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Integration and Measure. Problems

Chapter 2: Integration theory

Section 2.3: Integration on product spaces
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2 Integration Theory

2.3. Integration on product spaces

Problem 2.3.1 Prove that f(x) = e−x
2 ∈ L1(R) and calculate I =

∫
R
e−x

2
dx.

Hint: x2 ≥ x for x ≥ 1. Relate I2 with an integral in R2. Calculate this last integral using polar
coordinates.

Problem 2.3.2 Let A = [0, 1]× [0, 1].

a) Prove that the function f(x, y) = |x−y|
(x+y)3

is not integrable in A.

b) Find out if the function f(x, y) = 1√
xy is integrable in A and, in that case, calculate the

integral
∫∫

f(x, y) dxdy.

c) Calculate
∫∫
A x [1 + x + y] dxdy where [t] denotes the integer part of t, discussing before

the integrability of the function.

Hint: a) Use the change of variables x = y + t and use Fubini’s theorem.

Problem 2.3.3 Using Tonelli-Fubini’s theorem to justify all steps, evaluate the integral∫ 1

0

∫ 1

y
x−3/2 cos

πy

2x
dx dy .

Hint: Prove first that g(x, y) = x−3/2 cos πy2x ≥ 0 on A = {(x, y) : 0 ≤ y ≤ x ≤ 1}. Then apply
Tonelli-Fubini’s theorem.

Problem 2.3.4 Let us consider the measure space (N,P(N), µ), with µ the counting measure.

a) Prove that µ⊗ µ is the counting measure on (N× N,P(N× N)).

b) Let us define the function

f(m,n) =


1 if m = n ,
−1 if m = n+ 1 ,
0 otherwise.

Check that
∫
N(
∫
N f(m,n) dµ(m)) dµ(n), and

∫
N(
∫
N f(m,n) dν(n)) dµ(m) exist and are dis-

tinct and that
∫
N×N |f(m,n)| d(µ⊗ µ)(m,n) =∞. What is the relevance of this result?

c) Do the same for the function

g(m,n) =


1 + 2−m if m = n ,
−1− 2−m if m = n+ 1 ,
0 otherwise.

Problem 2.3.5 Let (X,A) be a measurable space an let f : X −→ [0,∞] be a positive
A-measurable function. Let

Af = {(x, y) ∈ X × R : 0 ≤ y ≤ f(x)}.
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a) Prove that Af ∈ A⊗ B(R).

b) Given a σ-finite measure µ in (X,A) prove that
∫
X f dµ coincides with the product measure

π = µ⊗m of the set Af , where m denotes Lebesgue measure in R.

Hints: a) Prove it first for simple functions s(x) in X and later for positive functions in X. b)
Use the monotone convergence theorem.

Problem 2.3.6 Let X = Y = [0, 1], A1 , A2 = B([0, 1]), µ the Lebesgue measure on A1, ν
the counting measure on A2. In the measure space (X × Y,A1 ⊗A2, µ⊗ ν) we consider the set
V = {(x, y) : x = y}. Check that V ∈ A1 ⊗A2. However∫

Y
dν

∫
X
χV dµ = 0 ,

∫
X
dµ

∫
Y
χV dν = 1 .

What hypothesis of Fubini’s theorem does not hold?

Hint: If Vn = (I1 × I1) ∪ · · · ∪ (In × In) ∪ {(1, 1)} being Ij = [ j−1n , jn) j = 1, 2, . . . , n, then
V = ∩∞1 Vn .

Problem 2.3.7 Let (Xk,Ak, µk) be σ-finite measure spaces, k = 1, 2 . . . , n. Let fk : Xk −→
[0,∞] be positive Ak-measurable functions, k = 1, 2 . . . , n.

a) Prove that the product function h = f1f2 . . . fn : X1 × · · · ×Xn −→ [0,∞] given by

h(x1, . . . , xn) = f1(x1)f2(x2) · · · fn(xn)

is A1 ⊗ · · · ⊗ An-measurable and that∫
X1×···×Xn

(f1f2 . . . fn) dµ1 ⊗ · · · ⊗ dµn =
n∏
i=1

∫
Xi

fi dµi . (1)

b) Use this formula to compute the integral

∫
Rn

e−‖x‖
2
dx .

c) Calculate again this integral using the formula for radial functions in Problem 2.2.26 and
from this obtain the value of Ωn = m(Bn), the n-dimensional Lebesgue measure of the
unit ball Bn of Rn.

d) Prove that part a) also holds when the functions f1, . . . , fk are not positive but fk ∈ L1(µk),
k = 1, 2 . . . , n.

Hints: a) Consider the functions Fi(x1, x2, . . . , xn) := fi(xi) and use Fubini’s theorem for positive
functions. b) Use a) and problem 2.3.1. c) Use Euler’s Gamma function and that xΓ(x) =
Γ(x+ 1). d) Use Fubini’s theorem.

Problem 2.3.8 Let us consider the Lebesgue measure on R2. Let A = [a, b] × [c, d] and let f
be continuous on A. Prove that∫

A
f dm =

∫ b

a
dx

∫ d

c
f(x, y) dy =

∫ d

c
dy

∫ b

a
f(x, y) dx .
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Problem 2.3.9 Let

f(x, y) =

{
x2−y2

(x2+y2)2
, (x, y) 6= (0, 0) ,

0 , (x, y) = (0, 0) .

Check that ∫ 1

0
dx

∫ 1

0
f(x, y) dy =

π

4
,

∫ 1

0
dy

∫ 1

0
f(x, y) dx = −π

4
.

What hypothesis of Fubini’s theorem does not hold?

Hint: ∂
∂y big( y

x2+y2

)
= x2−y2

(x2+y2)2
).

Problem 2.3.10 Let us define the function f : [−1, 1]× [−1, 1] −→ R given by

f(x, y) =

{
xy

(x2+y2)2
, (x, y) 6= (0, 0) ,

0 , (x, y) = (0, 0) .

Check that ∫ 1

−1
dx

∫ 1

−1
f(x, y) dy =

∫ 1

−1
dy

∫ 1

−1
f(x, y) dx ,

but however f is not integrable in [−1, 1]× [−1, 1]. Why is relevant this exercise?

Problem 2.3.11 Sometimes, Fubini’s Theorem can be used as a tool to show that a one variable
integral converges to a certain value, by transforming the simple integral into a double one and,
in a justified way, exchange order of integration. With this idea in mind and using that

1

x
=

∫ ∞
0

e−txdt,

show that

lim
R→∞

∫ R

0

sinx

x
dx =

π

2
.

Hint: Consider the function f(x, t) = e−xt sinx defined in the set (0, R)× (0,∞) and prove that∫ R

0
dx

∫ ∞
0
f(x, t) dt=

∫ R

0

sinx

x
dx <∞ but

∫ ∞
0
dt

∫ R

0
f(x, t) dx=

π

2
−
∫ ∞
0

e−Rt(cosR+t sinR)

1 + t2
dt.

Finally, using dominated convergence, prove that this last integral converges to zero as R→∞.

Problem 2.3.12

a) Prove that the function f(x, y) = e−y sin 2xy is integrable in A = [0, 1]× [0,∞).

b) Prove that ∫ 1

0
e−y sin 2xy dx =

e−y

y
sin2 y ,

∫ ∞
0

e−y sin 2xy dy =
2x

1 + 4x2
.

c) Using Fubini’s theorem, prove that:∫ ∞
0

e−y
sin2 y

y
dy =

1

4
log 5 .
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Problem 2.3.13 Let µ be the Lebesgue measure on [0, 1] and ν be the counting measure on
N. Let us define G : [0, 1]× N −→ R by G(x, n) =

(
x
2

)n
.

a) Prove that for 0 < a ≤ 1 we have that G−1((−∞, a)) = ∪n([0, 2a1/n)× {n}).
b) Deduce that G is µ⊗ ν-measurable.

c) Use Fubini’s theorem to prove that

∞∑
n=1

1

(n+ 1)2n
= 2 log 2− 1.

Hint: b) Use Problem 1.1.13

Problem 2.3.14 Let f : [0, 1]× [0, 1] −→ R be the function given by

f(x, y) =

{
1 , if x ∈ [0, 1] ∩Q, y ∈ [0, 1] ,

0 , if x ∈ [0, 1] \Q, y ∈ [0, 1] .

a) Prove that f is measurable with respect to Lebesgue σ-algebra.

b) Prove that

∫∫
[0,1]2

f(x, y) dx dy = 0.

Problem 2.3.15 Let f : [0, 1]× [0, 1] −→ R be the function given by

f(x, y) =

{
1 , if xy ∈ Q ,

0 , otherwise.

a) Prove that f is measurable with respect to Lebesgue σ-algebra.

b) Prove that

∫∫
[0,1]2

f(x, y) dxdy = 0.

Problem 2.3.16 Let us consider the measure space ([0, 1] × [0, 1],M,m2), where M is the
σ-algebra of Lebesgue measurable sets and m2 is the two-dimensional Lebesgue measure. Given
E ∈M, let us denote

Ex = {y ∈ [0, 1] : (x, y) ∈ E} , Ey = {x ∈ [0, 1] : (x, y) ∈ E} .

Let m1 denote Lebesgue measure on [0, 1]. Prove that if E ∈M verifies that m1(Ex) ≤ 1/2 for
almost all x ∈ [0, 1], then

m1({y ∈ [0, 1] : m1(E
y) = 1}) ≤ 1

2
.

Hint: Apply Fubini’s theorem to the function f = χE and consider the set A = {y ∈ [0, 1] :
m1(E

y) = 1}.

Problem 2.3.17 Let f ∈ L1(0,∞). Given α > 0, let us define gα(x) =
∫ x
0 (x− t)α−1f(t) dt for

x > 0. Check that α
∫ y
0 gα(x)dx = gα+1(y) for y > 0.

Hint: Check that you can apply Tonelli-Fubini’s theorem.
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Problem 2.3.18 Let f and g be Lebesgue integrable functions on [0, 1], and let F and G be
the integrals

F (x) =

∫ x

0
f(t) dt , G(x) =

∫ x

0
g(t) dt .

Use Fubini’s theorem to prove that∫ 1

0
F (x)g(x) dx = F (1)G(1)−

∫ 1

0
f(x)G(x) dx .

Problem 2.3.19∗ Apply Fubini’s theorem to obtain the following recurrence formula for n-
dimensional measure Ωn of the unit ball Bn of Rn:

Ωn =
√
π Ωn−1

Γ
(
n+1
2

)
Γ
(
n
2 + 1

) .
Hint: Ωn =

∫ 1
−1mn−1(Bx1) dx1 where Bx1 = {x̄ ∈ Rn−1 : ‖x̄‖ < (1− x21)1/2}. Relate mn−1(Bx1)

with Ωn−1 and use the Euler’s β-function β(x, y) =
∫ 1
0 t

x−1(1−t)y−1dt and the formula β(x, y) =
Γ(x)Γ(y)/Γ(x+ y), where Γ(x) =

∫∞
0 tx−1e−xdx is the Euler Γ-function.

Problem 2.3.20∗ Given x ∈ Rn \ {0}, let us consider its polar coordinates (r, x′) where r =
‖x‖ ∈ (0,∞), x′ = x/‖x‖ ∈ Sn−1 = {x ∈ Rn : ‖x‖ = 1}. The mapping

ϕ : Rn \ {0} −→ (0,∞)× Sn−1 given by ϕ(x) = (r, x′)

is a bijection. Prove that

a) If µ is the image measure under ϕ of the Lebesgue measure on Rn \ {0}, then

µ(E × U) = σ(U)

∫
E
rn−1dr , for all borel sets E ⊆ (0,∞), U ⊆ Sn−1 .

b) If f : Rn \ {0} −→ [0,∞] is a positive measurable function, then∫
Rn

f(x) dx =

∫ ∞
0

rn−1dr

∫
Sn−1

f(rx′) dσ(x′)

where σ is the (n− 1)-dimensional Lebesgue measure on Sn−1.

c) Given f(x) = |x1x2 · · ·xn|, use Fubini’s theorem to obtain a recurrence formula relating
In =

∫
Bn
f(x) dx with In−1. Deduce the value of In.

d) Apply parts b) and c) to evaluate Jn =
∫
Sn−1

f(x′) dσ(x′), .

Hints: a) For each fixed Borel set U ⊂ Sn−1, as a consequence of Caratheodory-Hopf’s theorem,
it suffices to prove that both sides of the identity coincide for semi-intervals E = [a, b). b)
Observe that f = f ◦ ϕ ◦ ϕ−1 and use first problem 2.2.21, part a) and later Fubini’s theorem.


