uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure. Problems

Chapter 2: Integration theory Section 2.1: Integration of positive functions

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.1 Integration of positive functions

Problem 2.1.1 Let (X, \mathcal{A}, μ) be a measure space and let $f, g : X \longrightarrow [0, \infty]$ be measurable positive functions and $A, B, E \in \mathcal{A}, \lambda \geq 0$. Prove that:

$$\begin{split} i) & \int_E \lambda f \, d\mu = \lambda \int_E f \, d\mu \, . \\ ii) & \int_E f \, d\mu = \int_X f \chi_E \, d\mu . \\ iii) & f \leq g \implies \int_E f \, d\mu \leq \int_E g \, d\mu . \\ iv) & A \subseteq B \implies \int_A f \, d\mu \leq \int_B f \, d\mu . \\ v) & \int_E f = 0 \iff f = 0 \text{ a.e. in } E . \\ vi) & \mu(E) = 0 \implies \int_E f \, d\mu = 0 . \\ vii) & A \cap B = \varnothing \implies \int_{A \cup B} f \, d\mu = \int_A f \, d\mu + \int_B f \, d\mu . \\ viii) & \int_E (f + g) \, d\mu = \int_E f \, d\mu + \int_E g \, d\mu . \\ ix) & f \geq g, \int_X g \, d\mu < \infty \implies \int_X f \, d\mu - \int g \, d\mu = \int_X (f - g) \, d\mu . \\ xi) & f \leq g \text{ a.e. in } E \implies \int_E f \, d\mu = \int_E g \, d\mu . \\ xi) & f = g \text{ a.e. in } E \implies \int_E f \, d\mu = \int_E g \, d\mu . \end{split}$$

Hints: vi) If f = 0 a.e. and $s = \sum_j c_j \chi_{A_j} \leq f$, then $\mu(A_j) = 0$ for all j and so s = 0 a.e. On the other hand, if $\mu(f > 0) > 0$, then $\mu(A) > 0$ for some $n \in \mathbb{N}$, where $A = \{f > 1/n\}$. Hence, $0 \leq s = \frac{1}{n} \chi_A \leq f$ and $\frac{1}{n} \mu(A \cap E) \leq \int_E f d\mu$, a contradiction. For the other statements, the idea is always to approximate positive functions by simple functions.

Problem 2.1.2 Let (X, \mathcal{A}, μ) be a measure space and suppose that $X = \bigcup_n X_n$, where $\{X_n\}_{n=1}^{\infty}$ is a pairwise disjoint collection of measurable subsets of X. Prove that if $f: X \longrightarrow [0, \infty]$ is a measurable positive function, then

$$\int_X f \, d\mu = \sum_n \int_{X_n} f \, d\mu \, .$$

Hint: Use the monotone convergence theorem.

Problem 2.1.3 Let (X, \mathcal{A}, μ) be a measure space and let $f : X \longrightarrow [0, \infty]$ be a measurable positive function. Let us define

$$\varphi(E) = \int_E f \, d\mu$$
, for all $E \in \mathcal{A}$.

Prove that φ is a measure on \mathcal{A} and that

$$\int_X g \, d\varphi = \int_X g f \, d\mu \,, \qquad \text{for all } g : X \longrightarrow [0, \infty] \text{ measurable.} \tag{1}$$

Note: This fact justifies the notation $d\varphi = f d\mu$.

Hint: Apply Exercise 2.1.1 to prove that φ is a measure. Then, prove (1) first for characteristic functions and simple functions and then approximate any positive function for a sequence of simple functions.

Problem 2.1.4 Let $f : [0,1] \to [0,\infty]$ be defined by f(x) = 0 if x is rational, and otherwise f(x) = n where n is the number of zeros immediately after the decimal point in the representation of x in the decimal scale. Calculate $\int f(x) dm$, being m the Lebesgue measure.

Hint: f(x) = k for $x \in [1/10^{k+1}, 1/10^k) \setminus \mathbb{Q}$.

Problem 2.1.5 Let f(x) be the function defined in (0,1) by f(x) = 0 if x is rational, and $f(x) = \lfloor 1/x \rfloor$ if x is irrational ([t] denote the integer part of t). Decide whether or not f is Lebesgue integrable and calculate $\int f(x) dm$ being m the Lebesgue measure.

Hint: f(x) = k for $x \in (1/(k+1), 1/k] \setminus \mathbb{Q}$.

Problem 2.1.6 Let (X, \mathcal{A}, μ) be a probability space, i.e. $\mu(X) = 1$. Let $E \in \mathcal{A}$ be a set with $0 < \mu(E) < 1$. Put $f_n = \chi_E$ if n is odd, $f_n = 1 - \chi_E$ if n is even. What is the relevance of this example to Fatou's lemma?

Hint:
$$\liminf_{n \to \infty} f_n(x) = 0$$
 for all $x \in X$ but $\liminf_{n \to \infty} \int f_n d\mu = \min\{\mu(E), 1 - \mu(E)\}.$

Problem 2.1.7 Let $f_{2n-1} = \chi_{[0,1]}$, $f_{2n} = \chi_{[1,2]}$, $n = 1, 2, \ldots$ Check that Fatou's Lemma is verified strictly for this sequence of functions.

Hint:
$$\liminf_{n \to \infty} f_n(x) = 0$$
 for all $x \in \mathbb{R} \setminus \{1\}$ but $\liminf_{n \to \infty} \int f_n \, dm = 1$.

Problem 2.1.8

- a) Check that $\int_{1}^{\infty} \frac{1}{x} dm = \infty$, being *m* the Lebesgue measure.
- b) Let $p \in \mathbb{R}$. Prove that:

b1)
$$\int_0^\infty e^{-px} dm < \infty$$
 if and only if $p > 0$.
b2) $\int_1^\infty \frac{1}{x^p} dm < \infty$ if and only if $p > 1$.

b3)
$$\int_0^1 \frac{1}{x^p} dm < \infty$$
 if and only if $p < 1$.

Hint: a) $\frac{1}{x} = \lim_{N \to \infty} \frac{1}{x} \chi_{[1,N]}(x)$. Apply the monotone convergence theorem.

Problem 2.1.9 Prove that the function $f(x) = \frac{1}{\sqrt{x}}$ if $x \in (0, 1]$, and f(0) = 0, is Lebesgueintegrable in [0, 1] and calculate its integral.

Hint: f is almost everywhere continuous and $f(x) = \lim_{\varepsilon \to 0^+} \frac{1}{\sqrt{x}} \chi_{[\varepsilon,1]}(x)$ if $x \in [0,1]$.

Problem 2.1.10 Let (X, \mathcal{A}, μ) be a measure space and let $f : X \longrightarrow [0, \infty]$ be a measurable positive function. Let $f_n(x) = \min\{f(x), n\}$. Prove that $\int_X f_n d\mu \nearrow \int_X f d\mu$.

Hint: Use an adequate convergence theorem.

Problem 2.1.11 Let (X, \mathcal{A}, μ) be a measure space and let $f_n : X \longrightarrow [0, \infty]$ be a sequence of measurable positive functions. Let us suppose that $\exists \lim_{n\to\infty} f_n = f$ and that $f_n \leq f$ for all n. Prove that $\int_X f \, d\mu = \lim_{n\to\infty} \int_X f_n \, d\mu$.

Hint: Use Fatou's Lemma and $\int_X f_n d\mu \leq \int_X f d\mu$.

Problem 2.1.12

- a) Let (X, \mathcal{A}, μ) be a measure space and let $f_n : X \longrightarrow [0, \infty]$ be a sequence of measurable positive functions. Let us suppose that $f_n(x) \searrow f(x)$ and that $\int_X f_k d\mu < \infty$ for some k. Prove that $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$.
- b) Let $a_1 \ge a_2 \ge a_3 \ge \ldots \ge a_n \ge \ldots$ be a sequence of positive numbers such that $\lim_{n\to\infty} a_n = 0$ and a > 0. Let us define $f_n(x) = a_n/x$, for x > a > 0. Check that f_n decreases uniformly to 0 but $\int f_n dm = \infty$ for all n.

Hint: a) Consider the sequence $g_n = f_k - f_{k+n}$.

Problem 2.1.13 Let $g : (X, \mathcal{A}, \mu) \longrightarrow [0, \infty]$ be an integrable function. Let $\{E_n\}$ be a decreasing sequence of sets such that $\bigcap_{n=1}^{\infty} E_n = \emptyset$. Prove that $\lim_{n \to \infty} \int_{E_n} g \, d\mu = 0$.

Problem 2.1.14 Prove that for all a > 0, the function $f(x) = e^{-x}x^{a-1}$ is Lebesgue-integrable in $[0, \infty]$.

Problem 2.1.15 Let $f_n: [0,1] \longrightarrow [0,\infty)$ be a sequence of positive functions defined by

$$f_n(x) = \begin{cases} n \,, & \text{if } 0 \le x \le 1/n \\ 0 \,, & \text{otherwise.} \end{cases}$$

Check that $f_n \to 0$ pointwise when x > 0 but $\int f_n dm = 1$. Interpret why this may happen.

Problem 2.1.16 Let \mathcal{M} be the σ -algebra of Lebesgue-measurable sets in $[0, \infty)$. We define in \mathcal{M} the measure μ as

$$\mu(E) = \int_E \frac{1}{1+x} \, dx \, .$$

Check that μ is a Borel-Stieltjes measure and calculate the corresponding distribution function F. Find a function f(x) such that $\int f d\mu < \infty$ but $\int f dm = \infty$, being m the Lebesgue measure.

Hint: $F(t) = \log(1+t) \chi_{[0,\infty]}(t); f(x) = 1/(1+x).$

Problem 2.1.17 Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces and let $A, A_i \in \mathcal{A}, B, B_i \in \mathcal{B}$ $(i \in \mathbb{N})$ be sets such that

$$A \times B = \bigcup_{i=1}^{\infty} (A_i \times B_i), \qquad A_i \times B_i \text{ disjoint sets.}$$

Prove that

$$\mu(A)\nu(B) = \sum_{i=1}^{\infty} \mu(A_i)\nu(B_i).$$

Hint: Use that for a positive sequence of functions: $\sum_n \int f_n = \int \sum_n f_n$.

Problem 2.1.18 Prove Borel-Cantelli Lemma (see Problem 1.2.11) using the the monotone convergence theorem.

Hint: Consider the function $\sum_{n=1}^{\infty} \chi_{A_n}$.

Problem 2.1.19 Let $A = [0,1] \cap \mathbb{Q}$. Then we can write $A = \{a_1, a_2, \ldots, a_n, \ldots\}$. Let us define the functions $f_n : [0,1] \longrightarrow \mathbb{R}$ given by

$$f_n(x) = \begin{cases} 1, & \text{if } x \in \{a_1, \dots, a_n\}, \\ 0, & \text{otherwise.} \end{cases}$$

Prove that f_n is Riemann-integrable and calculate $f(x) = \lim_{n \to \infty} f_n(x)$. Are f_n and f Lebesgue-integrable functions?

Problem 2.1.20 With the notation of the problem above, let F(x) be the function

$$F(x) = \begin{cases} \frac{1}{k}, & \text{if } x = a_k, \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Show that the function F is Riemann-integrable on any bounded interval [a, b] and find $\int_a^b F(x) dx$.