uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Integration and Measure. Problems

Chapter 1: Measure theory Section 1.3: Construction of measures

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

1 Measure Theory

1.3. Construction of measures

Problem 1.3.1 Let μ^* be an outer measure in X and let H be a μ^* -measurable set. Let us consider the restriction μ_0^* of μ^* to $\mathcal{P}(H)$: $\mu_0^*(A) = \mu^*(A \cap H)$ for all $A \subset X$.

- i) Check that μ_0^* is an outer measure on *H*.
- ii) Check that $M \subseteq H$ is μ_0^* -measurable if and only if it is μ^* -measurable.

Problem 1.3.2

- i) Let X be any set. Let us define $\mu^* : \mathcal{P}(X) :\longrightarrow [0,1]$ by $\mu^*(\emptyset) = 0$, $\mu^*(A) = 1$, if $A \neq \emptyset$, $A \subseteq X$. Check that μ^* is an outer measure and determine the σ -algebra \mathcal{M} of measurable sets.
- ii) Do the same if $\mu^*(\emptyset) = 0$, $\mu^*(A) = 1$, if $A \neq \emptyset$, $A \subsetneq X$, $\mu^*(X) = 2$.

Hints: i) If $\emptyset \subseteq M \subseteq X$, then the definition of μ^* -measurable set fails with E = X. ii) If card (X) > 2 and $\{x, y\} \subset M \subsetneq X$ the definition fails with $E = M^c \cup \{x\}$; if $M = \{x\}$ the definition fails with $E = \{x, y\} \subsetneq X$.

Problem 1.3.3 Show that a finitely additive outer measure is countably additive.

Hint: $\bigcup_{j=1}^{n} A_j \subseteq \bigcup_{j=1}^{\infty} A_j$ for all n.

Problem 1.3.4^{*} Let μ^* be an outer measure on X and let \mathcal{M} be the collection of μ^* -measurable sets. Prove Caratheodory's theorem following the steps:

- a) If $\mu^*(M) = 0$ then $M \in \mathcal{M}$.
- b) If $M \in \mathcal{M}$ then also $M^c = X \setminus M \in \mathcal{M}$.
- c) If $M, N \in \mathcal{M}$ then $M \cup N, M \cap N, M \setminus N \in \mathcal{M}$.
- d) If $\{M_j\}_{j=1}^{\infty}$ is a sequence of disjoints in \mathcal{M} , then prove by induction on n that

$$\mu^*(A \cap (\cup_1^n M_j)) = \sum_{j=1}^n \mu^*(A \cap M_j), \quad \forall A \subset X, \forall n \in \mathbb{N}$$

e) If $\{M_j\}_{j=1}^{\infty}$ is a sequence of disjoints in \mathcal{M} and $M := \bigcup_{n=1}^{\infty} M_j$ then

$$\mu^*(A \cap M) = \sum_{j=1}^{\infty} \mu^*(A \cap M_j), \quad \forall A \subset X.$$

- f) If $\{M_j\}_{j=1}^{\infty}$ is a sequence of disjoints in \mathcal{M} , then $M := \bigcup_{n=1}^{\infty} M_j \in \mathcal{M}$.
- g) \mathcal{M} is a σ -algebra and $\mu^*|_{\mathcal{M}}$ is a measure.
- h) (X, \mathcal{M}, μ^*) is a complete measure space.

Hints: c) $A \cap (M \cup N) = (A \cap M) \cup (A \cap M^c \cap N)$. d) By c) $\cup_{j=1}^n M_j \in \mathcal{M}$ and so $\mu^*(A \cap (\cup_{j=1}^{n+1} M_j)) = \mu^*(A \cap (\cup_{j=1}^{n+1} M_j)) \cap (\cup_{j=1}^n M_j)) + \mu^*(A \cap (\cup_{j=1}^{n+1} M_j)) (\cup_{j=1}^n M_j)) = \mu^*(A \cap (\cup_{j=1}^n M_j)) + \mu^*(A \cap (\bigcup_{j=1}^n M_j)) + \mu^*(A \cap (\bigcup_{j=1}^n M_j))) = \mu^*(A \cap (\bigcup_{j=1}^n M_j)) + \mu^*(A \setminus (\bigcup_{j=1}^n M_j))) = \mu^*(A \cap (\bigcup_{j=1}^n M_j)) + \mu^*(A \setminus (\bigcup_{j=1}^n M_j))) = \mu^*(A \cap (\bigcup_{j=1}^n M_j)) + \mu^*(A \cap (\bigcup_{j=1}^n M_j))) = \mu^*(A \cap (\bigcup_{j=1}^n M_j)) + \mu^*(A \setminus (\bigcup_{j=1}^n M_j))) = \mu^*(A \cap (\bigcup_{j=1}^n M_j)) = \mu^*(A \cap (\bigcup_{j=1}^n M_j)) + \mu^*(A \cap (\bigcup_{j=1}^n M_j))) = \mu^*(A \cap (\bigcup_{j=1}^n M_j)) = \mu^*(A \cap (\bigcup_{j=1}^n M_j) = \mu^*(A \cap ($

Problem 1.3.5^{*} Let $\mathcal{E} \subset \mathcal{P}(X)$ be a semialgebra and let $\mu_0 : \mathcal{E} :\longrightarrow [0, \infty]$ be a countable additive set function.

- a) Prove that μ_0 is monotone: If $E, F \in \mathcal{E}, E \subseteq F$, then $\mu_0(E) \leq \mu_0(F)$.
- b) Prove that μ_0 is countably sub-additive: If $E = \bigcup_{i=1}^{\infty} E_i$ with $E_i, E \in \mathcal{E}$, then

$$\mu_0(E) \le \sum_{i=1}^{\infty} \mu_0(E_i)$$

c) Let us define, for all $A \subseteq X$,

$$\mu^*(A) = \inf\left\{\sum_{i=1}^{\infty} \mu_0(E_i) : E_i \in \mathcal{E}, A \subseteq \bigcup_{i=1}^{\infty} E_i\right\}.$$

- d) Prove that μ^* is an outer measure (and so, by Caratheodory's Theorem, the collection \mathcal{A} of μ^* -measurable sets is a σ -algebra and $\mu = \mu^*|_{\mathcal{A}}$ is a complete measure).
- e) Prove that $\mathcal{E} \subseteq \mathcal{A}$ and that μ^* is an extension of $\mu_0: \mu^*(E) = \mu_0(E)$ for all $E \in \mathcal{E}$.

Hints: a) If $E_1 \subset E_2$ then, as \mathcal{E} is semialgebra, $E_2 = E_1 \cup E_1^c = E_1 \cup F_1 \cup \cdots F_n$ with $F_j \in \mathcal{E}$ and disjoint. b) Consider the disjoint sets $D_i := E_i \setminus (E_1 \cup \cdots \cup E_{i-1}) = E_i \cap (\bigcap_{i=1}^{n-1} E_i^c)$ and observe that, as \mathcal{E} is semialgebra, we have that $E_i^c = F_{i1} \cup \cdots \cup F_{ik(i)}$ with $F_{ij} \in \mathcal{E}$ and disjoint. c) Given $\varepsilon > 0$ and sets $\{A_i\}_{i=1}^{\infty}$ such that $\sum_{i=1}^{\infty} \mu^*(A_i) < \infty$, choose for each i a collection $\{E_{ij}\}_{j=1}^{\infty}$ such that $\sum_{j=1}^{\infty} \mu_0(E_{ij}) < \mu^*(A_i) + \varepsilon/2^i$. Then $A := \bigcup_i A_i \subseteq \bigcup_i \bigcup_j E_{ij}$ and $\mu^*(A) \leq \sum_i \mu^*(A_i) + \varepsilon$. e) Given $E \in \mathcal{E}$, $A \subset X$ with $\mu^*(A) < \infty$ and $\varepsilon > 0$ there exists $\{E_i\} \subset \mathcal{E}$ such that $A \subset \bigcup_i E_i$ and $\sum_i \mu_0(E_i) < \mu^*(A) + \varepsilon$; also $E^c = F_1 \cup \cdots \cup F_n$ with $F_j \in \mathcal{E}$ and disjoint. Hence, $E_i = (E_i \cap E) \cup (E_i \cap F_1) \cup \cdots \cup (E_i \cap F_n)$, a disjoint union of sets.

Problem 1.3.6 A semiopen interval in \mathbb{R} is an interval of type \emptyset , [a, b), $(-\infty, b)$, $[a, \infty)$ or $(-\infty, \infty) = \mathbb{R}$. A semiopen interval in \mathbb{R}^n is a set of type $I = I_1 \times I_2 \times \cdots \times I_n$, where each I_j is a semiopen interval in \mathbb{R} . Let \mathcal{E} be the collection of semiopen intervals in \mathbb{R}^n . Prove that \mathcal{E} is a semialgebra.

Problem 1.3.7 Show that a subset $B \subseteq \mathbb{R}$ is Lebesgue-measurable if and only if

$$m^*(I) = m^*(I \cap B) + m^*(I \cap B^c),$$

for every open interval $I \subseteq \mathbb{R}$.

Hint: Given $E \subset \mathbb{R}$ with $m^*(E) < \infty$ and $\varepsilon > 0$, consider a sequence of intervals $\{I_n\}$ such that $E \subset \bigcup_n I_n$ and $\sum_n m(I_n) < m^*(E) + \varepsilon$ and observe that, as each I_n is Lebesgue-measurable, $m(I_n) = m^*(I_n) = m^*(B \cap I_n) + m^*(B^c \cap I_n)$.

Problem 1.3.8*

a) Prove that $(\mathbb{R}^n, \mathcal{M}, m)$ is translations invariant:

 $A \in \mathcal{M}, \quad a \in \mathbb{R}^n \qquad \Longrightarrow \qquad a + A \in \mathcal{M} \quad \text{and} \quad m(a + A) = m(A).$

b) Let $(\mathbb{R}^n, \mathcal{M}, \mu)$ be a translations invariant measure space with μ a Radon measure $(\mu(K) < \infty$ for each compact set K). Prove that there exists $k \ge 0$ such that $\mu = km$.

Hints: a) Consider the measure $\mu(B) = m(a+B)$ for $B \in \mathcal{B}(\mathbb{R}^n)$ and observe that m(a+I) = m(I) for each semi-interval I. Hence $\mu(I) = m(I)$ for I semi-interval. Apply Caratheodory-Hopf's extension theorem. b) Let $k = \mu([0, 1] \times \cdots \times [0, 1])$ and prove that $\mu(I) = k m(I)$, for each semi-interval $I = [0, r_1/q_1] \times \cdots \times [0, r_n/q_n]$ with $r_i/q_i \in \mathbb{Q}$. Using now an approximation argument conclude that the same is true for any semi-interval in \mathbb{R}^n . Finally apply Caratheodory-Hopf's extension theorem.

Problem 1.3.9^{*} Let $g : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be an isometry for the Euclidean norm. that is to say ||g(x) - g(y)|| = ||x - y|| for all $x, y \in \mathbb{R}^n$. It is known that any isometry is a composition of a translation and an orthogonal transformation. Recall that $U : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is orthogonal if U is linear and $UU^T = I$ where I is the identity matrix.

Prove that given any Lebesgue-measurable set M, then g(M) is also a Lebesgue-measurable set and m(g(M)) = m(M).

Hints: By problem 1 it suffices to prove it for an orthogonal transformation U. As U is an homeomorphism (bijective and continuous with continuous inverse) then U sends Borel sets into Borel sets. Define a measure μ by $\mu(A) = m(U(A))$ for $A \in \mathcal{B}(\mathbb{R}^n)$, where U is orthogonal, and prove that μ is translations invariant. Hence $\mu(A) = k m(A)$ for any $A \in \mathcal{B}(\mathbb{R}^n)$ and for some constant k. But, if $B = \{x : ||x|| < 1\}$ then prove that $\mu(B) = m(B)$ and so k = 1. Finally, if $M \in \mathcal{M}$ then $M = A \cup N$ with $A \in \mathcal{B}(\mathbb{R}^n)$ and $N \subset C \in \mathcal{B}(\mathbb{R}^n)$, m(C) = 0. Hence $U(M) = U(A) \cup U(N)$ with $U(A) \in \mathcal{B}(\mathbb{R}^n)$ and $U(N) \subset U(C) \in \mathcal{B}(\mathbb{R}^n)$, m(U(C)) = m(C) = 0.

Problem 1.3.10^{*} Let $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation. Prove that given any Lebesgue-measurable set, then T(M) is also a Lebesgue-measurable set and

$$m(T(M)) = |\det T| m(M).$$

Hints: If det T = 0 is trivial because in this case $T(\mathbb{R}^n)$ is contained in an (n-1)-dimensional hyperplane which has zero *n*-dimensional Lebesgue measure. If det $T \neq 0$, then *T* is bijective and can be decomposed as T = UDV with U, V orthogonal transformations and *D* a linear transformation whose matrix is diagonal. As orthogonal transformations are isometries, by problem ??, it suffices to prove it for *D*. Let $\lambda_1, \ldots, \lambda_n$ be the elements of the diagonal of *D*. If $I = [a_1, b_1) \times \cdots \times [a_n, b_n)$ is a semi-interval in \mathbb{R}^n , then $D(I) = [\lambda_1 a_1, \lambda_1 b_1) \times \cdots \times [\lambda_n a_n, \lambda_n b_n)$ and so $m(D(I)) = \lambda_1 \cdots \lambda_n m(I)$. Define the measure $\mu(M) = \frac{1}{\lambda_1 \cdots \lambda_n} m(D(M))$. By Caratheodory-Hopf's extension theorem we have that $\mu = m$. Finally, observe that det $T = \det D = \lambda_1 \cdots \lambda_n$.

Problem 1.3.11^{*} Let $g : \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing function. Prove that there exists a unique Radon measure $\mu : \mathcal{B}(\mathbb{R}) \longrightarrow [0, \infty]$ such that

$$\mu([a,b)) = g(b^{-}) - g(a^{-}), \qquad \forall [a,b) \in \mathcal{E}.$$

Here $g(x_0^-)$ denotes the left limit of g at the point x_0 . This measure $\mu = \mu_g$ is called the *Borel-Stieltjes measure with distribution function* g.

Hint: Prove that μ is countably additive on the semi-intervals: if $[a, b] = \bigcup_{j=1}^{\infty} [a_j, b_j]$ then $g(b^-) - g(a^-) = \sum_{j=1}^{\infty} g(b_j^-) - g(a_j^-)$. Then, apply Caratheodory-Hopf's extension theorem.

Problem 1.3.12 Let $\mu : \mathcal{B}(\mathbb{R}) \longrightarrow [0, \infty]$ be a Radon measure. Prove that there exists an increasing and left-continuous function $g : \mathbb{R} \longrightarrow \mathbb{R}$ such that $\mu = \mu_g$. Besides, g is unique unless by adding constants.

Hint: Define $g(t) = \mu([0, t])$ for $t \ge 0$ and $g(t) = -\mu([t, 0))$ for t < 0 and apply Caratheodory-Hopf's extension theorem.

Problem 1.3.13 Let $g : \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing function and let μ_g be the corresponding Borel-Stieltjes measure with distribution function g. Prove that:

- a) $\mu_g(\{x\}) = g(x^+) g(x^-).$
- b) $\mu_q(\{x\}) = 0$ if and only if g is continuous at x.

c)
$$\mu_g([a,b]) = g(b^+) - g(a^-).$$

- d) $\mu_q((a,b)) = g(b^-) g(a^+).$
- e) $\mu_g((a,b]) = g(b^+) g(a^+).$
- f) If $I \subset \mathbb{R}$ is an open interval, then $\mu_q(I) = 0$ if and only if g is constant on I.

Problem 1.3.14

a) Let us consider the function

$$F(x) = \begin{cases} 0 & \text{if } x < 1 \\ x & \text{if } 1 \le x < 3 \\ 4 & \text{if } x \ge 3 \end{cases}.$$

Let μ_F be the Borel-Stieltjes measure with distribution function F. Calculate:

$$\mu_F(\{1\}), \quad \mu_F(\{2\}), \quad \mu_F(\{3\}), \quad \mu_F((1,3]), \quad \mu_F((1,3)), \quad \mu_F([1,3]), \quad \mu_F([1,3]).$$

b) Give an example of a distribution function F such that

$$\mu_F((a,b)) < F(b) - F(a) < \mu_F([a,b]), \quad \text{for some } a \text{ and } b.$$

Problem 1.3.15 Let F(x) be the distribution function on \mathbb{R} given by

$$F(x) = \begin{cases} 0 & \text{if } x \in (-\infty, -1) \\ 1+x & \text{if } x \in [-1, 0) \\ 2+x^2 & \text{if } x \in [0, 2) \\ 9 & \text{if } x \in [2, \infty) \,. \end{cases}$$

If μ_F is the Borel-Stieltjes measure with distribution function F, calculate the measure μ_F of the following sets: $\{2\}, [-1/2, 3), (-1, 0] \cup (1, 2), [0, 1/2) \cup (1, 2], A = \{x \in \mathbb{R} : |x| + 2x^2 > 1\}.$

Problem 1.3.16 Let μ be the counting measure on \mathbb{R} . Let us fix $A \subset \mathbb{R}$, and let us define $\nu(B) = \mu(B \cap A)$ for all $B \subset \mathbb{R}$.

- a) If $A = \{1, 2, 3, ..., n, ...\}$ is ν a Borel-Stieltjes measure? If the answer is affirmative, find the distribution function.
- b) And if $A = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$?

Problem 1.3.17 Let (X, \mathcal{A}, μ) be a measure space and let $\Phi : X \longrightarrow Y$ be a mapping. We define the *image space measure* (Y, \mathcal{B}, ν) as

$$\mathcal{B} = \Phi(\mathcal{A}) := \{ B \subseteq Y : \Phi^{-1}(B) \in \mathcal{A} \}$$

and $\nu = \Phi(\mu) : \mathcal{B} \longrightarrow [0, \infty]$ given by $\nu(B) = \mu(\Phi^{-1}(B))$ for all $B \in \mathcal{B}$. Prove that (Y, \mathcal{B}, ν) is a measure space and it is complete when (X, \mathcal{A}, μ) is.

Problem 1.3.18

- a) Let $g: I \longrightarrow \mathbb{R}$ be a continuous and strictly increasing function. As g is injective it has a continuous inverse g^{-1} . Prove that $\mu_g = g^{-1}(m)$, that is to say that the Borel-Stieltjes measure with distribution function g coincides with the image measure of Lebesgue measure under g^{-1} .
- b) Let $g: (0,\infty) \longrightarrow \mathbb{R}$ be the function $g(t) = \log t$. Prove that $\mu_g = g^{-1}(m) = e^m$ is invariant under dilations.

Hints: a) Prove that both measures coincide for semi-intervals [a, b) and apply Caratheodory-Hopf's extension theorem. b) Use part a) and the fact that Lebesgue measure is translation invariant. Alternatively, it can be also proved by using Caratheodory-Hopf's extension theorem.

Problem 1.3.19 Let $B_n = \{x \in \mathbb{R}^n : ||x|| < 1\}$ be the unit ball of \mathbb{R}^n and $S_{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$ be the unit sphere. Let us consider the projection $\pi : B_n \setminus \{0\} \longrightarrow S_{n-1}$ given by $\pi(x) = x/||x||$. The (n-1)-dimensional Lebesgue measure on S_{n-1} is defined as $\sigma = n \cdot \pi(m)$, that is to say

$$\sigma(U) = n \cdot m(\pi^{-1}(U)), \quad \text{for all } U \in \mathcal{B}(S_{n-1}).$$

Prove that σ is invariant under rotations.

Hint: Use problem 1.3.9.

Problem 1.3.20 Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be σ -finite measure spaces. Let us consider the product set $X \times Y = \{(x, y) : x \in X, y \in Y\}$. The product σ -algebra $\mathcal{A} \otimes \mathcal{B}$ is the σ -algebra generated by the set $\mathcal{E} = \{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\}$. Prove that there exists a unique measure $\mu \otimes \nu : \mathcal{A} \otimes \mathcal{B} \longrightarrow [0, \infty]$ such that

$$(\mu \otimes \nu)(A \times B) = \mu(A) \nu(B), \quad \text{for all } A \in \mathcal{A}, \ B \in \mathcal{B}.$$

Hint: Prove that \mathcal{E} is a semi-algebra and that $\mu \otimes \nu$ is countably additive on \mathcal{E} . Then apply Caratheodory-Hopf's extension theorem.