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2 Integrals depending on a parameter

3.2. Fourier transform

Problem 3.2.1 Prove that if f ∈ L1(R) and f > 0, then |f̂(ω)| < f̂(0) for every ω 6= 0.

Hint: The inequality |f̂(ω)| ≤ f̂(0) is easy. If α denotes the complex argument of f̂(ω), then
|f̂(ω)| = f̂(ω) e−iα = 1

2π

∫∞
−∞ f(x)ei(ωx−α)dx. Now, take real parts in the equality |f̂(ω)| = f̂(0)

to conclude that, a fortiori, ω = 0.

Solution: First of all, as f > 0, we have that

|f̂(ω)| ≤ 1

2π

∫ ∞
−∞
|f(x)| |eiωx| dx =

1

2π

∫ ∞
−∞

f(x) dx = f̂(0) .

On the other hand, let f̂(ω) = |f̂(ω)| eiα (α is the argument of the complex number f̂(ω)). Then

|f̂(ω)| = f̂(ω) e−iα =
1

2π

∫ ∞
−∞

f(x) ei(ωx−α) dx .

If |f̂(ω)| = f̂(0), then

1

2π

∫ ∞
−∞

f(x) ei(ωx−α) dx =
1

2π

∫ ∞
−∞

f(x) dx .

Taking now real parts, we obtain that∫ ∞
−∞

f(x) cos(ωx− α) dx =

∫ ∞
−∞

f(x) dx

and so ∫ ∞
−∞

f(x)(1− cos(ωx− α)) dx = 0 .

But f(x)(1− cos(ωx− α)) ≥ 0 for all x. Hence, we must have that

1− cos(ωx− α) = 0 a.e.x =⇒ ωx− α = 2πk a.e.x, for some k ∈ Z =⇒ ω = 0 .

Problem 3.2.2 Given α > 0, compute the Fourier transform of the following functions:

1) f(x) = e−α|x| , 2) f(x) = 2α
x2+α2 ,

3) f(x) = χ
[−α,α](x) , 4) f(x) = xχ

[−α,α](x) ,

5) f(x) = χ
[0,α]

(x)− χ
[−α,0](x) , 6) f(x) = |x|χ

[−α,α](x) ,

7) f(x) = δ0(x) , 8) f(x) = sinαx
x ,

9) f(x) = (α− |x|)χ
[−α,α] , 10) f(x) = α

(x−x0)2+α2 + α
(x+x0)2+α2 ,

11) f(x) =
√

π
α e
−iπ/4 eix

2/(4α) , 12) f(x) = α
(x−x0)2+α2 − α

(x+x0)2+α2 ,

13) f(x) = 1
(x2+α2)(x2+β2)

, 14) f(x) = 1
x ,

15) f(x) = δx0 + δ−x0 , 16) f(x) = δx0−δ−x0 ,
17) f(x) = e−π(x−3)

2
, 18) f(x) = e−iπ(x+1)2 .
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Solutions: 1) Applying directly the definition of the Fourier transform we obtain

F
[
e−α|x|

]
(ω) =

1

2π

∫ ∞
−∞

e−α|x|eiωxdx =
1

2π

∫ ∞
0

e−αxeiωxdx+
1

2π

∫ 0

−∞
eαxeiωxdx

=
1

2π

∫ ∞
0

e(iω−α)xdx+
1

2π

∫ 0

−∞
e(iω+α)xdx

=
1

2π

([e(iω−α)x
iω − α

]x=∞
x=0

+
[e(iω+α)x
iω + α

]x=0

x=−∞

)
=

1

2π

( −1

iω − α
+

1

iω + α

)
=

α

π(ω2 + α2)
.

2) Using the previous problem, we have:

F−1
[ α

π(ω2 + α2)

]
(x) = e−α|x| ⇒ F−1

[ α

π(x2 + α2)

]
(ω) = e−α|ω|.

Taking this result into account and using the theorem on the inverse Fourier transform, we get

F
[ 2α

x2 + α2

]
(ω) =

1

2π
F−1

[ 2α

x2 + α2

]
(−ω) = F−1

[ α

π(x2 + α2)

]
(−ω) = e−α|−ω| = e−α|ω|.

3) Applying the definition of the Fourier transform we obtain

F
[
χ

[−α,α](x)
]
(ω) =

1

2π

∫ ∞
−∞

χ
[−α,α](x) eiωxdx =

1

2π

∫ α

−α
eiωxdx

=
1

2π

[eiωx
iω

]x=α
x=−α

=
eiαω − e−iαω

2πiω
=

sinαω

πω
.

4) As F
[
χ

[−α,α](x)
]
(ω) = sinαω

πω by the previous problem and the property 7 of the Fourier
transform, we conclude that

F
[
xχ

[−α,α](x)
]
(ω) = −i d

dω

(
F
[
χ

[−α,α](x)
]
(ω)
)

= −i d
dω

(sinαω

πω

)
= i

sinαω − αω cosαω

πω2
.

5) Applying the definition of the Fourier transform we obtain

F
[
χ

[0,α]
(x)− χ

[−α,0](x)
]
(ω) =

1

2π

∫ ∞
−∞

(
χ

[0,α]
(x)− χ

[−α,0](x)
)
eiωxdx

=
1

2π

∫ α

0
eiωxdx− 1

2π

∫ 0

−α
eiωxdx

=
1

2π

[eiωx
iω

]x=α
x=0
− 1

2π

[eiωx
iω

]x=0

x=−α
=
eiαω − 1− 1 + e−iαω

2πiω

= i
1− cosαω

πω
.

6) As F
[
χ

[0,α]
(x)− χ

[−α,0](x)
]
(ω) = i 1−cosαω

πω by the previous problem and

|x|χ
[−α,α](x) = x

(
χ

[0,α]
(x)− χ

[−α,0](x)
)
,

the property 7 of the Fourier transform we conclude that

F
[
|x|χ

[−α,α](x)
]
(ω) = F

[
x
(
χ

[0,α]
(x)− χ

[−α,0](x)
)]

(ω)

= −i d
dω

(
F
[
χ

[0,α]
(x)− χ

[−α,0](x)
]
(ω)
)

=
d

dω

(1− cosαω

πω

)
=
αω sinαω + cosαω − 1

πω2
.
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7) Applying the definitions of the Fourier transform and the Dirac delta, we obtain that

F
[
δ(x)

]
(ω) =

1

2π

∫ ∞
−∞

δ(x) eiωxdx =
1

2π
eiωx

∣∣
x=0

=
1

2π
.

8) 1
2 χ[−α,α](ω). 9) 1−cosαω

πω2 . 10) e−α|ω| cosx0ω. 11) e−iαω
2
. 12) ie−α|ω| sinx0ω.

13) 1
2αβ(α2−β2)

(
αe−β|ω| − βe−α|ω|

)
. 14) −i/2 if ω < 0, 0 if ω = 0, i/2 if ω > 0. 15) 1

π cosx0ω.

16) i
π sinx0ω. 17) 1

2π e
i3ω e−ω

2/(4π). 18) 1
2π e

−i(ω+π/4) eiω
2/(4π).

Problem 3.2.3 Calculate the Fourier transform of the Gaussian function f(x) = e−x
2
.

Hint: Note that the imaginary part of f̂(ω) is zero. To compute the real part use the theorem
on derivation of parametric integrals (

∣∣ ∂
∂ω

[
e−x

2
cos(ωx)

]∣∣ ≤ |x|e−x2 ∈ L1(R)). Integrating by

parts prove that d
dω [f̂(ω)] = −ω

2 f̂(ω). Recall that
∫
R e
−x2dx =

√
π .

Solution: We have that

F [e−x
2
](ω) =

1

2π

∫ ∞
−∞

e−x
2
eiωx dx =

1

2π

∫ ∞
−∞

e−x
2

cosωxdx =
1

π

∫ ∞
0

e−x
2

cosωxdx ,

since
∫∞
−∞ e

−x2 sinωxdx = 0 because e−x
2

sinωx is an odd function. Now, as∣∣∣ ∂
∂ω

(
e−x

2
cosωx

)∣∣∣ =
∣∣e−x2 (−x) sinωx

∣∣ ≤ x e−x2 ∈ L1(0,∞) ,

we can use the theorem on differentiation of parametric integrals obtaining

d

dω

(
f̂(ω)

)
=

1

π

∫ ∞
0

∂

∂ω

(
e−x

2
cosωx

)
dx =

−1

π

∫ ∞
0

x e−x
2

sinωxdx .

Integrating by parts with u = sinωx, v′ = xe−x
2
, and using the dominated convergence theorem,

we obtain that

d

dω

(
f̂(ω)

)
= lim

N→∞

1

2π

[
e−x

2
sinωx

]x=N
x=0

− ω

2π

∫ ∞
0

e−x
2

cosωxdx = −ω
2
f̂(ω) .

Hence, f̂ ′(ω)/f̂(ω) = −ω/2 =⇒ log f̂(ω) = −ω2/4 + c =⇒ f̂(ω) = C e−ω
2/4. But

f̂(0) =
1

π

∫ ∞
0

e−x
2
dx =

1

π

√
π

2
=

1

2
√
π

=⇒ f̂(ω) =
1

2
√
π
e−ω

2/4 .

Problem 3.2.4 For α > 0, calculate the integral∫ ∞
−∞

sin2αx

x2
dx .

Hint: Use Plancherel’s theorem and part 8) of Exercise 3.2.2.

Solution: Applying Plancherel’s theorem and part 8) of Exercise 3.2.2 we obtain that∫ ∞
−∞

(sinαx

x

)2
dx = 2π

∫ ∞
−∞

(1

2
χ

[−α,α](ω)
)2
dω =

π

2

∫ α

−α
dω = απ .

Problem 3.2.5 Find a particular solution of the equation u′′ − u = f(x) by taking Fourier
transforms in both sides of the equation.
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Solution: Taking Fourier transforms in both members of the equation u′′ − u = f(x) we obtain
that

−ω2F
[
u
]
(ω)−F

[
u
]
(ω) = F

[
f
]
(ω) ⇒ F

[
u
]
(ω) =

−1

ω2 + 1
F
[
f
]
(ω) .

As we know by the part 1) of problem 3.2.2. that F
[
e−|x|

]
(ω) = 1/(π(ω2 + 1)), we deduce using

the property 6 on the Fourier transform of a convolution, that

F
[
u
]
(ω) = −πF

[
e−|x|

]
(ω)F

[
f
]
(ω) = −πF

[
e−|x| ∗ f

]
(ω) ,

u(x) = −π(e−|x| ∗ f)(x) =
−1

2

∫ ∞
−∞

e−|x−y|f(y) dy .

Problem 3.2.6 Find a solution of the initial value problem for the heat equation on R× (0,∞)
by taking Fourier transforms in the x-variable in both members of the equations:{

∂
∂tu(x, t) = k ∂2

∂x2
u(x, t) , if x ∈ R , t > 0 ,

u(x, 0) = f(x) , if x ∈ R .

Solution: Let us denote by U(ω, t) and F (ω) the Fourier transforms in the variable x of the
functions u(x, t) and f(x), respectively. Applying the Fourier transform in the variable x to
both members of the equations, we obtain{

∂
∂tU(ω, t) = −kω2U(ω, t) ,

U(ω, 0) = F (ω) .

For each fixed ω, we can see the equation ∂
∂tU(ω, t) = −kω2U(ω, t) as an ordinary differential

equation. The general solution of this equation is U(ω, t) = Ae−kω
2t, where A is a constant

(with respect to the variable t, and so A can depend on the variable ω). Substituting the initial
condition U(ω, 0) = F (ω) we obtain that A = F (ω) and so U(ω, t) = F (ω) e−kω

2t. If we define
the function Kt(x) through the following formula, using the result of problem 3.2.3 it is easy to
obtain that:

Kt(x) =

√
π

kt
e−x

2/(4kt), F
[
Kt

]
(ω) = e−kω

2t.

Then, using the property on the Fourier transform of a convolution:

F
[
u
]
(ω) = F

[
Kt

]
(ω)F

[
f
]
(ω) = F

[
Kt ∗ f

]
(ω) ,

u(x, t) = (Kt ∗ f)(x) =
1√

4πkt

∫ ∞
−∞

e−(x−y)
2/(4kt) f(y) dy .

Problem 3.2.7 Find a solution of the initial value problem for the diffusion equation with
convection: {

∂
∂tu(x, t) = k ∂2

∂x2
u(x, t) + c ∂

∂xu(x, t) , if x ∈ R , t > 0 ,

u(x, 0) = f(x) , if x ∈ R .

Solution: We denote by U(ω, t) and F (ω) the Fourier transforms in the variable x of the functions
u(x, t) and f(x), respectively. Applying the Fourier transform in the variable x to both members
of the equations, we obtain{

∂
∂tU(ω, t) = −k ω2U(ω, t)− i c ω U(ω, t) ,

U(ω, 0) = F (ω) .
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For each fixed ω, we have the differential equation ∂
∂tU(ω, t) = −(kω2 + icω)U(ω, t), whose

general solution is U(ω, t) = Ae−(kω
2+icω)t, where A is a constant (with respect to the variable

t, and so A can depend on the variable ω). Substituting the initial condition U(ω, 0) = F (ω)
we obtain that A = F (ω) and so U(ω, t) = F (ω) e−kω

2te−ictω. If we define the function Kt(x)
through the following expression (as in the previous problem), using the result of problem 3.2.3
it is easy to obtain that:

Kt(x) =

√
π

kt
e−x

2/(4kt), F
[
Kt

]
(ω) = e−kω

2t.

Hence, using the property 3 of the Fourier transform, we obtain F
[
Kt(x+ct)

]
(ω) = e−kω

2te−ictω.
Finally, using the property on the Fourier transform of a convolution, we get

F
[
u
]
(ω) = F

[
Kt(x+ ct)

]
(ω)F

[
f
]
(ω) = F

[
Kt(x+ ct) ∗ f

]
(ω) ,

u(x, t) = (Kt(x+ ct) ∗ f)(x) =
1√

4πkt

∫ ∞
−∞

e−(x+ct−y)
2/(4kt) f(y) dy .

Problem 3.2.8 Find a solution of the initial value problem for the diffusion equation with
convection: {

∂
∂tu(x, t) = ∂2

∂x2
u(x, t)− 2 ∂

∂xu(x, t) , if x ∈ R , t > 0 ,

u(x, 0) = e−x
2
, if x ∈ R .

Solution: Using the previous problem we know that

u(x, t) =
1√
4πt

∫ ∞
−∞

e−(x−2t−y)
2/(4t)e−y

2
dy =

e−(x−2t)
2/(4t)

√
4πt

∫ ∞
−∞

e−[(1+4t)y2−2(x−2t)y]/(4t) dy .

As

(1 + 4t)y2 − 2(x− 2t)y = (1 + 4t)
(
y2 − 2

x− 2t

1 + 4t
y +

(x− 2t)2

(1 + 4t)2
− (x− 2t)2

(1 + 4t)2

)
= (1 + 4t)

(
y − x− 2t

1 + 4t

)2
− (x− 2t)2

1 + 4t
.

We have with the change of variables v = y − (x − 2t)/(1 + 4t) and w = v
√

1 + 4t/
√

4t , and
using again the problem 3.2.3 that

u(x, t) =
e−(x−2t)

2/(4t)

√
4πt

∫ ∞
−∞

e−(1+4t)
(
y−(x−2t)/(1+4t)

)2
/(4t)e(x−2t)

2/(4t(1+4t)) dy

=
e−(x−2t)

2/(1+4t)

√
4πt

∫ ∞
−∞

e−(1+4t)v2/(4t) dv

=
e−(x−2t)

2/(1+4t)

√
4πt

∫ ∞
−∞

e−w
2

√
4t√

1 + 4t
dw =

1√
1 + 4t

e−(x−2t)
2/(1+4t).

Problem 3.2.9 Find a solution of the initial value problem for the diffusion equation with
absorption: {

∂
∂tu(x, t) = k ∂2

∂x2
u(x, t)− c u(x, t) , if x ∈ R , t > 0 ,

u(x, 0) = f(x) , if x ∈ R .
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Solution: We denote by U(ω, t) and F (ω) the Fourier transforms in the variable x of the functions
u(x, t) and f(x), respectively. Applying the Fourier transform in the variable x to both members
of the equations, we obtain{

∂
∂tU(ω, t) = −k ω2U(ω, t)− cU(ω, t) ,

U(ω, 0) = F (ω) .

For each fixed ω, we have the ordinary differential equation ∂
∂tU(ω, t) = −(kω2+c)U(ω, t), whose

general solution is U(ω, t) = Ae−(kω
2+c)t, where A is a constant (with respect to the variable

t, and so A can depend on thea variable ω). Substituting the initial condition U(ω, 0) = F (ω)
we obtain that A = F (ω) and so U(ω, t) = e−ctF (ω) e−kω

2t. If we define the function Kt(x)
through the following expression, as in the previous problems, using the result of problem 3.2.3
it is easy to obtain that:

Kt(x) =

√
π

kt
e−x

2/(4kt), F
[
Kt

]
(ω) = e−kω

2t.

Then using the property on the Fourier transform of a convolution, we deduce that

F
[
u
]
(ω) = e−ctF

[
Kt

]
(ω)F

[
f
]
(ω) = e−ctF

[
Kt ∗ f

]
(ω) ,

u(x, t) = e−ct(Kt ∗ f)(x) =
e−ct√
4πkt

∫ ∞
−∞

e−(x−y)
2/(4kt) f(y) dy .

Problem 3.2.10 Find the solution of the initial value problem for the wave equation on
R× (0,∞): 

∂2

∂t2
u(x, t) = c2 ∂2

∂x2
u(x, t) , if x ∈ R , t > 0 ,

u(x, 0) = f(x) , if x ∈ R ,
∂
∂tu(x, 0) = g(x) , if x ∈ R .

Solution: Let us denote by U(ω, t), F (ω) and G(ω) the Fourier transforms in the variable x of
the functions u(x, t), f(x) and g(x), respectively. Applying the Fourier transform in the variable
x to both members of the equations, we obtain that

∂2

∂t2
U(ω, t) = −c2ω2U(ω, t) ,

U(ω, 0) = F (ω) ,
∂
∂tU(ω, 0) = G(ω) .

For each fixed ω, we have the ordinary differential equation ∂2

∂t2
U(ω, t) = −c2ω2U(ω, t), whose

general solution is U(ω, t) = A cos(cωt) + B sin(cωt), where A and B are constants (with
respect to the variable t, and so A and B can depend on the variable ω). Substituting the initial
conditions U(ω, 0) = F (ω) and ∂

∂tU(ω, 0) = G(ω) we obtain that A = F (ω) and B = G(ω)/(cω);

Hence, U(ω, t) = F (ω) cos(cωt) +G(ω) sin(cωt)
cω .

If we define the function Et(x) through the following expression, the part 3 of problem 3.2.2
gives:

Et(x) =
π

c
χ

[−ct,ct](x) , F
[
Et(x)

]
(ω) =

sin(cωt)

cω
.

From this last equality and property 9 of the Fourier transform we deduce

F
[∂Et
∂t

]
(ω) =

∂

∂t

(
F
[
Et
]
(ω)
)

=
∂

∂t

(sin(cωt)

cω

)
= cos(cωt) .
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Then, using the linearity of the Fourier transform and the property on the Fourier transform of
a convolution, we get

F
[
u
]
(ω) = F

[∂Et
∂t

]
(ω)F

[
f
]
(ω) + F

[
Et
]
(ω)F

[
g
]
(ω) = F

[∂Et
∂t
∗ f + Et ∗ g

]
(ω) ,

u(x, t) =
(∂Et
∂t
∗ f
)

(x) +
(
Et ∗ g

)
(x) =

∂

∂t

(
Et ∗ f

)
(x) +

(
Et ∗ g

)
(x) .

As (
Et ∗ g

)
(x)=

1

2π

∫ ∞
−∞

g(x− y)
π

c
χ

[−ct,ct](y) dy=
1

2c

∫ ct

−ct
g(x− y) dy=

1

2c

∫ x+ct

x−ct
g(s) ds ,

(
Et ∗ f

)
(x)=

1

2c

∫ x+ct

x−ct
f(s) ds ,

∂

∂t

(
Et ∗ f

)
(x)=

1

2

(
f(x+ ct) + f(x− ct)

)
,

we obtain that

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
+

1

2c

∫ x+ct

x−ct
g(s) ds .

This expression is known as D’Alembert’s formula.

Problem 3.2.11 Prove that if f is of C2-class (continuous with two continuous derivatives)
on R and g is of C1-class (continuous with one continuous derivative) on R, then D’Alembert’s
formula

u(x, t) =
1

2

(
f(x+ ct) + f(x− ct)

)
+

1

2c

∫ x+ct

x−ct
g(s) ds ,

which has been obtained in the previous problem, is effectively a solution of the initial value
problem for the wave equation on R× (0,∞).

Solution: As f belongs to the class C2 and g to the class C1, we have that

∂u

∂x
(x, t) =

1

2

(
f ′(x+ ct) + f ′(x− ct)

)
+

1

2c

(
g(x+ ct)− g(x− ct)

)
,

∂2u

∂x2
(x, t) =

1

2

(
f ′′(x+ ct) + f ′′(x− ct)

)
+

1

2c

(
g′(x+ ct)− g′(x− ct)

)
,

∂u

∂t
(x, t) =

c

2

(
f ′(x+ ct)− f ′(x− ct)

)
+

1

2

(
g(x+ ct) + g(x− ct)

)
,

∂2u

∂t2
(x, t) =

c2

2

(
f ′′(x+ ct) + f ′′(x− ct)

)
+
c

2

(
g′(x+ ct)− g′(x− ct)

)
,

and so,
∂2u

∂t2
(x, t) = c2

∂2u

∂x2
(x, t) .

Substituting t = 0 in u(x, t) and ∂
∂tu(x, t) we get

u(x, 0) =
1

2

(
f(x) + f(x)

)
+

1

2c

∫ x

x
g(s) ds = f(x) ,

∂u

∂t
(x, 0) =

c

2

(
f ′(x)− f ′(x)

)
+

1

2

(
g(x) + g(x)

)
= g(x) .

Hence, D’Alembert’s formula provides a solution of the initial value problem for the wave equa-
tion on R× (0,∞).
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Problem 3.2.12 Find the solution of the initial value problem for the non-homogeneous wave
equation on R× R: 

∂2

∂t2
u(x, t) = ∂2

∂x2
u(x, t) + 6 , if x ∈ R , t ∈ R ,

u(x, 0) = x2 , if x ∈ R ,
∂
∂tu(x, 0) = 4x , if x ∈ R .

Solution: It is easy to check that u0(x, t) = 3t2 is a particular solution of the non-homogeneous

equation ∂2

∂t2
u(x, t) = ∂2

∂x2
u(x, t) + 6, since ∂2

∂t2
u(x, t) = 6 and ∂2

∂x2
u(x, t) = 0.

It is also easy to see that the function v defined as v(x, t) = u(x, t) − u0(x, t) = u(x, t) − 3t2 is
a solution of the initial value problem for the homogeneous wave equation:

∂2

∂t2
v(x, t) = ∂2

∂x2
v(x, t) , if x ∈ R , t > 0 ,

v(x, 0) = u(x, 0)− u0(x, 0) = x2 , if x ∈ R ,
∂
∂tv(x, 0) = ∂

∂tu(x, 0)− ∂
∂tu0(x, 0) = 4x , if x ∈ R ,

since
∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t) + 6

⇒ ∂2v

∂t2
v(x, t) +

∂2u0
∂t2

(x, t) =
∂2v

∂x2
(x, t) +

∂2u0
∂x2

(x, t) + 6

⇒ ∂2v

∂t2
v(x, t) + 6 =

∂2v

∂x2
(x, t) + 6 ⇒ ∂2v

∂t2
v(x, t) =

∂2v

∂x2
(x, t) .

Hence, D’Alembert’s formula (see previous problems) gives

v(x, t) =
1

2

(
f(x+ t) + f(x− t)

)
+

1

2

∫ x+t

x−t
g(s) ds

=
1

2

(
(x+ t)2 + (x− t)2

)
+

1

2

∫ x+t

x−t
4s ds

= x2 + t2 +
[
s2
]s=x+t
s=x−t = x2 + t2 + 4xt .

Then our solution u is

u(x, t) = v(x, t) + u0(x, t) = x2 + 4t2 + 4xt = (x+ 2t)2 .
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FOURIER TRANSFORMS TABLE (x0 ∈ R, α, β > 0)

(TF1) F
[
e−αx

2]
(ω) =

1√
4πα

e−ω
2/(4α),

(TF2) F
[√π

α
e−x

2/(4α)
]
(ω) = e−αω

2
,

(TF3) F
[
e−α|x|

]
(ω) =

α

π(ω2 + α2)
,

(TF4) F
[ 2α

x2 + α2

]
(ω) = e−α|ω|,

(TF5) F
[
χ

[−α,α](x)
]
(ω) =

sinαω

πω
, if χ

[a,b]
(x) =

{
1 , if x ∈ [a, b] ,

0 , if x /∈ [a, b] ,

(TF6) F
[sinαx

x

]
(ω) =

1

2
χ

[−α,α](ω) ,

(TF7) F
[
xχ

[−α,α](x)
]
(ω) = i

sinαω − αω cosαω

πω2
,

(TF8) F
[
χ

[0,α]
(x)− χ

[−α,0](x)
]
(ω) = i

1− cosαω

πω
,

(TF9) F
[
|x|χ

[−α,α](x)
]
(ω) =

αω sinαω + cosαω − 1

πω2
,

(TF10) F
[
(α− |x|)χ

[−α,α](x)
]
(ω) =

1− cosαω

πω2
=

sin2(αω/2)

2πω2
,

(TF11) F
[
e−iαx

2]
(ω) =

1√
4πα

e−iπ/4 eiω
2/(4α),

(TF12) F
[√π

α
e−iπ/4 eix

2/(4α)
]
(ω) = e−iαω

2
,

(TF13) F
[ α

(x− x0)2 + α2
+

α

(x+ x0)2 + α2

]
(ω) = e−α|ω| cosx0ω ,

(TF14) F
[ α

(x− x0)2 + α2
− α

(x+ x0)2 + α2

]
(ω) = ie−α|ω| sinx0ω ,

(TF15) F
[ 1

(x2 + α2)(x2 + β2)

]
(ω) =

1

2αβ(α2 − β2)
(
αe−β|ω| − βe−α|ω|

)
,

(TF16) F
[1

x

]
(ω) =


−i/2 , if ω < 0 ,

0 , if ω = 0 ,

i/2 , if ω > 0 ,

(it’s understood as the principal value),

(TF17) F
[
δ0
]
(ω) =

1

2π
, F

[
δx0
]
(ω) =

1

2π
eix0ω,

(TF18) F
[
δx0 + δ−x0

]
(ω) =

1

π
cosx0ω ,

(TF19) F
[
δx0 − δ−x0

]
(ω) =

i

π
sinx0ω .


