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1 Measure Theory

1.3. Construction of measures

Problem 1.3.1 Let µ∗ be an outer measure in X and let H be a µ∗-measurable set. Let us
consider the restriction µ∗0 of µ∗ to P(H): µ∗0(A) = µ∗(A ∩H) for all A ⊂ X.

i) Check that µ∗0 is an outer measure on H.

ii) Check that M ⊆ H is µ∗0-measurable if and only if it is µ∗-measurable.

Problem 1.3.2

i) Let X be any set. Let us define µ∗ : P(X) :−→ [0, 1] by µ∗(∅) = 0, µ∗(A) = 1, if A 6= ∅,
A ⊆ X. Check that µ∗ is an outer measure and determine the σ-algebraM of measurable
sets.

ii) Do the same if µ∗(∅) = 0, µ∗(A) = 1, if A 6= ∅, A ( X, µ∗(X) = 2.

Hints: i) If ∅ ( M ( X, then the definition of µ∗-measurable set fails with E = X. ii) If
card (X) > 2 and {x, y} ⊂ M ( X the definition fails with E = M c ∪ {x}; if M = {x} the
definition fails with E = {x, y} ( X.

Problem 1.3.3 Show that a finitely additive outer measure is countably additive.

Hint:
⋃n
j=1Aj ⊆

⋃∞
j=1Aj for all n.

Problem 1.3.4∗ Let µ∗ be an outer measure on X and letM be the collection of µ∗-measurable
sets. Prove Caratheodory’s theorem following the steps:

a) If µ∗(M) = 0 then M ∈M.

b) If M ∈M then also M c = X \M ∈M.

c) If M,N ∈M then M ∪N , M ∩N , M \N ∈M.

d) If {Mj}∞j=1 is a sequence of disjoints in M, then prove by induction on n that

µ∗(A ∩ (∪n1Mj)) =
n∑
j=1

µ∗(A ∩Mj) , ∀A ⊂ X , ∀n ∈ N .

e) If {Mj}∞j=1 is a sequence of disjoints in M and M := ∪∞n=1Mj then

µ∗(A ∩M) =

∞∑
j=1

µ∗(A ∩Mj) , ∀A ⊂ X .

f) If {Mj}∞j=1 is a sequence of disjoints in M, them M := ∪∞n=1Mj ∈M.

g) M is a σ-algebra and µ∗|M is a measure.

h) (X,M, µ∗) is a complete measure space.
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Hints: c) A∩(M∪N) = (A∩M)∪(A∩M c∩N). d) By c) ∪nj=1Mj ∈M and so µ∗(A∩(∪n+1
j=1Mj)) =

µ∗(A∩(∪n+1
j=1Mj)∩(∪nj=1Mj))+µ∗(A∩(∪n+1

j=1Mj)\(∪nj=1Mj)) = µ∗(A∩(∪nj=1Mj))+µ∗(A∩Mn+1).
e) It is a consequence of a). f) Use that ∪nj=1Mj ∈M by c), and so µ∗(A) = µ∗(A∩∪(∪nj=1Mj))+
µ∗(A \ (∪nj=1Mj)); use now parts d) and e). g) If {Aj} is any collection of subsets in M, then
the sets Mj = Aj \ (A1 ∪ · · · ∪An−1 ∈M are disjoints and ∪∞j=1Aj = ∪∞j=1Mj .

Problem 1.3.5∗ Let E ⊂ P(X) be a semialgebra and let µ0 : E :−→ [0,∞] be a countable
additive set function.

a) Prove that µ0 is monotone: If E,F ∈ E , E ⊆ F , then µ0(E) ≤ µ0(F ).

b) Prove that µ0 is countably sub-additive: If E = ∪∞i=1Ei with Ei, E ∈ E , then

µ0(E) ≤
∞∑
i=1

µ0(Ei) .

c) Let us define, for all A ⊆ X,

µ∗(A) = inf
{ ∞∑
i=1

µ0(Ei) : Ei ∈ E , A ⊆ ∪∞i=1Ei

}
.

d) Prove that µ∗ is an outer measure (and so, by Caratheodory’s Theorem, the collection A
of µ∗-measurable sets is a σ-algebra and µ = µ∗|A is a complete measure).

e) Prove that E ⊆ A and that µ∗ is an extension of µ0: µ
∗(E) = µ0(E) for all E ∈ E .

Hints: a) If E1 ⊂ E2 then, as E is semialgebra, E2 = E1 ∪ Ec1 = E1 ∪ F1 ∪ · · ·Fn with Fj ∈ E
and disjoint. b) Consider the disjoint sets Di := Ei \ (E1 ∪ · · · ∪ Ei−1) = Ei ∩ (∩n−1i=1 E

c
i )

and observe that, as E is semialgebra, we have that Eci = Fi1 ∪ · · · ∪ Fik(i) with Fij ∈ E and
disjoint. c) Given ε > 0 and sets {Ai}∞i=1 such that

∑∞
i=1 µ

∗(Ai) < ∞, choose for each i a
collection {Eij}∞j=1 such that

∑∞
j=1 µ0(Eij) < µ∗(Ai) + ε/2i. Then A := ∪iAi ⊆ ∪i ∪j Eij and

µ∗(A) ≤
∑

i µ
∗(Ai) + ε. e) Given E ∈ E , A ⊂ X with µ∗(A) < ∞ and ε > 0 there exists

{Ei} ⊂ E such that A ⊂ ∪iEi and
∑

i µ0(Ei) < µ∗(A) + ε; also Ec = F1 ∪ · · · ∪ Fn with Fj ∈ E
and disjoint. Hence, Ei = (Ei ∩ E) ∪ (Ei ∩ F1) ∪ · · · ∪ (Ei ∩ Fn), a disjoint union of sets.

Problem 1.3.6 A semiopen interval in R is an interval of type ∅, [a, b), (−∞, b), [a,∞) or
(−∞,∞) = R. A semiopen interval in Rn is a set of type I = I1 × I2 × · · · × In, where each Ij
is a semiopen interval in R. Let E be the collection of semiopen intervals in Rn. Prove that E
is a semialgebra.

Problem 1.3.7 Show that a subset B ⊆ R is Lebesgue-measurable if and only if

m∗(I) = m∗(I ∩B) +m∗(I ∩Bc) ,

for every open interval I ⊆ R.

Hint: Given E ⊂ R with m∗(E) <∞ and ε > 0, consider a sequence of intervals {In} such that
E ⊂ ∪nIn and

∑
nm(In) < m∗(E) + ε and observe that, as each In is Lebesgue-measurable,

m(In) = m∗(In) = m∗(B ∩ In) +m∗(Bc ∩ In).
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Problem 1.3.8∗

a) Prove that (Rn,M,m) is translations invariant:

A ∈M , a ∈ Rn =⇒ a+A ∈M and m(a+A) = m(A) .

b) Let (Rn,M, µ) be a translations invariant measure space with µ a Radon measure (µ(K) <
∞ for each compact set K). Prove that there exists k ≥ 0 such that µ = km.

Hints: a) Consider the measure µ(B) = m(a+B) for B ∈ B(Rn) and observe that m(a+ I) =
m(I) for each semi-interval I. Hence µ(I) = m(I) for I semi-interval. Apply Caratheodory-
Hopf’s extension theorem. b) Let k = µ([0, 1] × · · · × [0, 1]) and prove that µ(I) = km(I), for
each semi-interval I = [0, r1/q1]× · · · × [0, rn/qn] with ri/qi ∈ Q. Using now an approximation
argument conclude that the same is true for any semi-interval in Rn. Finally apply Caratheodory-
Hopf’s extension theorem.

Problem 1.3.9∗ Let g : Rn −→ Rn be an isometry for the Euclidean norm. that is to say
‖g(x) − g(y)‖ = ‖x − y‖ for all x, y ∈ Rn. It is known that any isometry is a composition of a
translation and an orthogonal transformation. Recall that U : Rn −→ Rn is orthogonal if U is
linear and UUT = I where I is the identity matrix.
Prove that given any Lebesgue-measurable set M , then g(M) is also a Lebesgue-measurable set
and m(g(M)) = m(M).

Hints: By problem 1 it suffices to prove it for an orthogonal transformation U . As U is an
homeomorphism (bijective and continuous with continuous inverse) then U sends Borel sets into
Borel sets. Define a measure µ by µ(A) = m(U(A)) for A ∈ B(Rn), where U is orthogonal,
and prove that µ is translations invariant. Hence µ(A) = km(A) for any A ∈ B(Rn) and for
some constant k. But, if B = {x : ‖x‖ < 1} then prove that µ(B) = m(B) and so k = 1.
Finally, if M ∈ M then M = A ∪ N with A ∈ B(Rn) and N ⊂ C ∈ B(Rn), m(C) = 0. Hence
U(M) = U(A) ∪ U(N) with U(A) ∈ B(Rn) and U(N) ⊂ U(C) ∈ B(Rn), m(U(C)) = m(C) = 0.

Problem 1.3.10∗ Let T : Rn −→ Rn be a linear transformation. Prove that given any
Lebesgue-measurable set, then T (M) is also a Lebesgue-measurable set and

m(T (M)) = |detT |m(M).

Hints: If detT = 0 is trivial because in this case T (Rn) is contained in an (n − 1)-dimensional
hyperplane which has zero n-dimensional Lebesgue measure. If detT 6= 0, then T is bijective
and can be decomposed as T = UDV with U, V orthogonal transformations and D a linear
transformation whose matrix is diagonal. As orthogonal transformations are isometries, by
problem ??, it suffices to prove it for D. Let λ1, . . . , λn be the elements of the diagonal of D. If
I = [a1, b1)×· · ·×[an, bn) is a semi-interval in Rn, thenD(I) = [λ1a1, λ1b1)×· · ·×[λnan, λnbn) and
so m(D(I)) = λ1 · · ·λnm(I). Define the measure µ(M) = 1

λ1···λn m(D(M)). By Caratheodory-
Hopf’s extension theorem we have that µ = m. Finally, observe that detT = detD = λ1 · · ·λn.

Problem 1.3.11∗ Let g : R −→ R be an increasing function. Prove that there exists a unique
Radon measure µ : B(R) −→ [0,∞] such that

µ([a, b)) = g(b−)− g(a−) , ∀ [a, b) ∈ E .

Here g(x−0 ) denotes the left limit of g at the point x0. This measure µ = µg is called the
Borel-Stieltjes measure with distribution function g.
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Hint: Prove that µ is countably additive on the semi-intervals: if [a, b) = ∪∞j=1[aj , bj) then

g(b−)− g(a−) =
∑∞

j=1 g(b−j )− g(a−j ). Then, apply Caratheodory-Hopf’s extension theorem.

Problem 1.3.12 Let µ : B(R) −→ [0,∞] be a Radon measure. Prove that there exists an
increasing and left-continuous function g : R −→ R such that µ = µg. Besides, g is unique
unless by adding constants.

Hint: Define g(t) = µ([0, t]) for t ≥ 0 and g(t) = −µ([t, 0)) for t < 0 and apply Caratheodory-
Hopf’s extension theorem.

Problem 1.3.13 Let g : R −→ R be an increasing function and let µg be the corresponding
Borel-Stieltjes measure with distribution function g. Prove that:

a) µg({x}) = g(x+)− g(x−).

b) µg({x}) = 0 if and only if g is continuous at x.

c) µg([a, b]) = g(b+)− g(a−).

d) µg((a, b)) = g(b−)− g(a+).

e) µg((a, b]) = g(b+)− g(a+).

f) If I ⊂ R is an open interval, then µg(I) = 0 if and only if g is constant on I.

Problem 1.3.14

a) Let us consider the function

F (x) =


0 if x < 1
x if 1 ≤ x < 3
4 if x ≥ 3 .

Let µF be the Borel-Stieltjes measure with distribution function F . Calculate:

µF ({1}), µF ({2}), µF ({3}), µF ((1, 3]), µF ((1, 3)), µF ([1, 3]), µF ([1, 3)).

b) Give an example of a distribution function F such that

µF ((a, b)) < F (b)− F (a) < µF ([a, b]) , for some a and b.

Problem 1.3.15 Let F (x) be the distribution function on R given by

F (x) =


0 if x ∈ (−∞,−1)
1 + x if x ∈ [−1, 0)
2 + x2 if x ∈ [0, 2)
9 if x ∈ [2,∞) .

If µF is the Borel-Stieltjes measure with distribution function F , calculate the measure µF of
the following sets: {2}, [−1/2, 3), (−1, 0] ∪ (1, 2), [0, 1/2) ∪ (1, 2], A = {x ∈ R : |x|+ 2x2 > 1}.

Problem 1.3.16 Let µ be the counting measure on R. Let us fix A ⊂ R, and let us define
ν(B) = µ(B ∩A) for all B ⊂ R.
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a) If A = {1, 2, 3, . . . , n, . . .} is ν a Borel-Stieltjes measure? If the answer is affirmative, find
the distribution function.

b) And if A = {1, 12 ,
1
3 , . . . ,

1
n , . . .}?

Problem 1.3.17 Let (X,A, µ) be a measure space and let Φ : X −→ Y be a mapping. We
define the image space measure (Y,B, ν) as

B = Φ(A) := {B ⊆ Y : Φ−1(B) ∈ A}

and ν = Φ(µ) : B −→ [0,∞] given by ν(B) = µ(Φ−1(B)) for all B ∈ B.
Prove that (Y,B, ν) is a measure space and it is complete when (X,A, µ) is.

Problem 1.3.18

a) Let g : I −→ R be a continuous and strictly increasing function. As g is injective it
has a continuous inverse g−1. Prove that µg = g−1(m), that is to say that the Borel-
Stieltjes measure with distribution function g coincides with the image measure of Lebesgue
measure under g−1.

b) Let g : (0,∞) −→ R be the function g(t) = log t. Prove that µg = g−1(m) = em is
invariant under dilations.

Hints: a) Prove that both measures coincide for semi-intervals [a, b) and apply Caratheodory-
Hopf’s extension theorem. b) Use part a) and the fact that Lebesgue measure is translation
invariant. Alternatively, it can be also proved by using Caratheodory-Hopf’s extension theorem.

Problem 1.3.19 Let Bn = {x ∈ Rn : ‖x‖ < 1} be the unit ball of Rn and Sn−1 = {x ∈ Rn :
‖x‖ = 1} be the unit sphere. Let us consider the projection π : Bn \ {0} −→ Sn−1 given by
π(x) = x/‖x‖. The (n − 1)-dimensional Lebesgue measure on Sn−1 is defined as σ = n · π(m),
that is to say

σ(U) = n ·m(π−1(U)) , for all U ∈ B(Sn−1) .

Prove that σ is invariant under rotations.

Hint: Use problem 1.3.9.

Problem 1.3.20 Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces. Let us consider the
product set X × Y = {(x, y) : x ∈ X, y ∈ Y }. The product σ-algebra A ⊗ B is the σ-algebra
generated by the set E = {A × B : A ∈ A, B ∈ B}. Prove that there exists a unique measure
µ⊗ ν : A⊗ B −→ [0,∞] such that

(µ⊗ ν)(A×B) = µ(A) ν(B) , for all A ∈ A , B ∈ B .

Hint: Prove that E is a semi-algebra and that µ ⊗ ν is countably additive on E . Then apply
Caratheodory-Hopf’s extension theorem.


