uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure. Problems

Chapter 2: Integration theory

Section 2.5: L^p-spaces

Professors:

Domingo Pestana Galván

José Manuel Rodríguez García

2 Integration Theory

2.5. L^p -spaces

Problem 2.5.1 Let $\varphi_1, \varphi_2, \ldots, \varphi_k$ be functions such that

$$\varphi_i \in L^{p_i}(X, \mathcal{A}, \mu), \qquad \frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_k} \le 1.$$

Then $\varphi_1 \varphi_2 \cdots \varphi_k \in L^p(X, \mathcal{A}, \mu)$ and $\|\varphi_1 \varphi_2 \cdots \varphi_k\|_p \leq \|\varphi_1\|_{p_1} \|\varphi_2\|_{p_2} \cdots \|\varphi_k\|_{p_k}$. *Hint:* If $a_1, \cdots, a_k \geq 0$ and $\lambda_1 + \cdots + \lambda_k = 1$, then $a_1^{\lambda_1} a_2^{\lambda_2} \cdots a_k^{\lambda_k} \leq \lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_k a_k$.

Problem 2.5.2 Let $0 and let <math>\varphi \in L^p(X, \mathcal{A}, \mu) \cap L^q(X, \mathcal{A}, \mu)$.

a) Prove that $\varphi \in L^r(X, \mathcal{A}, \mu)$ and

$$\|\varphi\|_r \le \|\varphi\|_p^{\theta} \|\varphi\|_q^{1-\theta}$$
, where $\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}$.

- b) Prove also that $L^r(\mu) \subset L^p(\mu) + L^q(\mu)$.
- c) Prove that $\lim_{r\to\infty} \|\varphi\|_r = \|\varphi\|_{\infty}$.

Hints: a) If $q = \infty$, then $|\varphi|^r = |\varphi|^{r-p} |\varphi|^p \le ||\varphi||_{\infty}^{r-p} |\varphi|^p$ and $\frac{1}{r} = \frac{\theta}{p}$. If $q < \infty$, then $\frac{p}{\theta r}$ and $\frac{q}{(1-\theta)r}$ are conjugate exponents and $|\varphi|^r = |\varphi|^{\theta r} |\varphi|^{(1-\theta)r}$. Apply Hölder's inequality. b) If $A = \{x \in X : |\varphi(x)| \le 1\}$, then $\varphi = \varphi \chi_A + \varphi \chi_{A^c}$. c) By letting $r \to \infty$ in $||\varphi||_r \le ||\varphi||_p^{\theta} ||\varphi||_{\infty}^{1-\theta}$ deduce that $\lim \sup_{r\to\infty} ||\varphi||_r \le ||\varphi||_{\infty}$. Also, we can suppose that $||\varphi||_{\infty} > a > 0$. Use Markov's inequality to deduce that $||\varphi||_r \ge a \, \mu(\{x : |\varphi(x)| > a\})^{1/r}$ and by letting $r \to \infty$ and $a \to ||\varphi||_{\infty}$ deduce that $\lim \inf_{r\to\infty} ||\varphi||_r \ge ||\varphi||_{\infty}$.

Problem 2.5.3 Let (X, \mathcal{A}, μ) be a measure space. For some measures the relation p < q implies $L^p \subset L^q$. For others the relationship is reversed and there are some measures for which L^p does no contain L^q for $p \neq q$. Give examples of these situations:

- a) If $\mu(X) < \infty$ and $1 \le p < q \le \infty$, then $L^p(\mu) \supset L^q(\mu)$ and $||f||_p \le ||f||_q \, \mu(X)^{\frac{1}{p} \frac{1}{q}}$.
- b) If $0 , then <math>\ell^p \subset \ell^q$ and $||x_n||_q \le ||x_n||_p$.
- c) Show that $L^p(\mathbb{R}, \mathcal{B}(\mathbb{R}), m) \not\subseteq L^q(\mathbb{R}, \mathcal{B}(\mathbb{R}), m)$ for $p \neq q$.

Hints: a) Use Hölder's inequality. b) Use part a) of problem 2.5.2. c) Consider the function $f(x) = |x(\log^2 |x| + 1)|^{-1/p}$.

Problem 2.5.4 Let (X, \mathcal{A}, μ) be a measure space.

- i) Prove that Hölder's inequality holds for the exponents p = 1 and $q = \infty$: If f and g are measurable functions on X, then $||fg||_1 \leq ||f||_1 ||g||_{\infty}$.
- ii) If $f \in L^1(\mu)$ and $g \in L^{\infty}(\mu)$, prove that $||fg||_1 = ||f||_1 ||g||_{\infty}$ iff $|g(x)| = ||g||_{\infty}$ a.e. on the set where $f(x) \neq 0$.
- iii) Prove that if $f \in L^p(\mu)$ and $g \in L^{\infty}(\mu)$, then $fg \in L^p(\mu)$ and $||fg||_p \leq ||f||_p ||g||_{\infty}$. When equality holds in this inequality?

- iv) Prove that $\|\cdot\|_{\infty}$ is a norm on $L^{\infty}(\mu)$.
- v) Prove that if $\mu(X) < \infty$ and $f \in L^{\infty}(\mu)$, then $f \in \bigcap_{p \ge 1} L^p(\mu)$. Prove that the reverse statement is false.
- vi) Let $f \in L^{\infty}(\mu)$ and $\{f_n\}$ be a sequence in $L^{\infty}(\mu)$. Prove that $||f_n f||_{\infty} \to 0$ if and only if there exists $E \in \mathcal{A}$ such that $\mu(E^c) = 0$ and $f_n \to f$ uniformly on E.
- vii) The simple functions are dense in L^{∞} if $\mu(X) < \infty$: Each $f \in L^{\infty}$ can be approximated by a sequence of simple functions $\{s_n\} \subset L^{\infty}(\mu)$.

Hint: v) Consider the function $f(x) = \log x$ on X = (0, 1].

Problem 2.5.5 Let $1 \le p < \infty$.

- a) Show that if $\varphi \in L^p(\mathbb{R}^N)$ and φ is uniformly continuous, then $\lim_{|x|\to\infty}\varphi(x)=0$.
- b) Show that this is false if one only assumes that φ is continuous.

Hint: a) Prove it by contradiction: if $\{x_n\}_{n=1}^{\infty} \subset \mathbb{R}^N$ is such that $|x_n| \to \infty$ and $|\varphi(x_n)| \ge \delta > 0$ for every n, then the uniform continuity of φ implies the existence of R > 0 such that $|\varphi(x)| \ge \delta/2$ in $B(x_n, R)$. Show that this yields $\int_{\mathbb{R}^N} |\varphi|^p dx = \infty$. b) Consider the function $\varphi(x) = \sum_{n=1}^{\infty} f_n(x-n)$, where

$$f_n(x) = \begin{cases} nx+1, & \text{if } -1/n \le x \le 0, \\ 1-nx, & \text{if } 0 \le x \le 1/n, \\ 0, & \text{if } x \notin (-1/n, 1/n). \end{cases}$$

Problem 2.5.6 Suppose that $f_n \in L^p(\mu)$, for n = 1, 2, 3, ... and $||f_n - f||_p \to 0$ and $f_n \to g$ a.e., as $n \to \infty$. What relation exists between f and g?

Problem 2.5.7 Suppose $\mu(X) = 1$, and suppose f and g are positive measurable functions on X such that $fg \ge 1$. Prove that

$$\int_X f \, d\mu \ \cdot \ \int_X g \, d\mu \geq 1 \, .$$

Hint: Use Cauchy-Schwarz ineguality.

Problem 2.5.8 Suppose $\mu(X) = 1$ and $h: X \longrightarrow [0, \infty]$ is measurable. If $A := \int_X h \, d\mu$, prove that

$$\sqrt{1+A^2} \le \int_X \sqrt{1+h^2} \, d\mu \le 1+A \, .$$

If μ is Lebesgue measure on [0, 1] and h is continuous, h = f', the above inequalities have a simple geometric interpretation. From this, conjecture (for general X) under what conditions on h equality can hold in either of the above inequalities, and prove your conjecture.

Hint: The first inequality follows from Jensen's inequality. The second one follows from the inequality $\sqrt{1+x^2} \le 1+x$ for $x \ge 0$.

Problem 2.5.9 Let f be a complex function, $f \neq 0$. Let us define the function $\varphi(p) = ||f||_p^p$ for $0 and let <math>E = \{p : \varphi(p) < \infty\} = \{p : f \in L^p(\mu)\}$. Prove that

- a) If $r and <math>r, s \in E$, then $p \in E$.
- b) $\log \varphi$ is convex in E.
- c) Part a) implies that E is connected. Is E necessarily open? and closed? Can E be constituted by a single point? Can E be a any connected subset of $(0, \infty)$?
- d) If $r , then <math>||f||_p \le \max\{||f||_r, ||f||_s\}$.

Hints: a) $t^p \leq \max(t^r, t^s) \leq t^r + t^s$. b) If $p = \lambda r + (1 - \lambda)s$ with $0 < \lambda < 1$, apply Hölder's inequality (with the conjugate exponents $\alpha = 1/\lambda$ and $\beta = 1/(1 - \lambda)$) to bound $\varphi(p)$ in terms of $\varphi(r)$ and $\varphi(s)$. d) Apply part b).

Problem 2.5.10^{*} Let (X, \mathcal{A}, μ) be a probability space, i.e. $\mu(X) = 1$.

a) Prove that if φ is strictly convex: $\varphi(\lambda x + (1 - \lambda)y) < \lambda \varphi(x) + (1 - \lambda)\varphi(y)$ for $0 < \lambda < 1$, then equality holds in Jensen's inequality,

$$\varphi\left(\int_X f \, d\mu\right) \le \int_X (\varphi \circ f) \, d\mu, \quad \text{for } f \in L^1(\mu)$$

if and only if f is constant almost everywhere.

- b) If $0 prove that <math>||f||_p \le ||f||_q$.
- c) Use part a) to prove that $||f||_p = ||f||_q$ if and only if f is constant almost everywhere.
- d) Assume that $||f||_r < \infty$ for some r > 0, and prove that

$$\lim_{p \to 0} \|f\|_p = \exp\left(\int_X \log|f| \, d\mu\right)$$

if $\exp(-\infty)$ is defined to be 0.

Hints: a) If $f \neq 0$ a.e., then there exists $c \in \mathbb{R}$ such that $A = \{x : |f(x)| > c\}$ has $0 < \mu(A) < 1$. Take $\lambda = \mu(A)$, $x = \frac{1}{\lambda} \int_A f \, d\mu$, $y = \frac{1}{1-\lambda} \int_{A^c} f \, d\mu$ and apply Jensen's inequality. To bound $\varphi(x)$ and $\varphi(y)$ apply again Jensen's inequality. Finally, deduce that Jensen's inequality for this f is strict. b) Apply Jensen's inequality to the convex function $\varphi(x) = x^t$ with t = q/p > 1. c) $\varphi(x) = x^t$ is strictly convex. d) Apply Jensen's inequality with $\varphi(x) = -\log x$ and use that $\log x \le x - 1$ for $x \in (0, \infty)$ and that $(t^p - 1)/t \to \log t$ as $p \to 0$. Use a convergence theorem.

Problem 2.5.11^{**} Suppose $1 , <math>f \in L^p((0, \infty), \mathcal{B}, m)$ and let us define

$$F(x) = \frac{1}{x} \int_0^x f(t) \, dt \qquad (0 < x < \infty).$$

a) Prove that the mapping $f \to F$ carries L^p into L^p and more concretely, prove Hardy's inequality:

$$||F||_p \le \frac{p}{p-1} ||f||_p.$$

- b) Prove that equality holds in Hardy's inequality iff f = 0 almost everywhere.
- c) Prove that the constant p/(p-1) cannot be replaced by a smaller one.
- d) If f > 0 and $f \in L^1$, prove that $F \notin L^1$.

Hints: a) Assume first that $f \ge 0$ and $f \in C_c((0,\infty))$. Integration by parts gives

$$\int_0^\infty F^p(x) \, dx = -p \int_0^\infty F^{p-1}(x) x F'(x) \, dx \, .$$

Note that xF' = f - F and apply Hölder's inequality to $\int F^{p-1}f$. Then derive the general case. b) If equality holds for $f \ge 0$ deduce that we must have equality in

$$\int_0^\infty F^p(x) \, dx = q \int_0^\infty f(x) F^{p-1} \, dx \le q \|f\|_p \Big(\int_0^\infty F^p(x) \, dx\Big)^{1/q}$$

and therefore that $\exists \alpha \geq 0$ such that $\alpha f^p = F^p$, and from this that f is constant a.e. c) Take $f(x) = x^{-1/p}$ on [1, A], f(x) = 0 elsewhere, for large A. d) If $f \in L^1$ and $f \neq 0$ a.e., then $\exists x_0$ such that $\int_0^{x_0} f(t) dt > 0$.

Problem 2.5.12 Let (X, \mathcal{A}, μ) be a measure space, $1 \le p < \infty$ and let $\{f_n\}_{n=1}^{\infty}$ be a sequence of functions in $L^p(\mu)$ such that $f_n \to f$ almost everywhere, as $n \to \infty$.

a) If, for some $M \ge 0$, $||f_n||_p \le M$ for all $n \in \mathbb{N}$, then $f \in L^p(\mu)$ and

$$\|f\|_p \le \liminf_{n \to \infty} \|f_n\|_p.$$

- b) If, for some $F \in L^p(\mu)$, $|f_n(x)| \leq |F(x)|$ for all $n \in \mathbb{N}$ and almost every $x \in X$, then $f \in L^p(\mu)$ and $||f_n f||_p \to 0$ as $n \to \infty$.
- c) Prove that b) is false for $p = \infty$.

Hints: a) Use Fatou's lemma. b) Use dominated convergence theorem. c) Consider the sequence $f_n = \chi_{(0,1/n)}$ in (0,1).

Problem 2.5.13^{*} Let $0 and <math>f, f_n \in L^p(X, \mathcal{A}, \mu)$.

- a) If $1 \le p \le \infty$ and $||f_n f||_p \to 0$ as $n \to \infty$, prove that $||f_n||_p \to ||f||_p$.
- b) Let $c_p = \max\{1, 2^{p-1}\}$. Prove that

$$|a-b|^p \le c_p (|a|^p + |b|^p)$$

for arbitrary complex numbers a and b.

- c) If $f_n \to f$ a.e. and $||f_n||_p \to ||f||_p$ as $n \to \infty$ prove that $\lim_{n\to\infty} ||f_n f||_p = 0$.
- d) Prove that the conclusion of c) is false if the hypothesis $||f_n||_p \to ||f||_p$ is removed, even if $\mu(X) < \infty$.
- e) Prove that the conclusion of c) is false if $p = \infty$

Hint: a) Prove that $|||f||_p - ||g||_p| \le ||f - g||_p$ for $f, g \in L^p(\mu)$. b) Prove the cases 0 $and <math>1 separately. For the first one, consider the function <math>\phi(x) = (x + y)^p - x^p - y^p$ for $x \ge 0$ and fixed $y \ge 0$ and prove that φ is decreasing. For the second case, consider the function $\psi(x) = 2^{p-1}(x^p + y^p) - (x + y)^p$ for $x \ge 0$ and fixed $y \ge 0$ and prove that ψ has an absolute minimum when x = y. c) Consider the function $h_n = c_p (|f|^p + |f_n|^p) - |f - f_n|^p$ and use Fatou's lemma as in the proof of the dominated convergence theorem.