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1 Measure Theory

1.3. Construction of measures

Problem 1.3.1 Let u* be an outer measure in X and let H be a p*-measurable set. Let us
consider the restriction puf of p* to P(H): uy(A) = p*(ANH) for all A C X.
i) Check that pf is an outer measure on H.

ii) Check that M C H is pj-measurable if and only if it is p*-measurable.

Problem 1.3.2

i) Let X be any set. Let us define p* : P(X) :— [0,1] by p*(@) =0, p*(4) =1, if A # @,
A C X. Check that p* is an outer measure and determine the o-algebra M of measurable
sets.

ii) Do the same if p*(@) =0, p*(A) =1,if A#2, AC X, p"(X)=2.

Hints: i) If @ C M C X, then the definition of p*-measurable set fails with £ = X. ii) If
card (X) > 2 and {z,y} € M C X the definition fails with £ = M¢U {z}; if M = {z} the
definition fails with £ = {z,y} C X.

Problem 1.3.3 Show that a finitely additive outer measure is countably additive.
Hint: Uj_, A; C U2, A for all n.

Problem 1.3.4* Let pu* be an outer measure on X and let M be the collection of p*-measurable
sets. Prove Caratheodory’s theorem following the steps:

a) If p*(M) =0 then M € M.

b) If M € M then also M= X\ M € M.

¢) If M,N € M then MUN, MAN, M\ N € M.
)

d) If {M; };‘;1 is a sequence of disjoints in M, then prove by induction on n that
prAN(UTM)) =) p (ANM;), VACX,¥neN,
j=1
e) If {M;}32, is a sequence of disjoints in M and M := UpZ | M; then
PANM)=> p"(ANM;), VACX.
j=1

£) If {M;}72, is a sequence of disjoints in M, them M := U32, M; € M.
g) M is a o-algebra and p*| ¢ is a measure.

h) (X, M, u*) is a complete measure space.
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Hints: ¢) AN(MUN) = (ANM)U(ANM®NN). d) By ¢) U7_; M; € M and so u*(Am(u?;le)) =
i (AN(UIE M) AU M)+ (AN MO\ (U M) = i (AN(U M)+ (AN Mo ).
e) It is a consequence of a). f) Use that U7_; M; € M by ¢), and so u*(A) = p*(ANU(UT_; M;))+
p*(A\ (U_1 Mj)); use now parts d) and e). g) If {4;} is any collection of subsets in M, then
the sets M; = A; \ (A1 U---UA,_1 € M are disjoints and U]‘?‘;lAj =72, M;.

Problem 1.3.5* Let £ C P(X) be a semialgebra and let po : £ :— [0, 00] be a countable
additive set function.

a) Prove that pg is monotone: If E, F € £, E C F, then uo(E) < po(F).
b) Prove that pg is countably sub-additive: If E = U$°, E; with E;, E € £, then

po(B) <> po(E).
i=1
c) Let us define, for all A C X,

1 (A) = inf{z,uo(Ei) L Eief, AC ugglEi}.
=1

d) Prove that p* is an outer measure (and so, by Caratheodory’s Theorem, the collection A
of p*-measurable sets is a o-algebra and p = p*| 4 is a complete measure).

e) Prove that £ C A and that p* is an extension of pg: p*(E) = po(E) for all E € £.

Hints: a) If Ey C E» then, as &£ is semialgebra, F» = By UE{ = By UF U --- F, with Fj € £
and disjoint. b) Consider the disjoint sets D; := E; \ (Ey U ---UE;_1) = E; N (ﬂ?z_llEiC)
and observe that, as € is semialgebra, we have that Ef = Fj; U--- U Fy;) with F; € € and
disjoint. c¢) Given € > 0 and sets {A4;}°; such that > 2, u*(A;) < oo, choose for each i a
collection {E”}?il such that Z]oil [L()(Eij) < /J,*(Al) + 8/2Z Then A := U;A; C U; U; Eij and
p(A) < > pu*(A;j) +e e) Given E € £, A C X with p*(A) < oo and € > 0 there exists
{E;} C € such that A C U;E; and ), po(E;) < p*(A) +¢; also B¢ = Fy U--- U F, with F; € £
and disjoint. Hence, E; = (E; NE)U (E;NFy)U---U (F; N F,), a disjoint union of sets.

Problem 1.3.6 A semiopen interval in R is an interval of type &, [a,b), (—o0,b), [a,00) or
(—00,00) = R. A semiopen interval in R" is a set of type I = I1 x Iy X --- x I,, where each I}
is a semiopen interval in R. Let £ be the collection of semiopen intervals in R™. Prove that &
is a semialgebra.

Problem 1.3.7 Show that a subset B C R is Lebesgue-measurable if and only if
m*(I) =m*(INB)+m*(IN B,

for every open interval I C R.

Hint: Given E C R with m*(F) < oo and € > 0, consider a sequence of intervals {I,,} such that
E C Uply, and ), m(I,) < m*(E) + ¢ and observe that, as each I,, is Lebesgue-measurable,
m(Ip) =m*(I,) =m*(BNI,) + m*(B°NI,).
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Problem 1.3.8*

a) Prove that (R™, M, m) is translations invariant:

AeM, aecR" = a+AeM and m(a+ A) =m(A).

b) Let (R™, M, u) be a translations invariant measure space with p a Radon measure (u(K) <
oo for each compact set K). Prove that there exists k > 0 such that u = km.

Hints: a) Consider the measure p(B) = m(a + B) for B € B(R") and observe that m(a+ I) =
m(I) for each semi-interval I. Hence u(I) = m(I) for I semi-interval. Apply Caratheodory-
Hopf’s extension theorem. b) Let k = p([0,1] x -+ x [0,1]) and prove that u(l) = km(I), for
each semi-interval I = [0,7r1/q1] X -+ x [0,7,/qyn] with r;/¢; € Q. Using now an approximation
argument conclude that the same is true for any semi-interval in R”. Finally apply Caratheodory-
Hopf’s extension theorem.

Problem 1.3.9* Let g : R — R"™ be an isometry for the Euclidean norm. that is to say
llg(z) — g(y)|| = ||z — y|| for all z,y € R™. It is known that any isometry is a composition of a
translation and an orthogonal transformation. Recall that U : R — R"™ is orthogonal if U is
linear and UU”T = I where I is the identity matrix.

Prove that given any Lebesgue-measurable set M, then g(M) is also a Lebesgue-measurable set
and m(g(M)) = m(M).

Hints: By problem 1 it suffices to prove it for an orthogonal transformation U. As U is an
homeomorphism (bijective and continuous with continuous inverse) then U sends Borel sets into
Borel sets. Define a measure pu by pu(A) = m(U(A)) for A € B(R™), where U is orthogonal,
and prove that p is translations invariant. Hence u(A) = km(A) for any A € B(R"™) and for
some constant k. But, if B = {x : ||z]| < 1} then prove that u(B) = m(B) and so k = 1.
Finally, if M € M then M = AU N with A € B(R") and N C C € B(R"), m(C) = 0. Hence
UM)=U(A)UU(N) with U(A) € B(R") and U(N) Cc U(C) € B(R™), m(U(C)) =m(C) = 0.

Problem 1.3.10* Let 7' : R® — R" be a linear transformation. Prove that given any
Lebesgue-measurable set, then T'(M) is also a Lebesgue-measurable set and

m(T(M)) = |det T| m(M).

Hints: If det T = 0 is trivial because in this case T'(R"™) is contained in an (n — 1)-dimensional
hyperplane which has zero n-dimensional Lebesgue measure. If det T # 0, then T is bijective
and can be decomposed as T = UDV with U,V orthogonal transformations and D a linear
transformation whose matrix is diagonal. As orthogonal transformations are isometries, by
problem ?7?. it suffices to prove it for D. Let A1,..., A, be the elements of the diagonal of D. If
I = a1, b1) % X[an, by) is a semi-interval in R™, then D(I) = [A1a1, A\1b1) X+ - X[Apan, Anby) and
so m(D(I)) = A1 -+ Aym(I). Define the measure p(M) = /\1__1.)\” m(D(M)). By Caratheodory-
Hopf’s extension theorem we have that u = m. Finally, observe that detT =det D = Ay --- A,.

Problem 1.3.11* Let g : R — R be an increasing function. Prove that there exists a unique
Radon measure y : B(R) — [0, oo] such that

p(la,b)) =g(b7) —gla™),  Va,b) €.

Here g(x,) denotes the left limit of g at the point . This measure p = p, is called the
Borel-Stieltjes measure with distribution function g.
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Hint: Prove that p is countably additive on the semi-intervals: if [a,b) = U32,[a;,b;) then
g(b™)—gla™) = Z;’il 9(b;) — g(a; ). Then, apply Caratheodory-Hopf’s extension theorem.

Problem 1.3.12 Let u : B(R) — [0,00] be a Radon measure. Prove that there exists an
increasing and left-continuous function g : R — R such that p = p4. Besides, g is unique
unless by adding constants.

Hint: Define g(t) = u([0,¢t]) for ¢ > 0 and g(t) = —u([t,0)) for ¢ < 0 and apply Caratheodory-
Hopf’s extension theorem.

Problem 1.3.13 Let g : R — R be an increasing function and let ug be the corresponding
Borel-Stieltjes measure with distribution function g. Prove that:

a) pg({z}) = g(a™) — g(a7).

b) pg({z}) = 0 if and only if g is continuous at .

c) pg(la;b]) = g(b™) — g(a™).

d) pg((a,b)) = g(b™) — g(a™).

e) pg((a,b]) = g(b™) — g(a™).

f) If I C R is an open interval, then uy(I) = 0 if and only if g is constant on I.

Problem 1.3.14

a) Let us consider the function

0 if z<1
Flz)=¢ = if 1<x<3
4 if x>3.

Let pup be the Borel-Stieltjes measure with distribution function F'. Calculate:
pr({1}),  wr({2}), wr(3}), wr((L3), wr((1,3)), pr((L3]),  we((1,3)).

b) Give an example of a distribution function F' such that

ur((a,b)) < F(b) — F(a) < pr(la, b)), for some a and b.

Problem 1.3.15 Let F(x) be the distribution function on R given by

0 if zé€(—o0,—1)
) 1t it [—1,0)
F@) =19 9422 i [0,2)
9 if [2,00) .

If pur is the Borel-Stieltjes measure with distribution function F, calculate the measure pup of
the following sets: {2}, [-1/2,3), (=1,0] U (1,2), [0,1/2) U (1,2], A = {x € R : |z| + 22% > 1}.

Problem 1.3.16 Let p be the counting measure on R. Let us fix A C R, and let us define
v(B) =pu(BNA) for all B C R.
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a) If A=1{1,2,3,...,n,...} is v a Borel-Stieltjes measure? If the answer is affirmative, find
the distribution function.

b) Andif A={1,1, 4, ..., 1 . }7
Problem 1.3.17 Let (X, A, u) be a measure space and let ® : X — Y be a mapping. We
define the image space measure (Y, B,v) as

B=®(A):={BCY: & (B)c A

and v = ®(u) : B — [0, 00] given by v(B) = u(®~1(B)) for all B € B.
Prove that (Y, B,v) is a measure space and it is complete when (X, A, u) is.

Problem 1.3.18

a) Let g : I — R be a continuous and strictly increasing function. As ¢ is injective it
has a continuous inverse ¢g~!. Prove that fg = g~ (m), that is to say that the Borel-
Stieltjes measure with distribution function g coincides with the image measure of Lebesgue

measure under g~ 1.

b) Let g : (0,00) — R be the function g(t) = logt. Prove that u, = g~'(m) = e™ is
invariant under dilations.

Hints: a) Prove that both measures coincide for semi-intervals [a,b) and apply Caratheodory-
Hopf’s extension theorem. b) Use part a) and the fact that Lebesgue measure is translation
invariant. Alternatively, it can be also proved by using Caratheodory-Hopf’s extension theorem.

Problem 1.3.19 Let B, = {x € R": ||z|| < 1} be the unit ball of R" and S,,—1 = {z € R":
||z|| = 1} be the unit sphere. Let us consider the projection 7 : B, \ {0} — S,,_1 given by
m(x) = x/||z|. The (n — 1)-dimensional Lebesgue measure on S,,_; is defined as o = n - w(m),
that is to say

o(U)=n-m(x"1(U)), for all U € B(S,-1) .

Prove that o is invariant under rotations.
Hint: Use problem 1.3.9.

Problem 1.3.20 Let (X, A, u) and (Y,B,v) be o-finite measure spaces. Let us consider the
product set X xY = {(z,y) : = € X,y € Y}. The product o-algebra A ® B is the o-algebra
generated by the set £ = {A x B: A € A, B € B}. Prove that there exists a unique measure
pRv: A®B — [0, 00] such that

(L®v)(Ax B)=u(A)v(B), forallAc A, BeB.

Hint: Prove that £ is a semi-algebra and that p ® v is countably additive on £. Then apply
Caratheodory-Hopf’s extension theorem.



