Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure. Problems

Chapter 2: Integration theory

Section 2.2: Integration of general functions

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.2. Integration of general functions

Problem 2.2.1 Let $f_n:[0,1] \longrightarrow [-1,1]$ be a sequence of continuous functions such that $f_n(x) \to 0$ almost everywhere with respect to Lebesgue measure. Prove that

$$\lim_{n\to\infty} \int_0^1 f_n(x) \, dx = 0 \, .$$

Hint: The functions f_n are uniformly bounded.

Problem 2.2.2 Let (X, \mathcal{A}, μ) be a finite space measure: $\mu(X) < \infty$. Let $\{f_n\}$ be a sequence of integrable functions such that $f_n(x) \to f(x)$ uniformly in X. Prove that $f \in L^1(\mu)$ and that

$$\int_X f \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu \, .$$

Hint: Uniform convergence implies that the sequence f_n is uniformly-Cauchy.

Problem 2.2.3* Let $f_n: (\mathbb{R}, \mathcal{M}, m) \longrightarrow [0, \infty)$ be a sequence of positive Lebesgue-measurable functions such that $\lim_{n\to\infty} f_n(x) = f(x)$ for almost all $x \in \mathbb{R}$ and, besides, $\int_{\mathbb{R}} f_n dx = \int_{\mathbb{R}} f dx = 1$ for all $n \in \mathbb{N}$. Prove that

$$\lim_{n \to \infty} \int_{-\infty}^{x} f_n \, dx = \int_{-\infty}^{x} f \, dx \,, \qquad \text{for all } x \in \mathbb{R} \,.$$

Hint: Consider the functions $\min(f_n, f)$ and use an adequate convergence theorem. Recall that $\min(x, y) = \frac{x+y-|x-y|}{2}$.

Problem 2.2.4 Let (X, \mathcal{A}, μ) be a measure space and let $f: X \longrightarrow \mathbb{R}$ be an integrable function.

a) Prove Markov's inequality:

$$\mu(\{x \in X : |f(x)| \ge \varepsilon\}) \le \frac{1}{\varepsilon} \int_{Y} |f| \, d\mu.$$

b) Using Markov's inequality, show that if f is a measurable function, then

$$\begin{array}{lll} \mathrm{b1}) & \int |f| \, d\mu &= 0 & \iff & \mu(f \neq 0) = 0 \,, \\ \mathrm{b2}) & \int |f| \, d\mu &< \infty & \Longrightarrow & \mu(|f| = \infty) = 0 \,. \end{array}$$

Give an example showing that it is possible to have that

$$\int |f| d\mu = \infty$$
 and $\mu(|f| = \infty) = 0$.

Hints: a) $1 \leq \frac{1}{\varepsilon} |f|$ on the set $\{x \in X : |f(x)| \geq \varepsilon\}$. b1) If $\int |f| d\mu = 0$, then $\mu(|f(x)| \geq 1/n)\} = 0$ for all $n \in \mathbb{N}$. b2) If $\int |f| d\mu < \infty$, then $\{|f| = \infty\} \subset \{|f| \geq n\}$ for all $n \in \mathbb{N}$.

Problem 2.2.5 Prove that the function $f(x) = \frac{\sin x}{x}$ is not Lebesgue-integrable in $(0, \infty)$.

Hint: Divide $(0, \infty)$ in the intervals $(n\pi, (n+1)\pi]$ $(n \ge 0)$.

Problem 2.2.6 Discuss whether the following functions are Lebesgue integrable or not. Give an argument of why they are not, or find the value of the integral:

a)
$$f(x) = \frac{1 - \cos x}{x(1 + x^2)}$$
 for $x \in (0, \infty)$.

b) $g(x) = \sin x + \cos x$ for $x \in \mathbb{R}$.

Hints: a) On $(0, \delta)$ we have $|f(x)| \leq Cx/(1+x^2) \in L^1(0, \delta)$ and on (δ, ∞) we have $|f(x)| \leq 2/x^3 \in L^1(\delta, \infty)$. b) $|\sin x + \cos x|$ is π -periodic, f(x) > 0 on $(-\pi/4, 3\pi/4)$ and $\int_{-\pi/4}^{3\pi/4} |\sin x + \cos x| dx = 2\sqrt{2} > 0$.

Problem 2.2.7 It is easy to guess the limits

a)
$$\lim_{n\to\infty} \int_0^n \left(1-\frac{x}{n}\right)^n e^{x/2} dx$$
,

b)
$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx.$$

Prove that your guesses are correct.

Problem 2.2.8 Let (X, \mathcal{A}, μ) be a measure space and let $f_n : X \longrightarrow \mathbb{R}$ be a sequence of measurable functions such that

$$\sum_{n=1}^{\infty} \int_{X} |f_n| \, d\mu < \infty \, .$$

Prove that:

a) The series $\sum_n f_n$ converges almost everywhere in X to a function $f: X \longrightarrow \mathbb{R}$:

$$\sum_{n=1}^{\infty} f_n(x) = f(x), \quad \text{for almost every } x \in X.$$

b) $f \in L^{1}(\mu)$.

c)
$$\int_X f \, d\mu = \sum_{n=1}^{\infty} \int_X f_n \, d\mu.$$

Hints: a) Consider the function $F(x) := \sum_{n=1}^{\infty} |f_n(x)| \in L^1(X)$, why? Then $|f(x)| \leq F(x) < \infty$ almost everywhere (use problem 2.2.4). b) It follows easily from a). c) $g_n := f_1 + \cdots + f_n$ verifies $\lim_{n\to\infty} g_n(x) = f(x)$ a.e. and $|g_n| \leq F$. Use a convergence theorem.

Problem 2.2.9 Prove that

$$\lim_{n \to \infty} \int_0^\infty \frac{dx}{(1 + x/n)^n x^{1/n}} = 1.$$

Hint: $f_n(x) \leq \frac{1}{\sqrt{x}} \chi_{(0,1]}(x) + (1+x/2)^{-2} \chi_{(1,\infty)}(x) \in L^1(0,\infty)$ for $n \geq 2$ and so we can use dominated convergence.

Problem 2.2.10 Let us consider the functions

$$f_n(x) = \frac{nx - 1}{(x \log n + 1)(1 + nx^2 \log n)}, \quad x \in (0, 1].$$

Prove that

$$\lim_{n \to \infty} f_n(x) = 0, \quad \text{but} \quad \lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \frac{1}{2}.$$

What is the relevance of this result?

Hint: Prove that
$$\frac{nx-1}{(x \log n + 1)(1 + nx^2 \log n)} = \frac{-1}{x \log n + 1} + \frac{nx}{(n \log n)x^2 + 1}$$
.

Problem 2.2.11 Consider a > 0.

- a) Prove that for each $x \ge a$ the function $v(t) := \frac{t}{1 + t^2 x^2}$ decreases for $t \ge 1/a$.
- b) Find an upper bound of the function

$$f_n(x) = \frac{n}{1 + n^2 x^2}, \quad x \ge a, \ n \ge 1/a,$$

by a function which just depends on x and a.

c) Calculate

$$L = \lim_{n \to \infty} \int_{a}^{\infty} \frac{n}{1 + n^2 x^2} \, dx \,,$$

and say what theorem you used.

d) Calculate L using monotone convergence theorem and Barrow's rule in the cases a > 0, a = 0, a < 0.

Problem 2.2.12 Calculate $L = \lim_{n \to \infty} \int_0^\infty \frac{1 + nx^2}{(1 + x^2)^n} dx$.

Hint: $\{f_n\}$ is a decreasing sequence and $f_2 \in L^1((0,\infty))$. So we can use a convergence theorem.

Problem 2.2.13 Prove that $\lim_{n\to\infty}\int_0^1 \frac{\log(n+x)}{n} e^{-x}\cos x \, dx = 0.$

Problem 2.2.14 Let $f_n: \mathbb{R} \longrightarrow \mathbb{R}$ be the sequence of measurable functions defined by

$$f_n(x) = \begin{cases} n \cos nx, & \text{if } x \in \left[-\frac{\pi}{2n}, \frac{\pi}{2n} \right], \\ 0, & \text{otherwise.} \end{cases}$$

Study whether

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f_n(x) dx = \int_{-\pi}^{\pi} \lim_{n \to \infty} f_n(x) dx$$

or not. Can be applied in this case the monotone convergence theorem or the Lebesgue dominated convergence theorem?

Problem 2.2.15 Let $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ the measure space defined by

$$\mu(A) = \operatorname{card}(A \cap \mathbb{N}), \quad A \in \mathcal{B}(\mathbb{R}).$$

Prove that $f(x) = x \sin(\pi x)$ is μ -integrable but not Lebesgue-integrable.

Problem 2.2.16

a) Prove that the sequence of functions

$$f_n(t) = \left(1 + \frac{t}{n}\right)^n, \qquad t \ge 0,$$

verify that $f_3(t) \leq f_n(t)$ for $n \geq 3$.

b) Calculate

$$\lim_{n \to \infty} \int_0^1 \frac{n + n^2 x}{(1+x)^n} \, dx \, .$$

State correctly the results and theorems you need to get to the solution.

Hint: b) To start, do the change of variable t = nx.

Problem 2.2.17 Calculate $\lim_{n\to\infty} \int_0^1 \frac{n+n^4x^3}{(1+x)^n} dx$.

Problem 2.2.18 Prove that $\int_0^1 \frac{x}{1-x} \log \frac{1}{x} dx = \sum_{n=2}^{\infty} \frac{1}{n^2}$.

Hint: Use that $1/(1-x) = \sum_{n=0}^{\infty} x^n$ for $x \in (0,1)$ and then apply an adequate convergence theorem.

Problem 2.2.19 Let $(X, \mathcal{P}(X), \mu)$ be a measure space with X countable, $X = \{x_n\}_{n=1}^{\infty}$, and μ the discrete measure defined as:

$$\mu(\{x_n\}) = p_n$$
, $\mu(A) = \sum_{x_n \in A} p_n$, $(p_n \ge 0)$.

Let $f: X \longrightarrow \mathbb{C}$ be a complex function.

- a) Prove that if $f \ge 0$, then $\int_X f d\mu = \sum_{n=1}^{\infty} f(x_n) p_n$.
- b) Prove that $f \in L^1(\mu)$ if and only if $\sum_{n=1}^{\infty} |f(x_n)| p_n < \infty$, and in this case,

$$\int_X f \, d\mu = \sum_{n=1}^\infty f(x_n) \, p_n \, .$$

Hints: a) $f = \sum_{n=1}^{\infty} f(x_n) \chi_{\{x_n\}}$. b) Decompose f = u + iv and $u = u^+ - u^-, v = v^+ - v^-$.

Problem 2.2.19 Calculate $\lim_{n\to\infty} n \sum_{i=1}^{\infty} \sin \frac{2^{-i}}{n}$.

Hint: Consider and adequate measure space and apply a convergence theorem.

Problem 2.2.21* Let (X, \mathcal{A}, μ) be a measure space and $\Phi : X \longrightarrow Y$ be a mapping. Let us consider the image measure space (Y, \mathcal{B}, ν) by $\Phi (\mathcal{B} = \Phi(\mathcal{A}))$ and $\nu = \mu \circ \Phi^{-1}$. Let $f : Y \longrightarrow \mathbb{C}$ be a function. Prove that

a) f is \mathcal{B} -measurable if and only if $f \circ \Phi$ is \mathcal{A} -measurable.

- b) If $f \geq 0$ is \mathcal{B} -measurable, then $\int_Y f \, d\nu = \int_X (f \circ \Phi) \, d\mu$.
- c) If f is \mathcal{B} -measurable, then $f \in L^1(\nu)$ if and only if $f \circ \Phi \in L^1(\mu)$, and in this case

$$\int_Y f\,d\nu = \int_X (f\circ\Phi)\,d\mu.$$

d) Let $\Phi(x,y) = x^2y$ be defined on the square $Q = [0,1] \times [0,1]$ in the plane, and let m be two-dimensional Lebesgue measure on Q. If μ is the image measure of m by Φ , evaluate the integral $\int_{-\infty}^{\infty} t^2 d\mu(t)$.

Hints: a) Use the definition of \mathcal{A} . b) Prove it first for simple functions and then approximate any $f \geq 0$ by simple functions and apply monotone convergence. c) Decompose f = u + iv and $u = u^+ - u^-$, $v = v^+ - v^-$. d) Apply c).

Problem 2.2.22 Let (X, \mathcal{A}, μ) be a measure space and let $\rho : X \longrightarrow [0, \infty]$ be a measurable function. Let us consider the measure defined by the density ρ :

$$\nu(A) = \int_A \rho \, d\mu \,, \qquad A \in \mathcal{A}.$$

Prove that

- a) If $f \ge 0$ is measurable, then $\int_X f \, d\nu = \int_X f \rho \, d\mu$.
- b) If f is measurable, then: $f \in L^1(\nu)$ if and only if $\int_X |f| \rho \, d\mu < \infty$, and in this case

$$\int_X f \, d\nu = \int_X f \rho \, d\mu.$$

Hints: a) This is the exercise 2.1.3. b) Decompose f = u + iv and $u = u^+ - u^-$, $v = v^+ - v^-$.

Problem 2.2.23 Let $X = \mathbb{R}^2 \setminus \{(0,0)\}$ and $dm = dx \, dy$ be the Lebesgue measure on X. Let $\Phi: X \longrightarrow \mathbb{R}$ be the function given by $\Phi(x,y) = \log(x^2 + y^2)$ and let μ be the image measure of dm by Φ .

- a) Calculate the value of $\mu([0,1])$.
- b) Prove that μ has the form $d\mu = F(t) dt$ and find F(t) explicitly.

Hints: a) $\mu([0,1]) = m(\{(x,y) : 0 \le \log(x^2 + y^2) \le 1\})$. b) Calculate $\int_{\mathbb{R}} f(t) d\mu(t)$ for any $f \in L^1(\mu)$.

Problem 2.2.24

- a) Let $f: \mathbb{R} \to [0, \infty]$ be an integrable function on \mathbb{R} and such that $\int_{-\infty}^{\infty} f(x) dx = 1$. Prove that $F(x) = \int_{-\infty}^{x} f(y) dy$ is a probability distribution function and that besides F is continuous (f is called the density function).
- b) Prove that the Borel-Stieltjes measure with distribution function F coincides with the measure defined with the density function f: $\nu_f(A) = \int_A f(x) dx$.

c) Calculate F(x) if

$$f(x) = \begin{cases} 1 & \text{if } x \in [0, 1], \\ 0 & \text{otherwise.} \end{cases}$$

Hints: a) F is increasing because $f \geq 0$ and is continuous by the dominated convergence theorem. b) The Borel-Stieltjes measure μ_F coincides with the density measure ν_f by the Caratheodory-Hopf's extension theorem since for semi-intervals [a,b) we have: $\mu_F([a,b)) = F(b) - F(a) = \int_a^b f(x) dx = \nu_f([a,b])$. Observe that $\mu_F(\{a\})=0$ for all $a \in \mathbb{R}$ since F is continuous. c) F(x) = 0, if $x \leq 0$, F(x) = x if $x \in [0,1]$ and F(x) = 1 if $x \geq 1$.

Problem 2.2.25* Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing derivable function with bounded derivative g' on each compact set. Let us consider the Borel-Stieltjes measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m_g)$. Prove that $m_g = g'dm$, that is to say that the Borel-Stieltjes measure m_g coincides with the measure defined by the density g' and therefore for all $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f \in L^1(m_g)$, we have

$$\int_{\mathbb{R}} f \, dm_g = \int_{\mathbb{R}} f g' \, dm = \int_{\mathbb{R}} f(t) \, g'(t) \, dt \, .$$

Hint: Use the Caratheodory-Hopf extension theorem and that $\int_a^b g' dm = g(b) - g(a)$. This is trivial if g' is continuous by Barrow's rule, but for g' only bounded we must use an approximation argument: let $g_n(t) = (f(t+h_n) - f(t)/h_n$. Then $g_n \longrightarrow g'$ for all $t \in [a,b)$. Use dominated convergence to conclude that $\int_a^c g' dm = g(c) - g(a)$ for all $c \in [a,b)$. Finally use monotone convergence, since $[a,b] = \bigcup_n [a,c_n]$ with $c_n \nearrow b$ as $n \to \infty$.

Problem 2.2.26* Let us consider the Lebesgue measure space $(\mathbb{R}^n, \mathcal{M}, m)$, where \mathcal{M} is the σ -algebra of Lebesgue-measurable sets and m is Lebesgue measure. Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a measurable function. Prove that

a) If $f \ge 0$ or if $f \in L^1(m)$, then

a.1)
$$\int_{\mathbb{R}^n} f(a+x) dx = \int_{\mathbb{R}^n} f(x) dx.$$

a.2)
$$\int_{\mathbb{R}^n} f(T(x)) dx = \frac{1}{|\det T|} \int_{\mathbb{R}^n} f(x) dx, \text{ for all } T \in GL(n).$$

a.3) More generally,
$$\int_A f(T(x)) dx = \frac{1}{|\det T|} \int_{T(A)} f(x) dx$$
, for all $T \in GL(n)$ and $A \in \mathcal{M}$.

b) If $\Phi : \mathbb{R} \longrightarrow [0, \infty]$ is a Borel function, then

$$\int_{\mathbb{R}^n} \Phi(\|x\|) \, dx = n\Omega_n \int_0^\infty \Phi(r) \, r^{n-1} \, dr \,, \qquad \text{where } \Omega_n = m(\{x \in \mathbb{R}^n : \|x\| \le 1\}) \,.$$

c) Let $B_n = \{x \in \mathbb{R}^n : ||x|| < 1\}$. Then

$$\int_{B_n} \frac{dx}{\|x\|^{\alpha}} < \infty \quad \Leftrightarrow \quad \alpha < n \qquad \quad \text{and} \qquad \quad \int_{\mathbb{R}^n \backslash B_n} \frac{dx}{\|x\|^{\alpha}} < \infty \quad \Leftrightarrow \quad \alpha > n \,.$$

Hints: Let $\mu = T(m)$ be the image measure of m under T: a.1) If T(x) = a + x, then $\mu(A) = m(A)$ since m is translation-invariant. a.2) $\mu(A) = m(T^{-1}(A)) = |\det T^{-1}| m(A)$. This fact is easy for

semi-intervals $[a_1, b_1) \times \cdots \times [a_n, b_n)$ and so it is a consequence of Caratheodory-Hopf extension theorem. a.3) It follows from a.2) and the fact that, as T is bijective, we have $\chi_{T(A)} \circ T = \chi_A$. b) Let $\nu = \|\cdot\| \circ m$ be the image measure under $\|\cdot\|$: then prove that $\nu[a, b) = \Omega_n(b^n - a^n)$ and as $g(t) = \Omega_n t^n$ is increasing and continuous, conclude from Exercise 2 that $\nu = g' dm = n\Omega_n t^{n-1} dt$. c) Apply part b).

Problem 2.2.27* Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a Lebesgue-integrable function. Evaluate

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x - n) \frac{x}{1 + |x|} dx.$$

Hint: Apply the change of variables y=x+n and divide the integral in two parts: one on the interval $(-\infty, -n)$ and the other one on $(-n, \infty)$. Apply Lebesgue dominated convergence theorem to prove that the first integral converges to 0 and the second one to $\int_{-\infty}^{\infty} f(x) dx$.