uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems

 Chapter 2: Integration theory Section 2.2: Integration of general functionsProfessors: Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.2. Integration of general functions

Problem 2.2.1 Let $f_{n}:[0,1] \longrightarrow[-1,1]$ be a sequence of continuous functions such that $f_{n}(x) \rightarrow 0$ almost everywhere with respect to Lebesgue measure. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=0
$$

Hint: The functions f_{n} are uniformly bounded.
Problem 2.2.2 Let (X, \mathcal{A}, μ) be a finite space measure: $\mu(X)<\infty$. Let $\left\{f_{n}\right\}$ be a sequence of integrable functions such that $f_{n}(x) \rightarrow f(x)$ uniformly in X. Prove that $f \in L^{1}(\mu)$ and that

$$
\int_{X} f d \mu=\lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu
$$

Hint: Uniform convergence implies that the sequence f_{n} is uniformly-Cauchy.
Problem 2.2.3* Let $f_{n}:(\mathbb{R}, \mathcal{M}, m) \longrightarrow[0, \infty)$ be a sequence of positive Lebesgue-measurable functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ for almost all $x \in \mathbb{R}$ and, besides, $\int_{\mathbb{R}} f_{n} d x=\int_{\mathbb{R}} f d x=1$ for all $n \in \mathbb{N}$. Prove that

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{x} f_{n} d x=\int_{-\infty}^{x} f d x, \quad \text { for all } x \in \mathbb{R}
$$

Hint: Consider the functions $\min \left(f_{n}, f\right)$ and use an adequate convergence theorem. Recall that $\min (x, y)=\frac{x+y-|x-y|}{2}$.

Problem 2.2.4 Let (X, \mathcal{A}, μ) be a measure space and let $f: X \longrightarrow \mathbb{R}$ be an integrable function.
a) Prove Markov's inequality:

$$
\mu(\{x \in X:|f(x)| \geq \varepsilon\}) \leq \frac{1}{\varepsilon} \int_{X}|f| d \mu .
$$

b) Using Markov's inequality, show that if f is a measurable function, then

$$
\begin{array}{lll}
\text { b1) } \quad \int|f| d \mu=0 & \Longleftrightarrow & \mu(f \neq 0)=0 \\
\text { b2) } & \int|f| d \mu<\infty & \Longrightarrow
\end{array} \quad \mu(|f|=\infty)=0 .
$$

Give an example showing that it is possible to have that

$$
\int|f| d \mu=\infty \quad \text { and } \quad \mu(|f|=\infty)=0
$$

Hints: a) $1 \leq \frac{1}{\varepsilon}|f|$ on the set $\{x \in X:|f(x)| \geq \varepsilon\}$. b1) If $\int|f| d \mu=0$, then $\left.\left.\mu(|f(x)| \geq 1 / n)\right\}\right)=0$ for all $n \in \mathbb{N}$. b2) If $\int|f| d \mu<\infty$, then $\{|f|=\infty\} \subset\{|f| \geq n\}$ for all $n \in \mathbb{N}$.
Problem 2.2.5 Prove that the function $f(x)=\frac{\sin x}{x}$ is not Lebesgue-integrable in $(0, \infty)$.
Hint: Divide $(0, \infty)$ in the intervals $(n \pi,(n+1) \pi](n \geq 0)$.
Problem 2.2.6 Discuss whether the following functions are Lebesgue integrable or not. Give an argument of why they are not, or find the value of the integral:
a) $f(x)=\frac{1-\cos x}{x\left(1+x^{2}\right)}$ for $x \in(0, \infty)$.
b) $g(x)=\sin x+\cos x$ for $x \in \mathbb{R}$.

Hints: a) On $(0, \delta)$ we have $|f(x)| \leq C x /\left(1+x^{2}\right) \in L^{1}(0, \delta)$ and on (δ, ∞) we have $|f(x)| \leq 2 / x^{3} \in$ $L^{1}(\delta, \infty)$ b) $|\sin x+\cos x|$ is π-periodic, $f(x)>0$ on $(-\pi / 4,3 \pi / 4)$ and $\int_{-\pi / 4}^{3 \pi / 4}|\sin x+\cos x| d x=$ $2 \sqrt{2}>0$.

Problem 2.2.7 It is easy to guess the limits
a) $\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{x / 2} d x$,
b) $\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x$.

Prove that your guesses are correct.

Problem 2.2.8 Let (X, \mathcal{A}, μ) be a measure space and let $f_{n}: X \longrightarrow \mathbb{R}$ be a sequence of measurable functions such that

$$
\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty
$$

Prove that:
a) The series $\sum_{n} f_{n}$ converges almost everywhere in X to a function $f: X \longrightarrow \mathbb{R}$:

$$
\sum_{n=1}^{\infty} f_{n}(x)=f(x), \quad \text { for almost every } x \in X
$$

b) $f \in L^{1}(\mu)$.
c) $\int_{X} f d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu$.

Hints: a) Consider the function $F(x):=\sum_{n=1}^{\infty}\left|f_{n}(x)\right| \in L^{1}(X)$, why? Then $|f(x)| \leq F(x)<\infty$ almost everywhere (use problem 2.2.4). b) It follows easily from a). c) $g_{n}:=f_{1}+\cdots+f_{n}$ verifies $\lim _{n \rightarrow \infty} g_{n}(x)=f(x)$ a.e. and $\left|g_{n}\right| \leq F$. Use a convergence theorem.

Problem 2.2.9 Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{d x}{(1+x / n)^{n} x^{1 / n}}=1
$$

Hint: $f_{n}(x) \leq \frac{1}{\sqrt{x}} \chi_{(0,1]}(x)+(1+x / 2)^{-2} \chi_{(1, \infty)}(x) \in L^{1}(0, \infty)$ for $n \geq 2$ and so we can use dominated convergence.

Problem 2.2.10 Let us consider the functions

$$
f_{n}(x)=\frac{n x-1}{(x \log n+1)\left(1+n x^{2} \log n\right)}, \quad x \in(0,1]
$$

Prove that

$$
\lim _{n \rightarrow \infty} f_{n}(x)=0, \quad \text { but } \quad \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=\frac{1}{2}
$$

What is the relevance of this result?
Hint: Prove that $\frac{n x-1}{(x \log n+1)\left(1+n x^{2} \log n\right)}=\frac{-1}{x \log n+1}+\frac{n x}{(n \log n) x^{2}+1}$.
Problem 2.2.11 Consider $a>0$.
a) Prove that for each $x \geq a$ the function $v(t):=\frac{t}{1+t^{2} x^{2}}$ decreases for $t \geq 1 / a$.
b) Find an upper bound of the function

$$
f_{n}(x)=\frac{n}{1+n^{2} x^{2}}, \quad x \geq a, n \geq 1 / a
$$

by a function which just depends on x and a.
c) Calculate

$$
L=\lim _{n \rightarrow \infty} \int_{a}^{\infty} \frac{n}{1+n^{2} x^{2}} d x
$$

and say what theorem you used.
d) Calculate L using monotone convergence theorem and Barrow's rule in the cases $a>0$, $a=0, a<0$.

Problem 2.2.12 Calculate $L=\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{1+n x^{2}}{\left(1+x^{2}\right)^{n}} d x$.
Hint: $\left\{f_{n}\right\}$ is a decreasing sequence and $f_{2} \in L^{1}((0, \infty))$. So we can use a convergence theorem.
Problem 2.2.13 Prove that $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{\log (n+x)}{n} e^{-x} \cos x d x=0$.
Problem 2.2.14 Let $f_{n}: \mathbb{R} \longrightarrow \mathbb{R}$ be the sequence of measurable functions defined by

$$
f_{n}(x)= \begin{cases}n \cos n x, & \text { if } x \in\left[-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right] \\ 0, & \text { otherwise }\end{cases}
$$

Study whether

$$
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} f_{n}(x) d x=\int_{-\pi}^{\pi} \lim _{n \rightarrow \infty} f_{n}(x) d x
$$

or not. Can be applied in this case the monotone convergence theorem or the Lebesgue dominated convergence theorem?

Problem 2.2.15 Let $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$ the measure space defined by

$$
\mu(A)=\operatorname{card}(A \cap \mathbb{N}), \quad A \in \mathcal{B}(\mathbb{R})
$$

Prove that $f(x)=x \sin (\pi x)$ is μ-integrable but not Lebesgue-integrable.

Problem 2.2.16

a) Prove that the sequence of functions

$$
f_{n}(t)=\left(1+\frac{t}{n}\right)^{n}, \quad t \geq 0
$$

verify that $f_{3}(t) \leq f_{n}(t)$ for $n \geq 3$.
b) Calculate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n+n^{2} x}{(1+x)^{n}} d x
$$

State correctly the results and theorems you need to get to the solution.
Hint: b) To start, do the change of variable $t=n x$.
Problem 2.2.17 Calculate $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n+n^{4} x^{3}}{(1+x)^{n}} d x$.
Problem 2.2.18 Prove that $\int_{0}^{1} \frac{x}{1-x} \log \frac{1}{x} d x=\sum_{n=2}^{\infty} \frac{1}{n^{2}}$.
Hint: Use that $1 /(1-x)=\sum_{n=0}^{\infty} x^{n}$ for $x \in(0,1)$ and then apply an adequate convergence theorem.
Problem 2.2.19 Let $(X, \mathcal{P}(X), \mu)$ be a measure space with X countable, $X=\left\{x_{n}\right\}_{n=1}^{\infty}$, and μ the discrete measure defined as:

$$
\mu\left(\left\{x_{n}\right\}\right)=p_{n}, \quad \mu(A)=\sum_{x_{n} \in A} p_{n}, \quad\left(p_{n} \geq 0\right)
$$

Let $f: X \longrightarrow \mathbb{C}$ be a complex function.
a) Prove that if $f \geq 0$, then $\int_{X} f d \mu=\sum_{n=1}^{\infty} f\left(x_{n}\right) p_{n}$.
b) Prove that $f \in L^{1}(\mu)$ if and only if $\sum_{n=1}^{\infty}\left|f\left(x_{n}\right)\right| p_{n}<\infty$, and in this case,

$$
\int_{X} f d \mu=\sum_{n=1}^{\infty} f\left(x_{n}\right) p_{n}
$$

Hints: a) $f=\sum_{n=1}^{\infty} f\left(x_{n}\right) \chi_{\left\{x_{n}\right\}}$. b) Decompose $f=u+i v$ and $u=u^{+}-u^{-}, v=v^{+}-v^{-}$.
Problem 2.2.19 Calculate $\lim _{n \rightarrow \infty} n \sum_{i=1}^{\infty} \sin \frac{2^{-i}}{n}$.
Hint: Consider and adequate measure space and apply a convergence theorem.
Problem 2.2.21* Let (X, \mathcal{A}, μ) be a measure space and $\Phi: X \longrightarrow Y$ be a mapping. Let us consider the image measure space (Y, \mathcal{B}, ν) by $\Phi\left(\mathcal{B}=\Phi(\mathcal{A})\right.$ and $\left.\nu=\mu \circ \Phi^{-1}\right)$. Let $f: Y \longrightarrow \mathbb{C}$ be a function. Prove that
a) f is \mathcal{B}-measurable if and only if $f \circ \Phi$ is \mathcal{A}-measurable .
b) If $f \geq 0$ is \mathcal{B}-measurable, then $\int_{Y} f d \nu=\int_{X}(f \circ \Phi) d \mu$.
c) If f is \mathcal{B}-measurable, then $f \in L^{1}(\nu)$ if and only if $f \circ \Phi \in L^{1}(\mu)$, and in this case

$$
\int_{Y} f d \nu=\int_{X}(f \circ \Phi) d \mu
$$

d) Let $\Phi(x, y)=x^{2} y$ be defined on the square $Q=[0,1] \times[0,1]$ in the plane, and let m be two-dimensional Lebesgue measure on Q. If μ is the image measure of m by Φ, evaluate the integral $\int_{-\infty}^{\infty} t^{2} d \mu(t)$.

Hints: a) Use the definition of \mathcal{A}. b) Prove it first for simple functions and then approximate any $f \geq 0$ by simple functions and apply monotone convergence. c) Decompose $f=u+i v$ and $u=u^{+}-u^{-}, v=v^{+}-v^{-}$. d) Apply c).
Problem 2.2.22 Let (X, \mathcal{A}, μ) be a measure space and let $\rho: X \longrightarrow[0, \infty]$ be a measurable function. Let us consider the measure defined by the density ρ :

$$
\nu(A)=\int_{A} \rho d \mu, \quad A \in \mathcal{A}
$$

Prove that
a) If $f \geq 0$ is measurable, then $\int_{X} f d \nu=\int_{X} f \rho d \mu$.
b) If f is measurable, then: $f \in L^{1}(\nu)$ if and only if $\int_{X}|f| \rho d \mu<\infty$, and in this case

$$
\int_{X} f d \nu=\int_{X} f \rho d \mu
$$

Hints: a) This is the exercise 2.1.3. b) Decompose $f=u+i v$ and $u=u^{+}-u^{-}, v=v^{+}-v^{-}$.
Problem 2.2.23 Let $X=\mathbb{R}^{2} \backslash\{(0,0)\}$ and $d m=d x d y$ be the Lebesgue measure on X. Let $\Phi: X \longrightarrow \mathbb{R}$ be the function given by $\Phi(x, y)=\log \left(x^{2}+y^{2}\right)$ and let μ be the image measure of $d m$ by Φ.
a) Calculate the value of $\mu([0,1])$.
b) Prove that μ has the form $d \mu=F(t) d t$ and find $F(t)$ explicitly.

Hints: a) $\mu([0,1])=m\left(\left\{(x, y): 0 \leq \log \left(x^{2}+y^{2}\right) \leq 1\right\}\right)$. b) Calculate $\int_{\mathbb{R}} f(t) d \mu(t)$ for any $f \in L^{1}(\mu)$.

Problem 2.2.24

a) Let $f: \mathbb{R} \rightarrow[0, \infty]$ be an integrable function on \mathbb{R} and such that $\int_{-\infty}^{\infty} f(x) d x=1$. Prove that $F(x)=\int_{-\infty}^{x} f(y) d y$ is a probability distribution function and that besides F is continuous (f is called the density function).
b) Prove that the Borel-Stieltjes measure with distribution function F coincides with the measure defined with the density function $f: \nu_{f}(A)=\int_{A} f(x) d x$.
c) Calculate $F(x)$ if

$$
f(x)= \begin{cases}1 & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Hints: a) F is increasing because $f \geq 0$ and is continuous by the dominated convergence theorem. b) The Borel-Stieltjes measure μ_{F} coincides with the density measure ν_{f} by the CaratheodoryHopf's extension theorem since for semi-intervals $[a, b)$ we have: $\mu_{F}([a, b))=F(b)-F(a)=$ $\int_{a}^{b} f(x) d x=\nu_{f}([a, b))$. Observe that $\mu_{F}(\{a\})=0$ for all $a \in \mathbb{R}$ since F is continuous. c) $F(x)=0$, if $x \leq 0, F(x)=x$ if $x \in[0,1]$ and $F(x)=1$ if $x \geq 1$.

Problem 2.2.25* Let $g: \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing derivable function with bounded derivative g^{\prime} on each compact set. Let us consider the Borel-Stieltjes measure space ($\left.\mathbb{R}, \mathcal{B}(\mathbb{R}), m_{g}\right)$. Prove that $m_{g}=g^{\prime} d m$, that is to say that the Borel-Stieltjes measure m_{g} coincides with the measure defined by the density g^{\prime} and therefore for all $f: \mathbb{R} \longrightarrow \mathbb{R}, f \in L^{1}\left(m_{g}\right)$, we have

$$
\int_{\mathbb{R}} f d m_{g}=\int_{\mathbb{R}} f g^{\prime} d m=\int_{\mathbb{R}} f(t) g^{\prime}(t) d t
$$

Hint: Use the Caratheodory-Hopf extension theorem and that $\int_{a}^{b} g^{\prime} d m=g(b)-g(a)$. This is trivial if g^{\prime} is continuous by Barrow's rule, but for g^{\prime} only bounded we must use an approximation argument: let $g_{n}(t)=\left(f\left(t+h_{n}\right)-f(t) / h_{n}\right.$. Then $g_{n} \longrightarrow g^{\prime}$ for all $t \in[a, b)$. Use dominated convergence to conclude that $\int_{a}^{c} g^{\prime} d m=g(c)-g(a)$ for all $c \in[a, b)$. Finally use monotone convergence, since $[a, b)=\cup_{n}\left[a, c_{n}\right]$ with $c_{n} \nearrow b$ as $n \rightarrow \infty$.

Problem 2.2.26* Let us consider the Lebesgue measure space $\left(\mathbb{R}^{n}, \mathcal{M}, m\right)$, where \mathcal{M} is the σ-algebra of Lebesgue-measurable sets and m is Lebesgue measure. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be a measurable function. Prove that
a) If $f \geq 0$ or if $f \in L^{1}(m)$, then
a.1) $\int_{\mathbb{R}^{n}} f(a+x) d x=\int_{\mathbb{R}^{n}} f(x) d x$.
a.2) $\int_{\mathbb{R}^{n}} f(T(x)) d x=\frac{1}{|\operatorname{det} T|} \int_{\mathbb{R}^{n}} f(x) d x$, for all $T \in G L(n)$.
a.3) More generally, $\int_{A} f(T(x)) d x=\frac{1}{|\operatorname{det} T|} \int_{T(A)} f(x) d x$, for all $T \in G L(n)$ and $A \in \mathcal{M}$.
b) If $\Phi: \mathbb{R} \longrightarrow[0, \infty]$ is a Borel function, then

$$
\int_{\mathbb{R}^{n}} \Phi(\|x\|) d x=n \Omega_{n} \int_{0}^{\infty} \Phi(r) r^{n-1} d r, \quad \text { where } \Omega_{n}=m\left(\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}\right)
$$

c) Let $B_{n}=\left\{x \in \mathbb{R}^{n}:\|x\|<1\right\}$. Then

$$
\int_{B_{n}} \frac{d x}{\|x\|^{\alpha}}<\infty \quad \Leftrightarrow \quad \alpha<n \quad \text { and } \quad \int_{\mathbb{R}^{n} \backslash B_{n}} \frac{d x}{\|x\|^{\alpha}}<\infty \quad \Leftrightarrow \quad \alpha>n
$$

Hints: Let $\mu=T(m)$ be the image measure of m under $T:$ a.1) If $T(x)=a+x$, then $\mu(A)=m(A)$ since m is translation-invariant. a.2) $\mu(A)=m\left(T^{-1}(A)\right)=\left|\operatorname{det} T^{-1}\right| m(A)$. This fact is easy for
semi-intervals $\left[a_{1}, b_{1}\right) \times \cdots \times\left[a_{n}, b_{n}\right)$ and so it is a consequence of Caratheodory-Hopf extension theorem. a.3) It follows from a.2) and the fact that, as T is bijective, we have $\chi_{T(A)} \circ T=\chi_{A}$. b) Let $\nu=\|\cdot\| \circ m$ be the image measure under $\|\cdot\|$: then prove that $\nu[a, b)=\Omega_{n}\left(b^{n}-a^{n}\right)$ and as $g(t)=\Omega_{n} t^{n}$ is increasing and continuous, conclude from Exercise 2 that $\nu=g^{\prime} d m=n \Omega_{n} t^{n-1} d t$. c) Apply part b).

Problem 2.2.27* Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a Lebesgue-integrable function. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} f(x-n) \frac{x}{1+|x|} d x
$$

Hint: Apply the change of variables $y=x+n$ and divide the integral in two parts: one on the interval $(-\infty,-n)$ and the other one on $(-n, \infty)$. Apply Lebesgue dominated convergence theorem to prove that the first integral converges to 0 and the second one to $\int_{-\infty}^{\infty} f(x) d x$.

