uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure. Problems

Chapter 1: Measure theory Section 1.2: Measure spaces

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

1 Measure Theory

1.2. Measure spaces

Problem 1.2.1 Let X be a set and $\mathcal{A} = \mathcal{P}(X)$. Let us also consider a function $p: X \longrightarrow [0, \infty]$. Now, we define for $A \subseteq X$ the set function

$$\mu(A) := \sum_{x \in A} p(x) = \sup_{\{x_1, \dots, x_n\} \subseteq A} \sum_{j=1}^n p(x_j) \,.$$

Prove that μ is a measure on X. In the particular case that p(x) = 1 for all $x \in X$, this measure is known as the *counting measure* in X, since in this case $\mu(A) = \sum_{x \in A} 1 = \#A$, the number of elements of A.

Problem 1.2.2 Let (X, \mathcal{A}) be a measurable space and define the function $\delta_{x_0} : \mathcal{A} \longrightarrow [0, \infty]$ by

$$\delta_{x_0}(A) = egin{cases} 1\,, & ext{if } x_0 \in A\,, \ 0, & ext{otherwise}\,. \end{cases}$$

Prove that δ_{x_0} is a measure on (X, \mathcal{A}) (it is called the δ -Dirac measure concentrated at x_0).

Problem 1.2.3 Let (X, \mathcal{A}) be a measurable space and let $\mu : \mathcal{A} \longrightarrow [0, \infty]$ be a countably additive function on the σ -algebra \mathcal{A} .

- a) Show that if μ satisfies that $\mu(A) < \infty$ for some $A \in \mathcal{A}$, then $\mu(\emptyset) = 0$ (and therefore μ is a measure).
- b) Find an example for which $\mu(\emptyset) \neq 0$ (and therefore the countably subadditivity property does not imply that μ is a measure).

Hint: b) Take $\mu(A) = \infty$ for any set A.

Problem 1.2.4 Let (X, \mathcal{M}, μ) be a measure space. Show that if $E, F \in \mathcal{M}$, then

$$\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F).$$

Problem 1.2.5 Let (X, \mathcal{M}, μ) be a measure space. Given $E \in \mathcal{M}$ we define

$$\mu_E(A) = \mu(A \cap E)$$
, for all $A \in X$.

Prove that que μ_E is also a measure on (X, \mathcal{M}) . We say that μ_E is *concentrated* at E because $\mu_E(A) = 0$ when $A \subseteq E^c$.

Problem 1.2.6 Let X be an infinite countable set. Let us consider the σ -algebra $\mathcal{M} = \mathcal{P}(X)$ and let us define for $A \in \mathcal{M}$:

$$\mu(A) = \begin{cases} 0, & \text{if } A \text{ is finite,} \\ \infty, & \text{if } A \text{ is infinite} \end{cases}$$

- a) Prove that μ is finitely additive, but not countably additive.
- b) Prove that $X = \lim_{n \to \infty} A_n$, being $\{A_n\}_{n=1}^{\infty}$ an increasing sequence of sets such that $\mu(A_n) = 0$ for all $n \in \mathbb{N}$.

Problem 1.2.7 Let $X = \mathbb{N}$, $\mathcal{M} = \mathcal{P}(\mathbb{N})$ and μ be the counting measure on X. Construct a decreasing sequence of subsets $A_n \in \mathcal{P}(\mathbb{N})$ such that $\bigcap_n A_n = \emptyset$, but $\lim_{n \to \infty} \mu(A_n) \neq 0$.

Problem 1.2.8^{*} Let (X, \mathcal{A}) be a measurable space. Let $\{\mu_n\}_{n=1}^{\infty}$ be a sequence of measures on (X, \mathcal{A}) .

a) Prove that if $\{\mu_n\}_{n=1}^{\infty}$ is increasing, that is to say that

$$\mu_n(A) \le \mu_{n+1}(A), \qquad \forall A \in \mathcal{A},$$

then

$$\mu(A) := \lim_{n \to \infty} \mu_n(A)$$

defines a measure on (X, \mathcal{A}) .

b) Prove that for any sequence of measures $\{\mu_n\}_{n=1}^{\infty}$

$$\mu(A) = \sum_{n=1}^{\infty} \mu_n(A)$$

defines a measure on (X, \mathcal{A}) .

Hints: a) Consider a countable disjoint family $\{A_j\} \subset \mathcal{A}$ and let $A = \bigcup_j A_j$. If $\mu(A) = \infty$, then for all $M \in \mathbb{N}$, $\exists N = N(M)$ such that $\mu_n(A) > M$ for all $n \ge N$. Prove that then $\exists K \in \mathbb{N}$ such that $\sum_{j=1}^{K} \mu(A_j) > M - 1$. If $\mu(A) < \infty$, then $\mu_n(A) = \sum_{j=1}^{\infty} \mu_n(A_j) \le \sum_{j=1}^{\infty} \mu(A_j)$ and so, $\mu(A) \le \sum_{j=1}^{\infty} \mu(A_j)$. Also, $\mu_n(A) = \sum_{j=1}^{\infty} \mu_n(A_j) \ge \sum_{j=1}^{K} \mu_n(A_j)$ and so, $\mu(A) \ge \sum_{j=1}^{K} \mu(A_j)$ for every K. Hence, $\mu(A) \ge \sum_{j=1}^{\infty} \mu(A_j)$. b) Take $\nu_n = \sum_{j=1}^{n} \mu_j$ and apply a).

Problem 1.2.9 Let (X, \mathcal{M}, μ) be a measure space such that for all $E \in \mathcal{M}$ with $\mu(E) = \infty$ there exists $F \in \mathcal{M}$ such that $F \subset E$ and $0 < \mu(F) < \infty$. A measure space or a measure with this property is called *semifinite*.

- a) Show that a σ -finite measure is semifinite.
- b) Let X be a non countable set. Let $\mathcal{M} = \mathcal{P}(X)$. Let μ be the counting measure. Prove that μ is semifinite but it is not σ -finite.

Problem 1.2.10 Let (X, \mathcal{M}, μ) be a semifinite measure space and let $E \in \mathcal{M}$ be a set with $\mu(E) = \infty$.

a) Prove that

$$\sup\{\mu(F): F \in \mathcal{M}, F \subset E, \mu(F) < \infty\} = \infty.$$

b) Prove that if c is a positive real number, then there exists a set $F \subset E$ such that $F \in \mathcal{M}$ and $c < \mu(F) < \infty$.

Hint: a) Denote by s the supremum and suppose that $s < \infty$. Show that there exists $F \subset E$ with $\mu(F) = s$. But then if $E' = E \setminus F$ then $\mu(E') = \infty$ and $\exists F' \subset E'$ with $0 < \mu(E') < \infty$. Get a contradiction with the set $F \cup F'$.

Problem 1.2.11 Let $\{A_n\}$ be measurable sets such that $\sum_{n=1}^{\infty} \mu(A_n) < \infty$. Prove that x belongs to only a finite number of A_n 's for a.e. $x \in X$. Alternatively, the set A of points x belonging to an infinite number of A_n 's, has zero measure (Borel-Cantelli Lemma).

Hint:
$$A = \bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} A_n.$$

Problem 1.2.12^{*} Let (X, \mathcal{A}, μ) be a measure space, and let

$$\mathcal{N} = \{ N \subseteq X : N \subseteq B \in \mathcal{A}, \, \mu(B) = 0 \} \,.$$

Prove that

- i) $\overline{\mathcal{A}} = \{A \cup N : A \in \mathcal{A}, N \in \mathcal{N}\}$ is a σ -algebra. In fact, $\overline{\mathcal{A}}$ is the σ -algebra generated by $\mathcal{A} \cup \mathcal{N}$.
- ii) $\overline{\mu}: \overline{\mathcal{A}} \longrightarrow [0, \infty]$ given by $\overline{\mu}(A \cup N) = \mu(A)$ is a well-defined measure and extends μ .
- iii) $(X, \overline{\mathcal{A}}, \overline{\mu})$ is a complete measure space.