uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems

 Chapter 2: Integration theory Section 2.1: Integration of positive functionsProfessors: Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.1 Integration of positive functions

Problem 2.1.1 Let (X, \mathcal{A}, μ) be a measure space and let $f, g: X \longrightarrow[0, \infty]$ be measurable positive functions and $A, B, E \in \mathcal{A}, \lambda \geq 0$. Prove that:

$$
\begin{aligned}
& \text { i) } \int_{E} \lambda f d \mu=\lambda \int_{E} f d \mu \text {. } \\
& \text { ii) } \int_{E} f d \mu=\int_{X} f \chi_{E} d \mu \text {. } \\
& \text { iii) } f \leq g \Longrightarrow \int_{E} f d \mu \leq \int_{E} g d \mu \text {. } \\
& \text { iv) } A \subseteq B \Longrightarrow \int_{A} f d \mu \leq \int_{B} f d \mu \text {. } \\
& \text { v) } \int_{E} f=0 \Leftrightarrow f=0 \text { a.e. in } E \text {. } \\
& \text { vi) } \mu(E)=0 \Longrightarrow \int_{E} f d \mu=0 \text {. } \\
& \text { vii) } A \cap B=\varnothing \Longrightarrow \int_{A \cup B} f d \mu=\int_{A} f d \mu+\int_{B} f d \mu \text {. } \\
& \text { viii) } \int_{E}(f+g) d \mu=\int_{E} f d \mu+\int_{E} g d \mu \text {. } \\
& \text { ix) } f \geq g, \int_{X} g d \mu<\infty \Longrightarrow \int_{X} f d \mu-\int g d \mu=\int_{X}(f-g) d \mu \text {. } \\
& \text { x) } f \leq g \text { a.e. in } E \Longrightarrow \int_{E} f d \mu \leq \int_{E} g d \mu \text {. } \\
& \text { xi) } f=g \text { a.e. in } E \Longrightarrow \int_{E} f d \mu=\int_{E} g d \mu \text {. }
\end{aligned}
$$

Hints: vi) If $f=0$ a.e. and $s=\sum_{j} c_{j} \chi_{A_{j}} \leq f$, then $\mu\left(A_{j}\right)=0$ for all j and so $s=0$ a.e. On the other hand, if $\mu(f>0)>0$, then $\mu(A)>0$ for some $n \in \mathbb{N}$, where $A=\{f>1 / n\}$. Hence, $0 \leq s=\frac{1}{n} \chi_{A} \leq f$ and $\frac{1}{n} \mu(A \cap E) \leq \int_{E} f d \mu$, a contradiction. For the other statements, the idea is always to approximate positive functions by simple functions.

Problem 2.1.2 Let (X, \mathcal{A}, μ) be a measure space and suppose that $X=\cup_{n} X_{n}$, where $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a pairwise disjoint collection of measurable subsets of X. Prove that if $f: X \longrightarrow[0, \infty]$ is a measurable positive function, then

$$
\int_{X} f d \mu=\sum_{n} \int_{X_{n}} f d \mu
$$

Hint: Use the monotone convergence theorem.

Problem 2.1.3 Let (X, \mathcal{A}, μ) be a measure space and let $f: X \longrightarrow[0, \infty]$ be a measurable positive function. Let us define

$$
\varphi(E)=\int_{E} f d \mu, \quad \text { for all } E \in \mathcal{A}
$$

Prove that φ is a measure on \mathcal{A} and that

$$
\begin{equation*}
\int_{X} g d \varphi=\int_{X} g f d \mu, \quad \text { for all } g: X \longrightarrow[0, \infty] \text { measurable. } \tag{1}
\end{equation*}
$$

Note: This fact justifies the notation $d \varphi=f d \mu$.

Hint: Apply Exercise 2.1 .1 to prove that φ is a measure. Then, prove (1) first for characteristic functions and simple functions and then approximate any positive function for a sequence of simple functions.

Problem 2.1.4 Let $f:[0,1] \longrightarrow[0, \infty]$ be defined by $f(x)=0$ if x is rational, and otherwise $f(x)=n$ where n is the number of zeros immediately after the decimal point in the representation of x in the decimal scale. Calculate $\int f(x) d m$, being m the Lebesgue measure.

Hint: $f(x)=k$ for $x \in\left[1 / 10^{k+1}, 1 / 10^{k}\right) \backslash \mathbb{Q}$.
Problem 2.1.5 Let $f(x)$ be the function defined in $(0,1)$ by $f(x)=0$ if x is rational, and $f(x)=[1 / x]$ if x is irrational ($[t]$ denote the integer part of t). Decide whether or not f is Lebesgue integrable and calculate $\int f(x) d m$ being m the Lebesgue measure.

Hint: $f(x)=k$ for $x \in(1 /(k+1), 1 / k] \backslash \mathbb{Q}$.
Problem 2.1.6 Let (X, \mathcal{A}, μ) be a probability space, i.e. $\mu(X)=1$. Let $E \in \mathcal{A}$ be a set with $0<\mu(E)<1$. Put $f_{n}=\chi_{E}$ if n is odd, $f_{n}=1-\chi_{E}$ if n is even. What is the relevance of this example to Fatou's lemma?

Hint: $\liminf _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \in X$ but $\liminf _{n \rightarrow \infty} \int f_{n} d \mu=\min \{\mu(E), 1-\mu(E)\}$.
Problem 2.1.7 Let $f_{2 n-1}=\chi_{[0,1]}, f_{2 n}=\chi_{[1,2]}, n=1,2, \ldots$. Check that Fatou's Lemma is verified strictly for this sequence of functions.

Hint: $\liminf _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \in \mathbb{R} \backslash\{1\}$ but $\liminf _{n \rightarrow \infty} \int f_{n} d m=1$.

Problem 2.1.8

a) Check that $\int_{1}^{\infty} \frac{1}{x} d m=\infty$, being m the Lebesgue measure.
b) Let $p \in \mathbb{R}$. Prove that:
b1) $\int_{0}^{\infty} e^{-p x} d m<\infty$ if and only if $p>0$.
b2) $\quad \int_{1}^{\infty} \frac{1}{x^{p}} d m<\infty$ if and only if $p>1$.
b3) $\int_{0}^{1} \frac{1}{x^{p}} d m<\infty$ if and only if $p<1$.

Hint: a) $\frac{1}{x}=\lim _{N \rightarrow \infty} \frac{1}{x} \chi_{[1, N]}(x)$. Apply the monotone convergence theorem.
Problem 2.1.9 Prove that the function $f(x)=\frac{1}{\sqrt{x}}$ if $x \in(0,1]$, and $f(0)=0$, is Lebesgueintegrable in $[0,1]$ and calculate its integral.

Hint: f is almost everywhere continuous and $f(x)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{1}{\sqrt{x}} \chi_{[\varepsilon, 1]}(x)$ if $x \in[0,1]$.

Problem 2.1.10 Let (X, \mathcal{A}, μ) be a measure space and let $f: X \longrightarrow[0, \infty]$ be a measurable positive function. Let $f_{n}(x)=\min \{f(x), n\}$. Prove that $\int_{X} f_{n} d \mu \nearrow \int_{X} f d \mu$.

Hint: Use an adequate convergence theorem.
Problem 2.1.11 Let (X, \mathcal{A}, μ) be a measure space and let $f_{n}: X \longrightarrow[0, \infty]$ be a sequence of measurable positive functions. Let us suppose that $\exists \lim _{n \rightarrow \infty} f_{n}=f$ and that $f_{n} \leq f$ for all n. Prove that $\int_{X} f d \mu=\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu$.

Hint: Use Fatou's Lemma and $\int_{X} f_{n} d \mu \leq \int_{X} f d \mu$.

Problem 2.1.12

a) Let (X, \mathcal{A}, μ) be a measure space and let $f_{n}: X \longrightarrow[0, \infty]$ be a sequence of measurable positive functions. Let us suppose that $f_{n}(x) \searrow f(x)$ and that $\int_{X} f_{k} d \mu<\infty$ for some k. Prove that $\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu$.
b) Let $a_{1} \geq a_{2} \geq a_{3} \geq \ldots \geq a_{n} \geq \ldots$ be a sequence of positive numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$ and $a>0$. Let us define $f_{n}(x)=a_{n} / x$, for $x>a>0$. Check that f_{n} decreases uniformly to 0 but $\int f_{n} d m=\infty$ for all n.

Hint: a) Consider the sequence $g_{n}=f_{k}-f_{k+n}$.
Problem 2.1.13 Let $g:(X, \mathcal{A}, \mu) \longrightarrow[0, \infty]$ be an integrable function. Let $\left\{E_{n}\right\}$ be a decreasing sequence of sets such that $\cap_{n=1}^{\infty} E_{n}=\varnothing$. Prove that $\lim _{n \rightarrow \infty} \int_{E_{n}} g d \mu=0$.

Problem 2.1.14 Prove that for all $a>0$, the function $f(x)=e^{-x} x^{a-1}$ is Lebesgue-integrable in $[0, \infty]$.

Problem 2.1.15 Let $f_{n}:[0,1] \longrightarrow[0, \infty)$ be a sequence of positive functions defined by

$$
f_{n}(x)= \begin{cases}n, & \text { if } 0 \leq x \leq 1 / n \\ 0, & \text { otherwise }\end{cases}
$$

Check that $f_{n} \rightarrow 0$ pointwise when $x>0$ but $\int f_{n} d m=1$. Interpret why this may happen.
Problem 2.1.16 Let \mathcal{M} be the σ-algebra of Lebesgue-measurable sets in $[0, \infty)$. We define in \mathcal{M} the measure μ as

$$
\mu(E)=\int_{E} \frac{1}{1+x} d x
$$

Check that μ is a Borel-Stieltjes measure and calculate the corresponding distribution function F. Find a function $f(x)$ such that $\int f d \mu<\infty$ but $\int f d m=\infty$, being m the Lebesgue measure.

Hint: $F(t)=\log (1+t) \chi_{[0, \infty]}(t) ; f(x)=1 /(1+x)$.

Problem 2.1.17 Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces and let $A, A_{i} \in \mathcal{A}, B, B_{i} \in \mathcal{B}$ $(i \in \mathbb{N})$ be sets such that

$$
A \times B=\bigcup_{i=1}^{\infty}\left(A_{i} \times B_{i}\right), \quad A_{i} \times B_{i} \text { disjoint sets. }
$$

Prove that

$$
\mu(A) \nu(B)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right) \nu\left(B_{i}\right)
$$

Hint: Use that for a positive sequence of functions: $\sum_{n} \int f_{n}=\int \sum_{n} f_{n}$.
Problem 2.1.18 Prove Borel-Cantelli Lemma (see Problem 1.2.11) using the the monotone convergence theorem.

Hint: Consider the function $\sum_{n=1}^{\infty} \chi_{A_{n}}$.
Problem 2.1.19 Let $A=[0,1] \cap \mathbb{Q}$. Then we can write $A=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}$. Let us define the functions $f_{n}:[0,1] \longrightarrow \mathbb{R}$ given by

$$
f_{n}(x)= \begin{cases}1, & \text { if } x \in\left\{a_{1}, \ldots, a_{n}\right\} \\ 0, & \text { otherwise }\end{cases}
$$

Prove that f_{n} is Riemann-integrable and calculate $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$. Are f_{n} and f Lebesgueintegrable functions?

Problem 2.1.20 With the notation of the problem above, let $F(x)$ be the function

$$
F(x)= \begin{cases}\frac{1}{k}, & \text { if } x=a_{k} \\ 0, & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}
$$

Show that the function F is Riemann-integrable on any bounded interval $[a, b]$ and find $\int_{a}^{b} F(x) d x$.

