uc3m <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">Universidad Carlos III de Madrid</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| Universidad Carlos III de Madrid |
| :--- | :--- |</table-markdown></div> Departamento de Matemáticas

Integration and Measure. Problems Chapter 2: Integration theory Section 2.5: L^{p}-spaces

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

2 Integration Theory

2.5. L^{p}-spaces

Problem 2.5.1 Let $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{k}$ be functions such that

$$
\varphi_{i} \in L^{p_{i}}(X, \mathcal{A}, \mu), \quad \frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}+\cdots+\frac{1}{p_{k}} \leq 1 .
$$

Then $\varphi_{1} \varphi_{2} \cdots \varphi_{k} \in L^{p}(X, \mathcal{A}, \mu)$ and $\left\|\varphi_{1} \varphi_{2} \cdots \varphi_{k}\right\|_{p} \leq\left\|\varphi_{1}\right\|_{p_{1}}\left\|\varphi_{2}\right\|_{p_{2}} \cdots\left\|\varphi_{k}\right\|_{p_{k}}$.
Hint: If $a_{1}, \cdots, a_{k} \geq 0$ and $\lambda_{1}+\cdots \lambda_{k}=1$, then $a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{k}^{\lambda_{k}} \leq \lambda_{1} a_{1}+\lambda_{2} a_{2}+\cdots+\lambda_{k} a_{k}$.
Problem 2.5.2 Let $0<p<r<q \leq \infty$ and let $\varphi \in L^{p}(X, \mathcal{A}, \mu) \cap L^{q}(X, \mathcal{A}, \mu)$.
a) Prove that $\varphi \in L^{r}(X, \mathcal{A}, \mu)$ and

$$
\|\varphi\|_{r} \leq\|\varphi\|_{p}^{\theta}\|\varphi\|_{q}^{1-\theta}, \quad \text { where } \frac{1}{r}=\frac{\theta}{p}+\frac{1-\theta}{q}
$$

b) Prove also that $L^{r}(\mu) \subset L^{p}(\mu)+L^{q}(\mu)$.
c) Prove that $\lim _{r \rightarrow \infty}\|\varphi\|_{r}=\|\varphi\|_{\infty}$.

Hints: a) If $q=\infty$, then $|\varphi|^{r}=|\varphi|^{r-p}|\varphi|^{p} \leq\|\varphi\|_{\infty}^{r-p}|\varphi|^{p}$ and $\frac{1}{r}=\frac{\theta}{p}$. If $q<\infty$, then $\frac{p}{\theta r}$ and $\frac{q}{(1-\theta) r}$ are conjugate exponents and $|\varphi|^{r}=|\varphi|^{\theta r}|\varphi|^{(1-\theta) r}$. Apply Hölder's inequality. b) If $A=\{x \in X:|\varphi(x)| \leq 1\}$, then $\varphi=\varphi \chi_{A}+\varphi \chi_{A^{c}}$. c) By letting $r \rightarrow \infty$ in $\|\varphi\|_{r} \leq\|\varphi\|_{p}^{\theta}\|\varphi\|_{\infty}^{1-\theta}$ deduce that $\lim \sup _{r \rightarrow \infty}\|\varphi\|_{r} \leq\|\varphi\|_{\infty}$. Also, we can suppose that $\|\varphi\|_{\infty}>a>0$. Use Markov's inequality to deduce that $\|\varphi\|_{r} \geq a \mu(\{x:|\varphi(x)|>a\})^{1 / r}$ and by letting $r \rightarrow \infty$ and $a \rightarrow\|\varphi\|_{\infty}$ deduce that $\liminf _{r \rightarrow \infty}\|\varphi\|_{r} \geq\|\varphi\|_{\infty}$.

Problem 2.5.3 Let (X, \mathcal{A}, μ) be a measure space. For some measures the relation $p<q$ implies $L^{p} \subset L^{q}$. For others the relationship is reversed and there are some measures for which L^{p} does no contain L^{q} for $p \neq q$. Give examples of these situations:
a) If $\mu(X)<\infty$ and $1 \leq p<q \leq \infty$, then $L^{p}(\mu) \supset L^{q}(\mu)$ and $\|f\|_{p} \leq\|f\|_{q} \mu(X)^{\frac{1}{p}-\frac{1}{q}}$.
b) If $0<p<q \leq \infty$, then $\ell^{p} \subset \ell^{q}$ and $\left\|x_{n}\right\|_{q} \leq\left\|x_{n}\right\|_{p}$.
c) Show that $L^{p}(\mathbb{R}, \mathcal{B}(\mathbb{R}), m) \nsubseteq L^{q}(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ for $p \neq q$.

Hints: a) Use Hölder's inequality. b) Use part a) of problem 2.5.2. c) Consider the function $f(x)=\left|x\left(\log ^{2}|x|+1\right)\right|^{-1 / p}$.

Problem 2.5.4 Let (X, \mathcal{A}, μ) be a measure space.
i) Prove that Hölder's inequality holds for the exponents $p=1$ and $q=\infty$: If f and g are measurable functions on X, then $\|f g\|_{1} \leq\|f\|_{1}\|g\|_{\infty}$.
ii) If $f \in L^{1}(\mu)$ and $g \in L^{\infty}(\mu)$, prove that $\|f g\|_{1}=\|f\|_{1}\|g\|_{\infty}$ iff $|g(x)|=\|g\|_{\infty}$ a.e. on the set where $f(x) \neq 0$.
iii) Prove that if $f \in L^{p}(\mu)$ and $g \in L^{\infty}(\mu)$, then $f g \in L^{p}(\mu)$ and $\|f g\|_{p} \leq\|f\|_{p}\|g\|_{\infty}$. When equality holds in this inequality?
iv) Prove that $\|\cdot\|_{\infty}$ is a norm on $L^{\infty}(\mu)$.
v) Prove that if $\mu(X)<\infty$ and $f \in L^{\infty}(\mu)$, then $f \in \cap_{p \geq 1} L^{p}(\mu)$. Prove that the reverse statement is false.
vi) Let $f \in L^{\infty}(\mu)$ and $\left\{f_{n}\right\}$ be a sequence in $L^{\infty}(\mu)$. Prove that $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ if and only if there exists $E \in \mathcal{A}$ such that $\mu\left(E^{c}\right)=0$ and $f_{n} \rightarrow f$ uniformly on E.
vii) The simple functions are dense in L^{∞} if $\mu(X)<\infty$: Each $f \in L^{\infty}$ can be approximated by a sequence of simple functions $\left\{s_{n}\right\} \subset L^{\infty}(\mu)$.

Hint: v) Consider the function $f(x)=\log x$ on $X=(0,1]$.

Problem 2.5.5 Let $1 \leq p<\infty$.
a) Show that if $\varphi \in L^{p}\left(\mathbb{R}^{N}\right)$ and φ is uniformly continuous, then $\lim _{|x| \rightarrow \infty} \varphi(x)=0$.
b) Show that this is false if one only assumes that φ is continuous.

Hint: a) Prove it by contradiction: if $\left\{x_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}^{N}$ is such that $\left|x_{n}\right| \rightarrow \infty$ and $\left|\varphi\left(x_{n}\right)\right| \geq$ $\delta>0$ for every n, then the uniform continuity of φ implies the existence of $R>0$ such that $|\varphi(x)| \geq \delta / 2$ in $B\left(x_{n}, R\right)$. Show that this yields $\int_{\mathbb{R}^{N}}|\varphi|^{p} d x=\infty$. b) Consider the function $\varphi(x)=\sum_{n=1}^{\infty} f_{n}(x-n)$, where

$$
f_{n}(x)= \begin{cases}n x+1, & \text { if }-1 / n \leq x \leq 0 \\ 1-n x, & \text { if } 0 \leq x \leq 1 / n \\ 0, & \text { if } x \notin(-1 / n, 1 / n)\end{cases}
$$

Problem 2.5.6 Suppose that $f_{n} \in L^{p}(\mu)$, for $n=1,2,3, \ldots$ and $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ and $f_{n} \rightarrow g$ a.e., as $n \rightarrow \infty$. What relation exists between f and g ?

Problem 2.5.7 Suppose $\mu(X)=1$, and suppose f and g are positive measurable functions on X such that $f g \geq 1$. Prove that

$$
\int_{X} f d \mu \cdot \int_{X} g d \mu \geq 1
$$

Hint: Use Cauchy-Schwarz ineguality.
Problem 2.5.8 Suppose $\mu(X)=1$ and $h: X \longrightarrow[0, \infty]$ is measurable. If $A:=\int_{X} h d \mu$, prove that

$$
\sqrt{1+A^{2}} \leq \int_{X} \sqrt{1+h^{2}} d \mu \leq 1+A
$$

If μ is Lebesgue measure on $[0,1]$ and h is continuous, $h=f^{\prime}$, the above inequalities have a simple geometric interpretation. From this, conjecture (for general X) under what conditions on h equality can hold in either of the above inequalities, and prove your conjecture.
Hint: The first inequality follows from Jensen's inequality. The second one follows from the inequality $\sqrt{1+x^{2}} \leq 1+x$ for $x \geq 0$.

Problem 2.5.9 Let f be a complex function, $f \neq 0$. Let us define the function $\varphi(p)=\|f\|_{p}^{p}$ for $0<p<\infty$ and let $E=\{p: \varphi(p)<\infty\}=\left\{p: f \in L^{p}(\mu)\right\}$. Prove that
a) If $r<p<s$ and $r, s \in E$, then $p \in E$.
b) $\log \varphi$ is convex in E.
c) Part a) implies that E is connected. Is E necessarily open? and closed? Can E be constituted by a single point? Can E be a any connected subset of $(0, \infty)$?
d) If $r<p<s$, then $\|f\|_{p} \leq \max \left\{\|f\|_{r},\|f\|_{s}\right\}$.

Hints: a) $t^{p} \leq \max \left(t^{r}, t^{s}\right) \leq t^{r}+t^{s}$. b) If $p=\lambda r+(1-\lambda) s$ with $0<\lambda<1$, apply Hölder's inequality (with the conjugate exponents $\alpha=1 / \lambda$ and $\beta=1 /(1-\lambda)$) to bound $\varphi(p)$ in terms of $\varphi(r)$ and $\varphi(s)$. d) Apply part b).

Problem 2.5.10* Let (X, \mathcal{A}, μ) be a probability space, i.e. $\mu(X)=1$.
a) Prove that if φ is strictly convex: $\varphi(\lambda x+(1-\lambda) y)<\lambda \varphi(x)+(1-\lambda) \varphi(y)$ for $0<\lambda<1$, then equality holds in Jensen's inequality,

$$
\varphi\left(\int_{X} f d \mu\right) \leq \int_{X}(\varphi \circ f) d \mu, \quad \text { for } f \in L^{1}(\mu)
$$

if and only if f is constant almost everywhere.
b) If $0<p<q \leq \infty$ prove that $\|f\|_{p} \leq\|f\|_{q}$.
c) Use part a) to prove that $\|f\|_{p}=\|f\|_{q}$ if and only if f is constant almost everywhere.
d) Assume that $\|f\|_{r}<\infty$ for some $r>0$, and prove that

$$
\lim _{p \rightarrow 0}\|f\|_{p}=\exp \left(\int_{X} \log |f| d \mu\right)
$$

if $\exp (-\infty)$ is defined to be 0 .

Hints: a) If $f \neq 0$ a.e., then there exists $c \in \mathbb{R}$ such that $A=\{x:|f(x)|>c\}$ has $0<\mu(A)<1$. Take $\lambda=\mu(A), x=\frac{1}{\lambda} \int_{A} f d \mu, y=\frac{1}{1-\lambda} \int_{A^{c}} f d \mu$ and apply Jensen's inequality. To bound $\varphi(x)$ and $\varphi(y)$ apply again Jensen's inequality. Finally, deduce that Jensen's inequality for this f is strict. b) Apply Jensen's inequality to the convex function $\varphi(x)=x^{t}$ with $t=q / p>1$. c) $\varphi(x)=x^{t}$ is strictly convex. d) Apply Jensen's inequality with $\varphi(x)=-\log x$ and use that $\log x \leq x-1$ for $x \in(0, \infty)$ and that $\left(t^{p}-1\right) / t \rightarrow \log t$ as $p \rightarrow 0$. Use a convergence theorem.

Problem 2.5.11** Suppose $1<p<\infty, f \in L^{p}((0, \infty), \mathcal{B}, m)$ and let us define

$$
F(x)=\frac{1}{x} \int_{0}^{x} f(t) d t \quad(0<x<\infty)
$$

a) Prove that the mapping $f \rightarrow F$ carries L^{p} into L^{p} and more concretely, prove Hardy's inequality:

$$
\|F\|_{p} \leq \frac{p}{p-1}\|f\|_{p}
$$

b) Prove that equality holds in Hardy's inequality iff $f=0$ almost everywhere.
c) Prove that the constant $p /(p-1)$ cannot be replaced by a smaller one.
d) If $f>0$ and $f \in L^{1}$, prove that $F \notin L^{1}$.

Hints: a) Assume first that $f \geq 0$ and $f \in C_{c}((0, \infty))$. Integration by parts gives

$$
\int_{0}^{\infty} F^{p}(x) d x=-p \int_{0}^{\infty} F^{p-1}(x) x F^{\prime}(x) d x
$$

Note that $x F^{\prime}=f-F$ and apply Hölder's inequality to $\int F^{p-1} f$. Then derive the general case. b) If equality holds for $f \geq 0$ deduce that we must have equality in

$$
\int_{0}^{\infty} F^{p}(x) d x=q \int_{0}^{\infty} f(x) F^{p-1} d x \leq q\|f\|_{p}\left(\int_{0}^{\infty} F^{p}(x) d x\right)^{1 / q}
$$

and therefore that $\exists \alpha \geq 0$ such that $\alpha f^{p}=F^{p}$, and from this that f is constant a.e. c) Take $f(x)=x^{-1 / p}$ on $[1, A], f(x)=0$ elsewhere, for large A. d) If $f \in L^{1}$ and $f \neq 0$ a.e., then $\exists x_{0}$ such that $\int_{0}^{x_{0}} f(t) d t>0$.

Problem 2.5.12 Let (X, \mathcal{A}, μ) be a measure space, $1 \leq p<\infty$ and let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of functions in $L^{p}(\mu)$ such that $f_{n} \rightarrow f$ almost everywhere, as $n \rightarrow \infty$.
a) If, for some $M \geq 0,\left\|f_{n}\right\|_{p} \leq M$ for all $n \in \mathbb{N}$, then $f \in L^{p}(\mu)$ and

$$
\|f\|_{p} \leq \liminf _{n \rightarrow \infty}\left\|f_{n}\right\|_{p}
$$

b) If, for some $F \in L^{p}(\mu),\left|f_{n}(x)\right| \leq|F(x)|$ for all $n \in \mathbb{N}$ and almost every $x \in X$, then $f \in L^{p}(\mu)$ and $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$.
c) Prove that b) is false for $p=\infty$.

Hints: a) Use Fatou's lemma. b) Use dominated convergence theorem. c) Consider the sequence $f_{n}=\chi_{(0,1 / n)}$ in $(0,1)$.
Problem 2.5.13* Let $0<p<\infty$ and $f, f_{n} \in L^{p}(X, \mathcal{A}, \mu)$.
a) If $1 \leq p \leq \infty$ and $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$, prove that $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$.
b) Let $c_{p}=\max \left\{1,2^{p-1}\right\}$. Prove that

$$
|a-b|^{p} \leq c_{p}\left(|a|^{p}+|b|^{p}\right)
$$

for arbitrary complex numbers a and b.
c) If $f_{n} \rightarrow f$ a.e. and $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$ as $n \rightarrow \infty$ prove that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0$.
d) Prove that the conclusion of c) is false if the hypothesis $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$ is removed, even if $\mu(X)<\infty$.
e) Prove that the conclusion of c) is false if $p=\infty$

Hint: a) Prove that $\left|\|f\|_{p}-\|g\|_{p}\right| \leq\|f-g\|_{p}$ for $f, g \in L^{p}(\mu)$. b) Prove the cases $0<p \leq 1$ and $1<p<\infty$ separately. For the first one, consider the function $\phi(x)=(x+y)^{p}-x^{p}-y^{p}$ for $x \geq 0$ and fixed $y \geq 0$ and prove that φ is decreasing. For the second case, consider the function $\psi(x)=2^{p-1}\left(x^{p}+y^{p}\right)-(x+y)^{p}$ for $x \geq 0$ and fixed $y \geq 0$ and prove that ψ has an absolute minimum when $x=y . c)$ Consider the function $h_{n}=c_{p}\left(|f|^{p}+\left|f_{n}\right|^{p}\right)-\left|f-f_{n}\right|^{p}$ and use Fatou's lemma as in the proof of the dominated convergence theorem.

