right](\omega)=i e^{-\alpha|\omega|} \sin x_{0} \omega$,
(TF15) $\mathcal{F}\left[\frac{1}{\left(x^{2}+\alpha^{2}\right)\left(x^{2}+\beta^{2}\right)}\right](\omega)=\frac{1}{2 \alpha \beta\left(\alpha^{2}-\beta^{2}\right)}\left(\alpha e^{-\beta|\omega|}-\beta e^{-\alpha|\omega|}\right)$,
(TF16) $\mathcal{F}\left[\frac{1}{x}\right](\omega)=\left\{\begin{array}{ll}-i / 2, & \text { if } \omega<0, \\ 0, & \text { if } \omega=0, \\ i / 2, & \text { if } \omega>0,\end{array} \quad\right.$ (it's understood as the principal value),
(TF17) $\mathcal{F}\left[\delta_{0}\right](\omega)=\frac{1}{2 \pi}, \quad \mathcal{F}\left[\delta_{x_{0}}\right](\omega)=\frac{1}{2 \pi} e^{i x_{0} \omega}$,
(TF18) $\mathcal{F}\left[\delta_{x_{0}}+\delta_{-x_{0}}\right](\omega)=\frac{1}{\pi} \cos x_{0} \omega$,
(TF19) $\mathcal{F}\left[\delta_{x_{0}}-\delta_{-x_{0}}\right](\omega)=\frac{i}{\pi} \sin x_{0} \omega$.

