uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Integration and Measure. Problems

Chapter 2: Integration theory Section 2.3: Integration on product spaces

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.3. Integration on product spaces

Problem 2.3.1 Prove that $f(x) = e^{-x^2} \in L^1(\mathbb{R})$ and calculate $I = \int_{\mathbb{R}} e^{-x^2} dx$.

Hint: $x^2 \ge x$ for $x \ge 1$. Relate I^2 with an integral in \mathbb{R}^2 . Calculate this last integral using polar coordinates.

Problem 2.3.2 Let $A = [0, 1] \times [0, 1]$.

- a) Prove that the function $f(x, y) = \frac{|x-y|}{(x+y)^3}$ is not integrable in A.
- b) Find out if the function $f(x, y) = \frac{1}{\sqrt{xy}}$ is integrable in A and, in that case, calculate the integral $\iint f(x, y) dxdy$.
- c) Calculate $\iint_A x [1 + x + y] dxdy$ where [t] denotes the integer part of t, discussing before the integrability of the function.

Hint: a) Use the change of variables x = y + t and use Fubini's theorem.

Problem 2.3.3 Using Tonelli-Fubini's theorem to justify all steps, evaluate the integral

$$\int_0^1 \int_y^1 x^{-3/2} \cos \frac{\pi y}{2x} \, dx \, dy \, dx$$

Hint: Prove first that $g(x, y) = x^{-3/2} \cos \frac{\pi y}{2x} \ge 0$ on $A = \{(x, y) : 0 \le y \le x \le 1\}$. Then apply Tonelli-Fubini's theorem.

Problem 2.3.4 Let us consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$, with μ the counting measure.

- a) Prove that $\mu \otimes \mu$ is the counting measure on $(\mathbb{N} \times \mathbb{N}, \mathcal{P}(\mathbb{N} \times \mathbb{N}))$.
- b) Let us define the function

$$f(m,n) = \begin{cases} 1 & \text{if} \qquad m = n ,\\ -1 & \text{if} \qquad m = n+1 ,\\ 0 & \text{otherwise.} \end{cases}$$

Check that $\int_{\mathbb{N}} (\int_{\mathbb{N}} f(m, n) d\mu(m)) d\mu(n)$, and $\int_{\mathbb{N}} (\int_{\mathbb{N}} f(m, n) d\nu(n)) d\mu(m)$ exist and are distinct and that $\int_{\mathbb{N}\times\mathbb{N}} |f(m, n)| d(\mu \otimes \mu)(m, n) = \infty$. What is the relevance of this result?

c) Do the same for the function

$$g(m,n) = \begin{cases} 1+2^{-m} & \text{if } m = n \,, \\ -1-2^{-m} & \text{if } m = n+1 \,, \\ 0 & \text{otherwise.} \end{cases}$$

Problem 2.3.5 Let (X, \mathcal{A}) be a measurable space an let $f : X \longrightarrow [0, \infty]$ be a positive \mathcal{A} -measurable function. Let

$$A_f = \{ (x, y) \in X \times \mathbb{R} : 0 \le y \le f(x) \}.$$

- a) Prove that $A_f \in \mathcal{A} \otimes \mathcal{B}(\mathbb{R})$.
- b) Given a σ -finite measure μ in (X, \mathcal{A}) prove that $\int_X f d\mu$ coincides with the product measure $\pi = \mu \otimes m$ of the set A_f , where m denotes Lebesgue measure in \mathbb{R} .

Hints: a) Prove it first for simple functions s(x) in X and later for positive functions in X. b) Use the monotone convergence theorem.

Problem 2.3.6 Let X = Y = [0, 1], \mathcal{A}_1 , $\mathcal{A}_2 = \mathcal{B}([0, 1])$, μ the Lebesgue measure on \mathcal{A}_1 , ν the counting measure on \mathcal{A}_2 . In the measure space $(X \times Y, \mathcal{A}_1 \otimes \mathcal{A}_2, \mu \otimes \nu)$ we consider the set $V = \{(x, y) : x = y\}$. Check that $V \in \mathcal{A}_1 \otimes \mathcal{A}_2$. However

$$\int_{Y} d\nu \int_{X} \chi_{\nu} d\mu = 0, \qquad \int_{X} d\mu \int_{Y} \chi_{\nu} d\nu = 1.$$

What hypothesis of Fubini's theorem does not hold?

Hint: If $V_n = (I_1 \times I_1) \cup \cdots \cup (I_n \times I_n) \cup \{(1,1)\}$ being $I_j = [\frac{j-1}{n}, \frac{j}{n}) \ j = 1, 2, \dots, n$, then $V = \bigcap_1^\infty V_n$.

Problem 2.3.7 Let $(X_k, \mathcal{A}_k, \mu_k)$ be σ -finite measure spaces, k = 1, 2..., n. Let $f_k : X_k \longrightarrow [0, \infty]$ be positive \mathcal{A}_k -measurable functions, k = 1, 2..., n.

a) Prove that the product function $h = f_1 f_2 \dots f_n : X_1 \times \dots \times X_n \longrightarrow [0, \infty]$ given by

$$h(x_1,\ldots,x_n) = f_1(x_1)f_2(x_2)\cdots f_n(x_n)$$

is $\mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n$ -measurable and that

$$\int_{X_1 \times \dots \times X_n} (f_1 f_2 \dots f_n) \ d\mu_1 \otimes \dots \otimes d\mu_n = \prod_{i=1}^n \int_{X_i} f_i \ d\mu_i \,. \tag{1}$$

- b) Use this formula to compute the integral $\int_{\mathbb{R}^n} e^{-\|x\|^2} dx$.
- c) Calculate again this integral using the formula for radial functions in Problem 2.2.26 and from this obtain the value of $\Omega_n = m(B_n)$, the *n*-dimensional Lebesgue measure of the unit ball B_n of \mathbb{R}^n .
- d) Prove that part a) also holds when the functions f_1, \ldots, f_k are not positive but $f_k \in L^1(\mu_k)$, $k = 1, 2, \ldots, n$.

Hints: a) Consider the functions $F_i(x_1, x_2, ..., x_n) := f_i(x_i)$ and use Fubini's theorem for positive functions. b) Use a) and problem 2.3.1. c) Use Euler's Gamma function and that $x\Gamma(x) = \Gamma(x+1)$. d) Use Fubini's theorem.

Problem 2.3.8 Let us consider the Lebesgue measure on \mathbb{R}^2 . Let $A = [a, b] \times [c, d]$ and let f be continuous on A. Prove that

$$\int_A f \, dm = \int_a^b dx \int_c^d f(x, y) \, dy = \int_c^d dy \int_a^b f(x, y) \, dx \, .$$

Problem 2.3.9 Let

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Check that

$$\int_0^1 dx \int_0^1 f(x,y) \, dy = \frac{\pi}{4} \,, \qquad \int_0^1 dy \int_0^1 f(x,y) \, dx = -\frac{\pi}{4}$$

What hypothesis of Fubini's theorem does not hold?

Hint: $\frac{\partial}{\partial y} big(\frac{y}{x^2+y^2}) = \frac{x^2-y^2}{(x^2+y^2)^2}).$

Problem 2.3.10 Let us define the function $f: [-1,1] \times [-1,1] \longrightarrow \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Check that

$$\int_{-1}^{1} dx \int_{-1}^{1} f(x, y) \, dy = \int_{-1}^{1} dy \int_{-1}^{1} f(x, y) \, dx$$

but however f is not integrable in $[-1, 1] \times [-1, 1]$. Why is relevant this exercise?

Problem 2.3.11 Sometimes, Fubini's Theorem can be used as a tool to show that a one variable integral converges to a certain value, by *transforming* the simple integral into a double one and, in a justified way, exchange order of integration. With this idea in mind and using that

$$\frac{1}{x} = \int_0^\infty e^{-tx} dt,$$

show that

$$\lim_{R \to \infty} \int_0^R \frac{\sin x}{x} \, dx = \frac{\pi}{2} \, .$$

Hint: Consider the function $f(x,t) = e^{-xt} \sin x$ defined in the set $(0,R) \times (0,\infty)$ and prove that

$$\int_0^R dx \int_0^\infty f(x,t) \, dt = \int_0^R \frac{\sin x}{x} \, dx < \infty \quad \text{but} \quad \int_0^\infty dt \int_0^R f(x,t) \, dx = \frac{\pi}{2} - \int_0^\infty \frac{e^{-Rt}(\cos R + t\sin R)}{1 + t^2} \, dt.$$

Finally, using dominated convergence, prove that this last integral converges to zero as $R \to \infty$. Problem 2.3.12

- a) Prove that the function $f(x, y) = e^{-y} \sin 2xy$ is integrable in $A = [0, 1] \times [0, \infty)$.
- b) Prove that

$$\int_0^1 e^{-y} \sin 2xy \, dx = \frac{e^{-y}}{y} \, \sin^2 y \,, \qquad \int_0^\infty e^{-y} \sin 2xy \, dy = \frac{2x}{1+4x^2}$$

c) Using Fubini's theorem, prove that:

$$\int_0^\infty e^{-y} \, \frac{\sin^2 y}{y} \, dy = \frac{1}{4} \, \log 5 \, .$$

Problem 2.3.13 Let μ be the Lebesgue measure on [0,1] and ν be the counting measure on \mathbb{N} . Let us define $G: [0,1] \times \mathbb{N} \longrightarrow \mathbb{R}$ by $G(x,n) = \left(\frac{x}{2}\right)^n$.

- a) Prove that for $0 < a \le 1$ we have that $G^{-1}((-\infty, a)) = \bigcup_n ([0, 2a^{1/n}) \times \{n\}).$
- b) Deduce that G is $\mu \otimes \nu$ -measurable.
- c) Use Fubini's theorem to prove that

$$\sum_{n=1}^{\infty} \frac{1}{(n+1)2^n} = 2\log 2 - 1$$

Hint: b) Use Problem 1.1.13

Problem 2.3.14 Let $f: [0,1] \times [0,1] \longrightarrow \mathbb{R}$ be the function given by

$$f(x,y) = \begin{cases} 1 \,, & \text{if } x \in [0,1] \cap \mathbb{Q}, \ y \in [0,1] \,, \\ 0 \,, & \text{if } x \in [0,1] \setminus \mathbb{Q}, \ y \in [0,1] \,. \end{cases}$$

a) Prove that f is measurable with respect to Lebesgue σ -algebra.

b) Prove that $\iint_{[0,1]^2} f(x,y) \, dx \, dy = 0.$

Problem 2.3.15 Let $f: [0,1] \times [0,1] \longrightarrow \mathbb{R}$ be the function given by

$$f(x,y) = \begin{cases} 1, & \text{if } xy \in \mathbb{Q}, \\ 0, & \text{otherwise.} \end{cases}$$

- a) Prove that f is measurable with respect to Lebesgue σ -algebra.
- b) Prove that $\iint_{[0,1]^2} f(x,y) \, dx \, dy = 0.$

Problem 2.3.16 Let us consider the measure space $([0,1] \times [0,1], \mathcal{M}, m_2)$, where \mathcal{M} is the σ -algebra of Lebesgue measurable sets and m_2 is the two-dimensional Lebesgue measure. Given $E \in \mathcal{M}$, let us denote

$$E_x = \{ y \in [0,1] : (x,y) \in E \}, \qquad E^y = \{ x \in [0,1] : (x,y) \in E \}.$$

Let m_1 denote Lebesgue measure on [0, 1]. Prove that if $E \in \mathcal{M}$ verifies that $m_1(E_x) \leq 1/2$ for almost all $x \in [0, 1]$, then

$$m_1(\{y \in [0,1]: m_1(E^y) = 1\}) \le \frac{1}{2}.$$

Hint: Apply Fubini's theorem to the function $f = \chi_E$ and consider the set $A = \{y \in [0, 1] : m_1(E^y) = 1\}$.

Problem 2.3.17 Let $f \in L^1(0,\infty)$. Given $\alpha > 0$, let us define $g_{\alpha}(x) = \int_0^x (x-t)^{\alpha-1} f(t) dt$ for x > 0. Check that $\alpha \int_0^y g_{\alpha}(x) dx = g_{\alpha+1}(y)$ for y > 0.

Hint: Check that you can apply Tonelli-Fubini's theorem.

Problem 2.3.18 Let f and g be Lebesgue integrable functions on [0, 1], and let F and G be the integrals

$$F(x) = \int_0^x f(t) dt$$
, $G(x) = \int_0^x g(t) dt$.

Use Fubini's theorem to prove that

$$\int_0^1 F(x)g(x)\,dx = F(1)G(1) - \int_0^1 f(x)G(x)\,dx\,.$$

Problem 2.3.19^{*} Apply Fubini's theorem to obtain the following recurrence formula for *n*-dimensional measure Ω_n of the unit ball B_n of \mathbb{R}^n :

$$\Omega_n = \sqrt{\pi} \ \Omega_{n-1} \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}+1\right)} \,.$$

Hint: $\Omega_n = \int_{-1}^1 m_{n-1}(B_{x_1}) dx_1$ where $B_{x_1} = \{\bar{x} \in \mathbb{R}^{n-1} : \|\bar{x}\| < (1-x_1^2)^{1/2}\}$. Relate $m_{n-1}(B_{x_1})$ with Ω_{n-1} and use the Euler's β -function $\beta(x, y) = \int_0^1 t^{x-1}(1-t)^{y-1}dt$ and the formula $\beta(x, y) = \Gamma(x)\Gamma(y)/\Gamma(x+y)$, where $\Gamma(x) = \int_0^\infty t^{x-1}e^{-x}dx$ is the Euler Γ -function.

Problem 2.3.20^{*} Given $x \in \mathbb{R}^n \setminus \{0\}$, let us consider its polar coordinates (r, x') where $r = ||x|| \in (0, \infty)$, $x' = x/||x|| \in S_{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$. The mapping

$$\varphi : \mathbb{R}^n \setminus \{0\} \longrightarrow (0, \infty) \times S_{n-1}$$
 given by $\varphi(x) = (r, x')$

is a bijection. Prove that

a) If μ is the image measure under φ of the Lebesgue measure on $\mathbb{R}^n \setminus \{0\}$, then

$$\mu(E \times U) = \sigma(U) \int_E r^{n-1} dr$$
, for all borel sets $E \subseteq (0, \infty), \ U \subseteq S_{n-1}$.

b) If $f: \mathbb{R}^n \setminus \{0\} \longrightarrow [0, \infty]$ is a positive measurable function, then

$$\int_{\mathbb{R}^n} f(x) \, dx = \int_0^\infty r^{n-1} dr \int_{S_{n-1}} f(rx') \, d\sigma(x')$$

where σ is the (n-1)-dimensional Lebesgue measure on S_{n-1} .

- c) Given $f(x) = |x_1 x_2 \cdots x_n|$, use Fubini's theorem to obtain a recurrence formula relating $I_n = \int_{B_n} f(x) dx$ with I_{n-1} . Deduce the value of I_n .
- d) Apply parts b) and c) to evaluate $J_n = \int_{S_{n-1}} f(x') d\sigma(x')$,.

Hints: a) For each fixed Borel set $U \subset S_{n-1}$, as a consequence of Caratheodory-Hopf's theorem, it suffices to prove that both sides of the identity coincide for semi-intervals E = [a, b). b) Observe that $f = f \circ \varphi \circ \varphi^{-1}$ and use first problem 2.2.21, part a) and later Fubini's theorem.