uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Integration and Measure. Problems

Chapter 2: Integration theory Section 2.4: Decomposition of measures

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.4. Decomposition of measures

Problem 2.4.1 Let μ, λ be measures defined on the same σ -algebra. Prove that if we have at the same time $\lambda \perp \mu$ and $\lambda \ll \mu$, then $\lambda \equiv 0$.

Problem 2.4.2 Let X = [0, 1], $\mathcal{M} = \mathcal{B}([0, 1])$, *m* the Lebesgue measure on \mathcal{M} , μ the counting measure on \mathcal{M} .

- a) Prove that $m \ll \mu$ but $dm \neq f d\mu$ for all f.
- b) Prove that m has not Radon-Nikodym decomposition with respect to μ .
- c) What hypothesis fails to apply in Radon-Nikodym theorem?

Hints: a) Suppose that there exists such an f. Then, there exists x_0 such that $f(x_0) \neq 0$. Consider the set $A = \{x_0\}$. b) How must be a measure which is mutually orthogonal with μ ?

Problem 2.4.3 Let (X, \mathcal{M}, μ) be a measure space. Let \mathcal{N} be a σ -subalgebra of \mathcal{M} and let ν be the restriction of μ to \mathcal{N} . If $0 \leq f \in L^1(\mu)$ prove that there exists g \mathcal{N} -measurable, $0 \leq g \in L^1(\nu)$, such that $\int_E f d\mu = \int_E g d\nu$ for all $E \in \mathcal{N}$. Besides, g is unique module alterations in ν -null sets.

Hint: Consider the measure $\lambda(E) = \int_E f \, d\mu$ for $E \in \mathcal{N}$. The function g is called the *conditioned* expected value $E(f|\mathcal{N})$ of f with respect to \mathcal{N} .

Problem 2.4.4 Let μ and ν be finite positive measures on the measurable space (X, \mathcal{A}) . Show that there is a nonnegative measurable function f on X such that for all $A \in \mathcal{A}$

$$\int_A (1-f) \, d\mu = \int_A f \, d\nu \, .$$

Hint: The statement is equivalent to $\mu(A) = \int_A f \, d(\mu + \nu)$.

Problem 2.4.5 Let m be the Lebesgue measure on the real line \mathbb{R} . For each Lebesgue measurable subset E of \mathbb{R} define

$$\mu(E) = \int_E \frac{1}{1+x^2} \, dm(x) \, .$$

- a) Show that $m \ll \mu$.
- b) Compute the Radon-Nikodym derivative $h = dm/d\mu$.

Hints: a) Use Problem 2.1.1. b) Given a Lebesgue-measurable set E, consider the function $f(x) = \frac{1}{1+x^2} \chi_E(x)$ and use problem 2.2.21.

Problem 2.4.6 Let *m* be the Lebesgue measure on the real line \mathbb{R} . Consider a measurable function $f : \mathbb{R} \to [0, \infty]$ such that f and 1/f are Lebesgue integrable on each bounded subset of \mathbb{R} . For each Lebesgue measurable subset of \mathbb{R} define

$$\mu(E) = \int_E f(x) \, dm(x) \, .$$

a) Show that $m \ll \mu$.

b) Compute the Radon-Nikodym derivative $h = dm/d\mu$.

Hint: Use the argument in the previous exercise.

Problem 2.4.7 Let us consider the increasing function $F(x) = \max\{0, x + [x]\}$, where [x] denotes the integer part of x. Let μ_F be the Borel-Stieltjes measure associated to F.

- a) Calculate $\mu_F((0,5])$, $\mu_F([4,8])$ and $\mu_F([3,7))$.
- b) Prove that μ_F is not absolutely continuous with respect to Lebesgue measure.

Hint: b) Consider, for example, the set $A = \{1\}$.

Problem 2.4.8 Let μ_F be the Borel-Stieltjes measure associated to the increasing function

$$F(x) = \begin{cases} 0, & \text{if } x < 0, \\ x, & \text{if } 0 \le x < 1 \\ 1, & \text{if } 1 \le x. \end{cases}$$

- a) Prove that $\mu_F \ll m$, being m the Lebesgue measure.
- b) Is there the Radon-Nikodym derivative of μ_F with respect to m?. If so, find it.
- c) Let μ be the measure that counts rational numbers in [0, 1], that is to say that $\mu(A) = \operatorname{card}(A \cap [0, 1] \cap \mathbb{Q})$. Prove that $\mu_F \perp \mu$.

Hints: a) Given I = [a, b), prove that $\mu_F(I) \leq m(I)$ since x - F(x) is increasing. Apply Caratheodory-Hopf's theorem. b) Use problem 2.2.25. c) Consider the set $[0, 1] \cap \mathbb{Q}$.

Problem 2.4.9 Let us define the increasing function

$$F(x) = \begin{cases} e^x, & \text{if } x < 0, \\ 2 + \arctan x, & \text{if } x \ge 0, \end{cases}$$

and let μ_F be the associated Borel-Stieltjes measure.

- a) Calculate $\mu_F((0,1]), \, \mu_F((-2,0]), \, \mu_F(0) \text{ and } \mu_F(\mathbb{R}).$
- b) Prove that $\mu_F = f(x) dx + \delta_0$, for certain $f \ge 0$, and being δ_0 the δ -Dirac measure at x = 0.
- c) Is true that $\mu_F \ll dx$?

Hint: b) Observe that $\delta_0 = \mu_H$ with H the Heaviside function: $H = \chi_{[0,\infty)}$ and apply Exercise 2.2.25 to μ_{F-H} .

Problem 2.4.10 Let us consider the increasing function

$$F(x) = \begin{cases} 0, & \text{if } x < 0, \\ x^2/2, & \text{if } 0 \le x < 1, \\ 1, & \text{if } 1 \le x, \end{cases}$$

and let μ_F be the Borel-Stieltjes measure associated to F.

- a) Prove that μ_F is not absolutely continuous with respect to Lebesgue measure m.
- b) Find the Radon-Nikodym decomposition of μ_F with respect to m.

Hint: b) Use problem 2.2.25 on $(-\infty, 1)$ and on $(1, \infty)$.