uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure. Problems

Chapter 1: Measure theory Section 1.1: Measurable spaces

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

1 Measure Theory

1.1 Measurable spaces

Problem 1.1.1 Let $f: X \longrightarrow Y$ be a mapping. Given a subset $A \subseteq Y$ let us define:

$$f^{-1}(A) = \{x \in X : f(x) \in A\}$$

Prove that

i) $f^{-1}(Y \setminus A) = X \setminus f^{-1}(A).$ ii) $f^{-1}(\bigcup_j A_j) = \bigcup_j f^{-1}(A_j).$ iii) $f^{-1}(\bigcap_i A_j) = \bigcap_j f^{-1}(A_j).$

Hint: To prove that two sets A and B are equal you must prove that each element belonging to A also belongs to B and reciprocally each element in B also belongs to A.

Problem 1.1.2 Let $f: X \longrightarrow Y$ be a mapping between two topological spaces $(X, \mathcal{T}), (Y, \mathcal{T}')$. Prove that f is continuous if and only if f is continuous at every $x \in X$.

Hint: To prove an statement of type $A \iff B$ you must prove that if we assume that A holds, then B also holds and viceversa.

Problem 1.1.3

i) Show that if $X = \{1, 2, 3\}$, then $\mathcal{F} := \{\emptyset, \{2, 3\}, X\}$ is not a σ -algebra.

ii) Let $X = \{a, b, c, d\}$. Check that the family of subsets

 $A = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\}$

is a σ -algebra in X.

Hint: You must check if the properties of a σ -algebra are satisfied.

Problem 1.1.4 Let S be a family of subsets of $X, S \subseteq \mathcal{P}(X)$. Prove that

$$\mathcal{A}_{\mathcal{S}} = \left(\begin{array}{c} \mathcal{A} : \mathcal{A} \text{ is a } \sigma \text{-algebra}, \ \mathcal{S} \subseteq \mathcal{A} \subseteq \mathcal{P}(X) \right) \right)$$

is the smallest σ -algebra containing S.

Note: $\mathcal{A}_{\mathcal{S}}$ is called the σ -algebra generated by \mathcal{S} and sometimes is denoted as $\sigma(\mathcal{S})$. *Hint:* Prove that $\mathcal{A}_{\mathcal{S}}$ is a σ -algebra.

Problem 1.1.5 Let $X = \{a, b, c, d\}$. Construct the σ -algebra generated by

$$\mathcal{E}_1 = \{\{a\}\}\$$
 y por $\mathcal{E}_2 = \{\{a\}, \{b\}\}.$

Hint: To construct them you must add the necessary subsets so that the σ -algebra properties are verified.

Problem 1.1.6 Show with an example that the union of two σ -algebras does not have to be a σ -álgebra.

Hint: It suffices to consider a three-point set X.

Problem 1.1.7 Determine the σ -algebra generated by the collection of all finite subsets of a non-countable set X.

Problem 1.1.8 Consider the σ -algebra of borelian subsets in \mathbb{R} . Is the following true or false?: There is a subset A of \mathbb{R} which is not measurable, but such that $B = \{x \in A : x \text{ is irrational}\}$ is measurable.

Hint: Consider the set $C = \{x \in A : x \text{ is rational}\}.$

Problem 1.1.9 Let (X, \mathcal{A}) be a measurable space and (Y, \mathcal{T}) be a topological space. Let us consider a mapping $f: X \longrightarrow Y$. Prove that

- i) The collection $\mathcal{A}' = \{E \subseteq Y : f^{-1}(E) \in \mathcal{A}\}$ is a σ -algebra in Y. \mathcal{A}' is called the *image* σ -algebra of \mathcal{A} .
- ii) If f is measurable, then $\mathcal{B}(Y) \subseteq \mathcal{A}'$. Equivalently, if E is a borel set in Y, then $f^{-1}(E) \in \mathcal{A}$ and so $E \in \mathcal{A}'$.

Hint: ii) Prove that $\mathcal{T} \subseteq \mathcal{A}'$.

Problem 1.1.10 Let $g : X \to Y$ be a mapping. Let \mathcal{A} be a σ -algebra in Y. Prove that $\mathcal{A}' = \{g^{-1}(E) : E \in \mathcal{A}\}$ is a σ -algebra in X. \mathcal{A}' is called the *pre-image* σ -algebra of \mathcal{A} .

Problem 1.1.11 A collection $\mathcal{A} \subseteq \mathcal{P}(X)$ is an *algebra* if the following conditions hold:

- (1) $\emptyset \in \mathcal{A},$
- (2) $A \in \mathcal{A} \implies A^c \in \mathcal{A},$
- (3) $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}.$

Prove that an algebra \mathcal{A} in X is a σ -álgebra if and only if it is closed for increasing countable unions of sets, that is to say:

$$E_i \in \mathcal{A}, \quad E_1 \subset E_2 \subset \dots \qquad \Longrightarrow \qquad \bigcup_{i=1}^{\infty} E_i \in \mathcal{A}$$

Problem 1.1.12 Let $u, v : X \longrightarrow \mathbb{R}$ be measurable functions and let $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function. Prove that

i) $\varphi \circ u$ is measurable.

- *ii)* u + v, uv, $|u|^{\alpha}$ ($\alpha > 0$) are measurable functions.
- *iii)* If $u(x) \neq 0$ for all $x \in X$, then 1/u is measurable.
- *iv*) If f = u + iv, then $f : X \longrightarrow \mathbb{C}$ is measurable.
- v) The previous exercises i) ii) iii) are also valid for $u, v : X \longrightarrow \mathbb{C}$ measurable functions and $\varphi : \mathbb{C} \longrightarrow \mathbb{C}$ continuous.

vi) If $u, v: X \longrightarrow \mathbb{R}$ and f = u + iv is measurable, then u, v and |f| are real measurable.

Problem 1.1.13 Let (X, \mathcal{A}) be a measurable space and let $f : X \longrightarrow \mathbb{R}$ be a function. Prove that the following assertions are equivalent:

- i) $\{x \in X : f(x) > \alpha\} \in \mathcal{A} \text{ for all } \alpha \in \mathbb{R}.$
- *ii)* $\{x \in X : f(x) \ge \alpha\} \in \mathcal{A}$ for all $\alpha \in \mathbb{R}$.
- *iii)* $\{x \in X : f(x) < \alpha\} \in \mathcal{A}$ for all $\alpha \in \mathbb{R}$.
- *iv*) $\{x \in X : f(x) \le \alpha\} \in \mathcal{A}$ for all $\alpha \in \mathbb{R}$.
- v) $f^{-1}(I) \in \mathcal{A}$ for every interval I.
- vi) f is measurable, that is to say that $f^{-1}(V) \in \mathcal{A}$ for every open set V.
- vii) $f^{-1}(F) \in \mathcal{A}$ for every closed set F.
- *viii*) $f^{-1}(B) \in \mathcal{A}$ for every Borel set *B*.

Hint: $\mathcal{A}' = \{E \subseteq \mathbb{R} : f^{-1}(E) \in \mathcal{A}\}$ is a σ -algebra in \mathbb{R} (in fact it is the image σ -algebra of \mathcal{A}) and $\mathcal{B}(\mathbb{R}) = \sigma(\{(\alpha, \infty) : \alpha \in \mathbb{R}\}).$

Problem 1.1.14 Prove that the previous problem is also valid if $f : X \longrightarrow \overline{\mathbb{R}} = [-\infty, \infty]$. Recall that by interval, open set, closed set or Borel set in $\overline{\mathbb{R}}$ we understand the corresponding concept in \mathbb{R} joining it $-\infty$, $+\infty$ or both or neither.

Problem 1.1.15 Prove that if f is a real function on a measurable space X such that $\{x \in X : f(x) \ge r\}$ is measurable for every rational r, then f is measurable.

Hint: Given any $\alpha \in \mathbb{R}$ there exists a sequence $\{r_n\}$ of rational numbers such that $r_n \nearrow \alpha$ as $n \to \infty$. Use problem 1.1.13.

Problem 1.1.16 Let \mathcal{M} be the σ -algebra in \mathbb{R} given by $\mathcal{M} = \{\emptyset, (-\infty, 0], (0, \infty), \mathbb{R}\}$. Let g be the function $g : \mathbb{R} \to \mathbb{R}$ defined as

$$g(x) = \begin{cases} 0 & \text{if } x \in (-\infty, 0], \\ 1 & \text{if } x \in (0, 1], \\ 2 & \text{if } x \in (1, \infty). \end{cases}$$

Is g measurable? How are the measurable functions $f : (\mathbb{R}, \mathcal{M}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$?

Problem 1.1.17

- a) Prove that if $f: (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n)) \longrightarrow \mathbb{R}$ is a continuous function, then f is measurable.
- b) Prove that if $f:(\mathbb{R},\mathcal{B}(\mathbb{R})) \longrightarrow \mathbb{R}$ is an increasing function, then f is measurable.
- c) Let (X, \mathcal{A}) be a measurable space. Given $A \subset X$, let χ_A be the characteristic function of A. Prove that χ_A is measurable if and only if A is measurable.

Hints: b) What can you say about $f^{-1}(I)$ when I is an interval? c) Who are $\chi_{A}^{-1}(0)$ and $\chi_{A}^{-1}(1)$?

Problem 1.1.18 Let $\{a_n\}$ and $\{b_n\}$ be sequences in $\overline{\mathbb{R}} = [\infty, \infty]$. Prove that

- a) $\limsup_{n \to \infty} (-a_n) = -\liminf_{n \to \infty} a_n$.
- b) $\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$.
- c) If $a_n \leq b_n$ for all n, then $\limsup_{n \to \infty} a_n \leq \limsup_{n \to \infty} b_n$.
- d) Show with an example that strict inequality can hold in part b).

Hint: d) Consider the sequences $a_n = (-1)^n$, $b_n = (-1)^{n+1}$.

Problem 1.1.19

- a) Prove that if $f, g: X \longrightarrow \overline{\mathbb{R}} = [-\infty, \infty]$ are measurable functions, then $\max\{f, g\}$ and $\min\{f, g\}$ are also measurable functions.
- b) Prove that if $f_n: X \longrightarrow \overline{\mathbb{R}} = [-\infty, \infty]$ is a sequence of measurable functions, then

$$\sup_{n} f_n , \qquad \inf_{n} f_n , \qquad \limsup_{n \to \infty} f_n , \qquad \liminf_{n \to \infty} f_n$$

are measurable functions.

c) Prove that the limit of every pointwise convergent sequence of measurable functions is measurable.

Hint: b) If $g = \sup_k f_k$ then $\{x : g(x) > \alpha\} = \bigcup_k \{x : f_k(x) > \alpha\}$.

Problem 1.1.20 Suppose that $f, g: X \longrightarrow \mathbb{R}$ are measurable. Prove that the sets

$$\{x \in X : f(x) < g(x)\}, \qquad \{x \in X : f(x) = g(x)\}\$$

are measurable.

Problem 1.1.21 Prove that the set of points at which a sequence of measurable real-valued functions converges (to a finite limit) is measurable.

Hint: The set A of points at which $\{f_n\}$ converges to a finite limit verifies $A = \bigcap_{n=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcup_{m=1}^{\infty} (1 + j_n) \leq \frac{1}{n}$