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Integration and Measure. Problems

Chapter 3: Integrals depending on a parameter

Section 3.1: Continuity and differentiability
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3 Parametric integrals

3.1 Continuity and differentiability

Problem 3.1.1 Let f(x, y) = log(x2 + y2) for y ∈ (0, 1) and x > 0.

a) Prove that ϕ(x) =
∫ 1
0 f(x, y) dy is well defined and is derivable. Prove that ϕ′(x) =∫ 1

0
∂f
∂x dy and calculate ϕ′(x).

b) Prove that ϕ(x) is continuous at x0 = 0 and that ϕ(0) = −2.

c) Compute ϕ(x) integrating by parts.

Hint: f(x, ·) is continuous on [0, 1] for fixed x > 0. Besides
∣∣ ∂
∂x

[
f(x, y)

]∣∣ ≤ 2
x0
∈ L1(0, 1) for

x ≥ x0 > 0. Hence, F is derivable on (x0,∞) for all x0 > 0 and so it is derivable on (0,∞).

Problem 3.1.2 Let F,G : R −→ R defined as

F (x) =

(∫ x

0
e−t

2
dt

)2

and G(x) =

∫ 1

0

e−x
2(1+t2)

1 + t2
dt .

Prove that:

a) F ′(x)+G′(x) = 0, for all x ∈ R. Justify why you can apply the theorem on differentiation
of parametric integrals.

b) F (x) +G(x) = π/4, for all x ∈ R.

c) Deduce that

∫ ∞
0

e−t
2
dt =

√
π/2.

Hints: a)
∣∣ ∂
∂x

[
e−x

2(1+t2)

1+t2

]∣∣ = |2xe−x2(1+t2)| ≤ 2 ∈ L1[0, 1] for x ∈ R. c) Let x → ∞ in b) by
applying monotone convergence.

Problem 3.1.3 Calculate F (s) =

∫ ∞
0

e−x sin(sx) dx, and, justifying all the steps, from the

obtained result calculate

G(s) =

∫ ∞
0

x e−x cos(sx) dx .

Hints: Use integration by parts to evaluate F (s); G(s) is derivable since
∣∣ ∂
∂s

[
e−x sin(sx)

]∣∣ ≤
x e−x ∈ L1(0,∞).

Problem 3.1.4

a) Assuming that we can apply the Fundamental Theorem of Calculus and the theorem on
parametric derivation, prove that:

F (x) =

∫ f(x)

a
g(x, t) dt =⇒ F ′(x) = g(x, f(x)) f ′(x) +

∫ f(x)

a

∂g

∂x
(x, t) dt .

b) Prove that ∫ π/(4a)

0

x

cos2ax
dx =

1

2a2

(π
2
− log 2

)
, for a > 0.
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Hints: a) Consider the function G(u, v) =
∫ v
a g(u, t) dt and apply the chain rule. b) Use the

previous part to calculate the derivative of
∫ π/(4a)
0 tan ax dx with respect to a.

Problem 3.1.5 Prove that

J(a) =

∫ a

0

dx

(a2 + x2)2
=
π + 2

8a3
, for a > 0.

Hint:
∣∣ ∂
∂a

[
1

x2+a2

]∣∣ = 2a
(x2+a2)2

≤ 2M
(x2+ε2)2

∈ L1(0,∞) for a ∈ [ε,M ].

Problem 3.1.6 Let F (α) =

∫ ∞
0

e−αx − e−x

x
dx.

a) Study when the integral converges.

b) Calculate F ′(α) explicitly and then calculate F (α).

c) Obtain the successive derivatives F (k)(α) and calculate

∫ ∞
0

xne−xdx.

Hints: a) limx→0+
e−αx−e−x

x = 1 − α and so,
∫ 1
0
e−ax−e−x

x dx < ∞. Also,
∫∞
1

∣∣ e−αx−e−x
x

∣∣ dx ≤∫∞
0 (e−αx + e−x) dx < ∞ if α > 0. b)

∣∣ ∂
∂α

[
e−αx−e−x

x

]∣∣ ≤ e−α0x ∈ L1(0,∞) for α > α0 > 0
and so F is derivable on (α0,∞) for all α0 > 0. c) Derive both members of the identity
F ′(α) = −

∫∞
0 e−αxdx = −1/α.

Problem 3.1.7 Prove that for a > 0 and b > 0:

F (a, b) =

∫ ∞
0

(e−a
2/x2 − e−b2/x2) dx =

√
π(b− a) .

Hint:
∣∣ ∂
∂a

[
e−a

2/x2 − e−b2/x2
]∣∣ ≤ 2a

x2
e−a

2
0/x

2 ∈ L1(0,∞) for a ≥ a0 > 0. Hence, F is derivable on

[a0,∞) for all a0 > 0 and so it is derivable on (0,∞). To compute ∂
∂aF (a, b) change variables to

t = 1/x. Recall that
∫∞
0 e−t

2
dt =

√
π/2 and observe that F (a, a) = 0.

Problem 3.1.8 Explain in the following cases why we can differentiate the parametric integral
and why they are well-defined. Obtain explicitly the function deriving with respect to the
parameter and integrating later with respect to it:

i) F (s) =

∫ π/2

0
log

(
1 + s cosx

1− s cosx

)
dx

cosx
, with |s| < 1.

ii) G(a) =

∫ ∞
0

log

(
1 +

a2

x2

)
dx, with a ∈ R.

iii) H(p) =

∫ 1

0

xp − 1

log x
dx, with p > −1.

iv) I(λ) =

∫ π/2

0

log(1− λ2 sin2x)

sinx
dx, with |λ| < 1.

v) K(x) =

∫ ∞
0

e−t
2−x2/t2dt, with x ∈ R.
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Hints: i)
∣∣ ∂
∂s

[
log
(
1+s cosx
1−s cosx

)
1

cosx

]∣∣ ≤ 2
1−s2

0
cos2x

∈ L1(0, π/2) if |s| ≤ s0 < 1. ii) Since G is an even

function, it is enough to consider the case a ≥ 0;
∣∣ ∂
∂a

[
log(1 + a2

x2
)
]∣∣∣ = 2|a|

x2+a2
≤ 2M

x2+ε2
∈ L1(0,∞)

if |a| ∈ [ε,M ]. iii)
∣∣ ∂
∂p

[
xp−1
log x

]∣∣ = xp ∈ L1(0, 1) since p > −1. iv)
∣∣ ∂
∂λ

[ log(1−λ2 sin2x)
sinx

]∣∣ =
2|λ|| sinx|
1−λ2 sin2x ≤

2
1−λ0 sin2x

∈ L1(0, π/2) if |λ| < λ0 < 1. v)
∣∣ ∂
∂x

[
e−t

2−x2/t2]∣∣ ≤ 2M
t2

(e−t
2
χ

[1,∞)
(t) +

e−ε
2/t2χ

(0,1)
(t)) ∈ L1(0,∞) if |x| ∈ [ε,M ]. To compute K ′(x) change variables to s = x/t and

prove that K ′(x) = −2K(x). Note that K(x) is even and so it is enough to compute it for x ≥ 0.

Problem 3.1.9 Obtain explicitly the function F (t) justifying all the steps:

F (t) =

∫ ∞
0

e−tx
sinx

x
dx , ∀ t > 0 .

Hint: As
∣∣ ∂
∂t

[
e−tx sinx

x

]∣∣ ≤ e−tx ≤ e−εx ∈ L1(0,∞) for t ∈ (ε,∞), we have that F (t) is derivable
on (ε,∞) for all ε > 0 and so it is derivable on (0,∞).

Problem 3.1.10 Prove that ∫ ∞
0

1− e−x
2

x2
dx =

√
π.

Hint: Consider the function F (t) =
∫∞
0

1−e−tx2

x2
dx for t > 0 and proceed in a similar way to the

previous problems.

Problem 3.1.11 Let F (λ) =

∫ ∞
0

dx

x2 + λ
. Write the derivatives of F , and later prove that for

all λ > 0, ∫ ∞
0

dx

(x2 + λ)n+1
=

1 · 3 · · · (2n− 1)

2nn!

π

2λn+1/2
=

(2n)!π

(n!)2(2
√
λ )2n+1

.

Hints: First of all, it is easy to calculate F (λ) and then all its derivatives F (n)(λ). Also,∣∣ ∂
∂λ

[
1

x2+λ

]∣∣ = 1
(x2+λ)2

≤ 1
(x2+λ0)2

∈ L1(0,∞) for λ > λ0 > 0. Hence, F is derivable on (λ0,∞)

for all λ0 > 0 and so it is derivable on (0,∞). Similarly, we can see that F is infinitely
derivable on (0,∞), and its derivatives can be calculated by parametric derivation: F (n)(λ) =∫∞
0

∂n

∂λn

[
1

x2+λ

]
dx.

Problem 3.1.12 Let

F (x) =

∫ 2x

0

log(1 + 2xt)

1 + t2
dt , x ≥ 0 .

a) Check that F is derivable on (0,∞) and prove that

F ′(x) =
log(1 + 4x2)

1 + 4x2
+

4x

1 + 4x2
arctan 2x .

b) Using the previous part, prove that

F (x) = log
√

1 + 4x2 arctan 2x .
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Hints: a)
∣∣ ∂
∂x

[ log(1+2xt)
1+t2

]∣∣ ≤ 2t
(1+t2)(1+2x0t)

∈ L1(0,∞), for x > x0 > 0. Hence, F is derivable on

(x0,∞) for all x0 > 0 and so it is derivable on (0,∞). To calculate F ′(x) use decomposition on
simple fractions. b) Integrate by parts.

Problem 3.1.13∗ Prove that ∫ π

0

log(1 + cosx)

cosx
dx =

π2

2
,

calculating first

F (t) :=

∫ π

0

log(1 + t cosx)

cosx
dx for |t| ≤ 1 .

Hints:
∣∣ ∂
∂t

[ log(1+t cosx)
cosx

]∣∣ = 1
1+t cosx which is continuous for |t| < 1, and so it belongs to L1(0, π).

This means that F (t) is derivable on (−1, 1). Compute F (t) by using parametric derivation
and calculate F ′(t) = π/

√
1− t2 (change variables to u = tan(x/2)). Now, if 0 ≤ t ≤ 1, we

have that f(x, t) = log(1+t cosx)
cosx verifies, for x ∈ [0, π/2), that f(x, t) ≤ log(1+cosx)

cosx which is
continuous at x = π/2 and so it belongs to L1[0, π/2), and for x ∈ (π/2, π) that f(x, t) ≤
g(x) := 1

| cosx| log 1
1−| cosx| . But g(x) is continuous at x = π/2 and log 1

1−| cosx| ∈ L1[π/2, π)

since limx→π−
log(1+cosx)
(π−x)−ε = 0 for each ε > 0. Hence, F (t) is continuous on [0, 1] and F (1) =

limt→1− F (t).

Problem 3.1.14∗ Let us consider the function

F (x) =

∫ 1

0

(log(1− xt))2

t
dt.

a) Find the values of x such that F (x) is defined.

b) Calculate F ′(x) justifying why you can derive. Evaluate the resulting integral.

c) Study the increasing and decreasing intervals of F .

Hints: a) As limz→0+(log(1 − z))/z = 1 we have log(1 − z) ≤ Cz for 0 < z < δ. As

limz→0+ z
ε log z = 0 we have | log z| ≤ z−ε for 0 < z < δ′. b) If x < x0 < 1, then ∂

∂x

( (log(1−xt))2
t

)
≤

2 1
1−x0t log 1

1−x0t which is continuous for t ∈ [0, 1]. To evaluate F ′, integrate by parts.

Solution: a) F (x) < ∞ for x ∈ (−∞, 1]. b) F is derivable for x ∈ (−∞, 1) and F ′(x) =
(log(1− x))2/x. c) F decreases on (−∞, 0) and increases on (0, 1).

Problem 3.1.15∗∗ Given a > 0, b > 0, prove that∫ ∞
0

cos ax− cos bx

x2
dx =

π

2
(b− a) .

Hints: Consider the function f(x, t) = cos ax−cos bx
x2

e−tx. Then
∣∣ ∂
∂tf(x, t)

∣∣ ≤ | cos ax−cos bx|x e−t0x ∈
L1(0,∞) for t ≥ t0 > 0. Hence, F (t) =

∫∞
0 f(x, t) dx is derivable on (0,∞). Even more, as∣∣ ∂2

∂t2
f(x, t)

∣∣ ≤ 2e−t0x ∈ L1(0,∞) for t ≥ t0 > 0, we also have that F (t) is twice derivable on

(0,∞). Also, as |f(x, t)| ≤ | cos ax−cos bx|
x2

∈ L1(0,∞) for t ≥ 0, we have that F is continuous
on [0,∞) and so, F (0) = limt→0+ F (t). To compute F ′′(t), integrate by parts and prove that

F ′′(t) = t
t2+a2

− t
t2+b2

. Hence, F ′(t) = log
√

t2+a2

t2+b2
+ c1. By dominated convergence we have

that limt→∞ F
′(t) = 0 and so we deduce that c1 = 0. Integrate again by parts to obtain

F (t) = t log
√

t2+a2

t2+b2
+ a arctan t

a − b arctan t
b + c2. Finally, again by dominated convergence

limt→∞ F (t) = 0 and so c2 = π
2 (b− a), since limt→∞ t log t2+a2

t2+b2
= 0 by L’Hopital Rule.


