uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems
Chapter 2: Integration theory
Section 2.3: Integration on product spaces

Professors: Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.3. Integration on product spaces

Problem 2.3.1 Prove that $f(x)=e^{-x^{2}} \in L^{1}(\mathbb{R})$ and calculate $I=\int_{\mathbb{R}} e^{-x^{2}} d x$.
Hint: $x^{2} \geq x$ for $x \geq 1$. Relate I^{2} with an integral in \mathbb{R}^{2}. Calculate this last integral using polar coordinates.

Problem 2.3.2 Let $A=[0,1] \times[0,1]$.
a) Prove that the function $f(x, y)=\frac{|x-y|}{(x+y)^{3}}$ is not integrable in A.
b) Find out if the function $f(x, y)=\frac{1}{\sqrt{x y}}$ is integrable in A and, in that case, calculate the integral $\iint f(x, y) d x d y$.
c) Calculate $\iint_{A} x[1+x+y] d x d y$ where $[t]$ denotes the integer part of t, discussing before the integrability of the function.

Hint: a) Use the change of variables $x=y+t$ and use Fubini's theorem.
Problem 2.3.3 Using Tonelli-Fubini's theorem to justify all steps, evaluate the integral

$$
\int_{0}^{1} \int_{y}^{1} x^{-3 / 2} \cos \frac{\pi y}{2 x} d x d y
$$

Hint: Prove first that $g(x, y)=x^{-3 / 2} \cos \frac{\pi y}{2 x} \geq 0$ on $A=\{(x, y): 0 \leq y \leq x \leq 1\}$. Then apply Tonelli-Fubini's theorem.

Problem 2.3.4 Let us consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$, with μ the counting measure.
a) Prove that $\mu \otimes \mu$ is the counting measure on $(\mathbb{N} \times \mathbb{N}, \mathcal{P}(\mathbb{N} \times \mathbb{N}))$.
b) Let us define the function

$$
f(m, n)=\left\{\begin{array}{lll}
1 & \text { if } & m=n \\
-1 & \text { if } & m=n+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Check that $\int_{\mathbb{N}}\left(\int_{\mathbb{N}} f(m, n) d \mu(m)\right) d \mu(n)$, and $\int_{\mathbb{N}}\left(\int_{\mathbb{N}} f(m, n) d \nu(n)\right) d \mu(m)$ exist and are distinct and that $\int_{\mathbb{N} \times \mathbb{N}}|f(m, n)| d(\mu \otimes \mu)(m, n)=\infty$. What is the relevance of this result?
c) Do the same for the function

$$
g(m, n)= \begin{cases}1+2^{-m} & \text { if } m=n \\ -1-2^{-m} & \text { if } m=n+1 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 2.3.5 Let (X, \mathcal{A}) be a measurable space an let $f: X \longrightarrow[0, \infty]$ be a positive \mathcal{A}-measurable function. Let

$$
A_{f}=\{(x, y) \in X \times \mathbb{R}: 0 \leq y \leq f(x)\}
$$

a) Prove that $A_{f} \in \mathcal{A} \otimes \mathcal{B}(\mathbb{R})$.
b) Given a σ-finite measure μ in (X, \mathcal{A}) prove that $\int_{X} f d \mu$ coincides with the product measure $\pi=\mu \otimes m$ of the set A_{f}, where m denotes Lebesgue measure in \mathbb{R}.

Hints: a) Prove it first for simple functions $s(x)$ in X and later for positive functions in X. b) Use the monotone convergence theorem.
Problem 2.3.6 Let $X=Y=[0,1], \mathcal{A}_{1}, \mathcal{A}_{2}=\mathcal{B}([0,1])$, μ the Lebesgue measure on \mathcal{A}_{1}, ν the counting measure on \mathcal{A}_{2}. In the measure space ($X \times Y, \mathcal{A}_{1} \otimes \mathcal{A}_{2}, \mu \otimes \nu$) we consider the set $V=\{(x, y): x=y\}$. Check that $V \in \mathcal{A}_{1} \otimes \mathcal{A}_{2}$. However

$$
\int_{Y} d \nu \int_{X} \chi_{V} d \mu=0, \quad \int_{X} d \mu \int_{Y} \chi_{V} d \nu=1
$$

What hypothesis of Fubini's theorem does not hold?
Hint: If $V_{n}=\left(I_{1} \times I_{1}\right) \cup \cdots \cup\left(I_{n} \times I_{n}\right) \cup\{(1,1)\}$ being $I_{j}=\left[\frac{j-1}{n}, \frac{j}{n}\right) j=1,2, \ldots, n$, then $V=\cap_{1}^{\infty} V_{n}$.

Problem 2.3.7 Let $\left(X_{k}, \mathcal{A}_{k}, \mu_{k}\right)$ be σ-finite measure spaces, $k=1,2 \ldots, n$. Let $f_{k}: X_{k} \longrightarrow$ $[0, \infty]$ be positive \mathcal{A}_{k}-measurable functions, $k=1,2 \ldots, n$.
a) Prove that the product function $h=f_{1} f_{2} \ldots f_{n}: X_{1} \times \cdots \times X_{n} \longrightarrow[0, \infty]$ given by

$$
h\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{n}\left(x_{n}\right)
$$

is $\mathcal{A}_{1} \otimes \cdots \otimes \mathcal{A}_{n}$-measurable and that

$$
\begin{equation*}
\int_{X_{1} \times \cdots \times X_{n}}\left(f_{1} f_{2} \ldots f_{n}\right) d \mu_{1} \otimes \cdots \otimes d \mu_{n}=\prod_{i=1}^{n} \int_{X_{i}} f_{i} d \mu_{i} . \tag{1}
\end{equation*}
$$

b) Use this formula to compute the integral $\int_{\mathbb{R}^{n}} e^{-\|x\|^{2}} d x$.
c) Calculate again this integral using the formula for radial functions in Problem 2.2.26 and from this obtain the value of $\Omega_{n}=m\left(B_{n}\right)$, the n-dimensional Lebesgue measure of the unit ball B_{n} of \mathbb{R}^{n}.
d) Prove that part a) also holds when the functions f_{1}, \ldots, f_{k} are not positive but $f_{k} \in L^{1}\left(\mu_{k}\right)$, $k=1,2 \ldots, n$.

Hints: a) Consider the functions $F_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right):=f_{i}\left(x_{i}\right)$ and use Fubini's theorem for positive functions. b) Use a) and problem 2.3.1. c) Use Euler's Gamma function and that $x \Gamma(x)=$ $\Gamma(x+1)$. d) Use Fubini's theorem.

Problem 2.3.8 Let us consider the Lebesgue measure on \mathbb{R}^{2}. Let $A=[a, b] \times[c, d]$ and let f be continuous on A. Prove that

$$
\int_{A} f d m=\int_{a}^{b} d x \int_{c}^{d} f(x, y) d y=\int_{c}^{d} d y \int_{a}^{b} f(x, y) d x
$$

Problem 2.3.9 Let

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Check that

$$
\int_{0}^{1} d x \int_{0}^{1} f(x, y) d y=\frac{\pi}{4}, \quad \int_{0}^{1} d y \int_{0}^{1} f(x, y) d x=-\frac{\pi}{4}
$$

What hypothesis of Fubini's theorem does not hold?
Hint: $\left.\frac{\partial}{\partial y} \operatorname{big}\left(\frac{y}{x^{2}+y^{2}}\right)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)$.
Problem 2.3.10 Let us define the function $f:[-1,1] \times[-1,1] \longrightarrow \mathbb{R}$ given by

$$
f(x, y)= \begin{cases}\frac{x y}{\left(x^{2}+y^{2}\right)^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Check that

$$
\int_{-1}^{1} d x \int_{-1}^{1} f(x, y) d y=\int_{-1}^{1} d y \int_{-1}^{1} f(x, y) d x
$$

but however f is not integrable in $[-1,1] \times[-1,1]$. Why is relevant this exercise?

Problem 2.3.11 Sometimes, Fubini's Theorem can be used as a tool to show that a one variable integral converges to a certain value, by transforming the simple integral into a double one and, in a justified way, exchange order of integration. With this idea in mind and using that

$$
\frac{1}{x}=\int_{0}^{\infty} e^{-t x} d t
$$

show that

$$
\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

Hint: Consider the function $f(x, t)=e^{-x t} \sin x$ defined in the set $(0, R) \times(0, \infty)$ and prove that
$\int_{0}^{R} d x \int_{0}^{\infty} f(x, t) d t=\int_{0}^{R} \frac{\sin x}{x} d x<\infty \quad$ but $\quad \int_{0}^{\infty} d t \int_{0}^{R} f(x, t) d x=\frac{\pi}{2}-\int_{0}^{\infty} \frac{e^{-R t}(\cos R+t \sin R)}{1+t^{2}} d t$
Finally, using dominated convergence, prove that this last integral converges to zero as $R \rightarrow \infty$.
Problem 2.3.12
a) Prove that the function $f(x, y)=e^{-y} \sin 2 x y$ is integrable in $A=[0,1] \times[0, \infty)$.
b) Prove that

$$
\int_{0}^{1} e^{-y} \sin 2 x y d x=\frac{e^{-y}}{y} \sin ^{2} y, \quad \int_{0}^{\infty} e^{-y} \sin 2 x y d y=\frac{2 x}{1+4 x^{2}}
$$

c) Using Fubini's theorem, prove that:

$$
\int_{0}^{\infty} e^{-y} \frac{\sin ^{2} y}{y} d y=\frac{1}{4} \log 5
$$

Problem 2.3.13 Let μ be the Lebesgue measure on $[0,1]$ and ν be the counting measure on \mathbb{N}. Let us define $G:[0,1] \times \mathbb{N} \longrightarrow \mathbb{R}$ by $G(x, n)=\left(\frac{x}{2}\right)^{n}$.
a) Prove that for $0<a \leq 1$ we have that $G^{-1}((-\infty, a))=\cup_{n}\left(\left[0,2 a^{1 / n}\right) \times\{n\}\right)$.
b) Deduce that G is $\mu \otimes \nu$-measurable.
c) Use Fubini's theorem to prove that

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1) 2^{n}}=2 \log 2-1
$$

Hint: b) Use Problem 1.1.13
Problem 2.3.14 Let $f:[0,1] \times[0,1] \longrightarrow \mathbb{R}$ be the function given by

$$
f(x, y)= \begin{cases}1, & \text { if } x \in[0,1] \cap \mathbb{Q}, y \in[0,1] \\ 0, & \text { if } x \in[0,1] \backslash \mathbb{Q}, y \in[0,1]\end{cases}
$$

a) Prove that f is measurable with respect to Lebesgue σ-algebra.
b) Prove that $\iint_{[0,1]^{2}} f(x, y) d x d y=0$.

Problem 2.3.15 Let $f:[0,1] \times[0,1] \longrightarrow \mathbb{R}$ be the function given by

$$
f(x, y)= \begin{cases}1, & \text { if } x y \in \mathbb{Q} \\ 0, & \text { otherwise }\end{cases}
$$

a) Prove that f is measurable with respect to Lebesgue σ-algebra.
b) Prove that $\iint_{[0,1]^{2}} f(x, y) d x d y=0$.

Problem 2.3.16 Let us consider the measure space $\left([0,1] \times[0,1], \mathcal{M}, m_{2}\right)$, where \mathcal{M} is the σ-algebra of Lebesgue measurable sets and m_{2} is the two-dimensional Lebesgue measure. Given $E \in \mathcal{M}$, let us denote

$$
E_{x}=\{y \in[0,1]:(x, y) \in E\}, \quad E^{y}=\{x \in[0,1]:(x, y) \in E\} .
$$

Let m_{1} denote Lebesgue measure on $[0,1]$. Prove that if $E \in \mathcal{M}$ verifies that $m_{1}\left(E_{x}\right) \leq 1 / 2$ for almost all $x \in[0,1]$, then

$$
m_{1}\left(\left\{y \in[0,1]: m_{1}\left(E^{y}\right)=1\right\}\right) \leq \frac{1}{2}
$$

Hint: Apply Fubini's theorem to the function $f=\chi_{E}$ and consider the set $A=\{y \in[0,1]$: $\left.m_{1}\left(E^{y}\right)=1\right\}$.

Problem 2.3.17 Let $f \in L^{1}(0, \infty)$. Given $\alpha>0$, let us define $g_{\alpha}(x)=\int_{0}^{x}(x-t)^{\alpha-1} f(t) d t$ for $x>0$. Check that $\alpha \int_{0}^{y} g_{\alpha}(x) d x=g_{\alpha+1}(y)$ for $y>0$.

Hint: Check that you can apply Tonelli-Fubini's theorem.

Problem 2.3.18 Let f and g be Lebesgue integrable functions on $[0,1]$, and let F and G be the integrals

$$
F(x)=\int_{0}^{x} f(t) d t, \quad G(x)=\int_{0}^{x} g(t) d t
$$

Use Fubini's theorem to prove that

$$
\int_{0}^{1} F(x) g(x) d x=F(1) G(1)-\int_{0}^{1} f(x) G(x) d x
$$

Problem 2.3.19* Apply Fubini's theorem to obtain the following recurrence formula for n dimensional measure Ω_{n} of the unit ball B_{n} of \mathbb{R}^{n} :

$$
\Omega_{n}=\sqrt{\pi} \Omega_{n-1} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)} .
$$

Hint: $\Omega_{n}=\int_{-1}^{1} m_{n-1}\left(B_{x_{1}}\right) d x_{1}$ where $B_{x_{1}}=\left\{\bar{x} \in \mathbb{R}^{n-1}:\|\bar{x}\|<\left(1-x_{1}^{2}\right)^{1 / 2}\right\}$. Relate $m_{n-1}\left(B_{x_{1}}\right)$ with Ω_{n-1} and use the Euler's β-function $\beta(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t$ and the formula $\beta(x, y)=$ $\Gamma(x) \Gamma(y) / \Gamma(x+y)$, where $\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-x} d x$ is the Euler Γ-function.

Problem 2.3.20* Given $x \in \mathbb{R}^{n} \backslash\{0\}$, let us consider its polar coordinates $\left(r, x^{\prime}\right)$ where $r=$ $\|x\| \in(0, \infty), x^{\prime}=x /\|x\| \in S_{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$. The mapping

$$
\varphi: \mathbb{R}^{n} \backslash\{0\} \longrightarrow(0, \infty) \times S_{n-1} \quad \text { given by } \varphi(x)=\left(r, x^{\prime}\right)
$$

is a bijection. Prove that
a) If μ is the image measure under φ of the Lebesgue measure on $\mathbb{R}^{n} \backslash\{0\}$, then

$$
\mu(E \times U)=\sigma(U) \int_{E} r^{n-1} d r, \quad \text { for all borel sets } E \subseteq(0, \infty), U \subseteq S_{n-1}
$$

b) If $f: \mathbb{R}^{n} \backslash\{0\} \longrightarrow[0, \infty]$ is a positive measurable function, then

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{\infty} r^{n-1} d r \int_{S_{n-1}} f\left(r x^{\prime}\right) d \sigma\left(x^{\prime}\right)
$$

where σ is the ($n-1$)-dimensional Lebesgue measure on S_{n-1}.
c) Given $f(x)=\left|x_{1} x_{2} \cdots x_{n}\right|$, use Fubini's theorem to obtain a recurrence formula relating $I_{n}=\int_{B_{n}} f(x) d x$ with I_{n-1}. Deduce the value of I_{n}.
d) Apply parts b) and c) to evaluate $J_{n}=\int_{S_{n-1}} f\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)$,

Hints: a) For each fixed Borel set $U \subset S_{n-1}$, as a consequence of Caratheodory-Hopf's theorem, it suffices to prove that both sides of the identity coincide for semi-intervals $E=[a, b)$. b) Observe that $f=f \circ \varphi \circ \varphi^{-1}$ and use first problem 2.2.21, part a) and later Fubini's theorem.

