uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Integration and Measure

Chapter 1: Measure theory Section 1.1: Measurable spaces

Professors: Domingo Pestana Galván José Manuel Rodríguez García

1 Measure Theory

1.1. Measurable spaces

1.1.1 Measurability: Topological spaces versus Measurable spaces

Definition 1.1 A collection \mathcal{T} of subsets of a set X is said to be a <u>topology</u> on X and also (X, \mathcal{T}) is said to be a <u>topological space</u>, if

- (a) $\emptyset \in \mathcal{T}, X \in \mathcal{T}.$
- (b) If $V_1, V_2, \ldots, V_n \in \mathcal{T}$ then $V_1 \cap V_2 \cap \cdots \cap V_n \in \mathcal{T}$.
- (c) If $\{V_{\alpha}\}_{\alpha \in A}$ is an arbitrary collection of members of \mathcal{T} , then $\bigcup_{\alpha \in A} V_{\alpha} \in \mathcal{T}$.

The members of \mathcal{T} are called <u>open sets.</u>

Example 1.2 (1) $X = \overline{\mathbb{R}} = [-\infty, \infty]$; the open sets are (a, b), $[-\infty, a)$, $(b, \infty]$ and any union of sets of these types.

(2) Given a <u>metric space</u>, i.e. a set X with a <u>distance</u> function $d: X \times X \longrightarrow [0, \infty)$ verifying:

- $d(x,y) = 0 \Leftrightarrow x = y.$
- d(x,y) = d(y,x) for all $x, y \in X$.
- $d(x,y) \le d(x,z) + d(z,y)$ for all $x, y, z \in X$.

Given $x \in X$, r > 0, the <u>open ball with center x and radius r</u> is: $B(x,r) = \{x \in X : d(x,y) < r\}$. The collection of all sets that are arbitrary unions of open balls is a topology on X.

(3) For example $X = \mathbb{R} = (-\infty, \infty)$ is a metric space with the distance d(x, y) = |x - y|. The open balls are the intervals (a, b) and so the open sets are the arbitrary unions of intervals (a, b).

Definition 1.3 (Global continuity) Let (X, \mathcal{T}) , (Y, \mathcal{T}') be topological spaces and let $f : X \longrightarrow Y$ be a mapping. We say that f is <u>continuous</u> if $f^{-1}(V) \in \mathcal{T}$ for all $V \in \mathcal{T}'$.

A <u>neighborhood</u> of a point in a topological space is an open set containing it.

Definition 1.4 (Local continuity) f is <u>continuous at $x_0 \in X$ </u> if for all neighborhood V of $f(x_0)$ in Y, there exist a neighborhood W of x_0 in X with $f(W) \subseteq V$.

For metric spaces this definition of (local) continuity is equivalent to the usual $\varepsilon - \delta$ definition.

Proposition 1.5 Let (X, \mathcal{T}) , (Y, \mathcal{T}') be topological spaces. Then, a mapping $f : X \longrightarrow Y$ is continuous if and only if f is continuous at every $x \in X$.

Definition 1.6 A collection \mathcal{A} of subsets of a set X is said to be a <u> σ -algebra</u> on X, if

- (a) $\emptyset \in \mathcal{A}$.
- (b) If $A \in \mathcal{A}$, then $A^c = X \setminus A \in \mathcal{A}$.
- (c) If $\{A_j\}_{j\in\mathbb{N}}$ is a countable collection of members of \mathcal{A} , then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$.

The pair (X, \mathcal{A}) is called a <u>measurable space</u> and the members of \mathcal{A} are called <u>measurable sets</u>. If property (c) is verified only for finite unions, then \mathcal{A} is called an <u>algebra</u>.

Example 1.7 Consider any set X.

(1) The <u>power set</u> $\mathcal{P}(X)$ of X (the set of all subsets of X) is a σ -algebra on X.

(2) $\{\emptyset, X\}$ is a σ -algebra on X.

Definition 1.8 Let (Y, \mathcal{T}) be a topological space, (X, \mathcal{A}) be a measurable space and let $f : X \longrightarrow Y$ be a mapping. We say that f is <u>measurable</u> if $f^{-1}(V) \in \mathcal{A}$ for all $V \in \mathcal{T}$.

Proposition 1.9 Let (X, \mathcal{A}) be a measurable space. Then

- i) $X \in \mathcal{A}$.
- ii) $A_1, \ldots, A_n \in \mathcal{A} \implies \bigcup_{j=1}^n A_j \in \mathcal{A}.$
- iii) $\{A_j\}_{j\in\mathbb{N}}\subset\mathcal{A}\implies\cap_{j=1}^{\infty}A_j\in\mathcal{A}.$
- iv) $A, B \in \mathcal{A} \implies A \setminus B \in \mathcal{A}$.

Proposition 1.10 Let $S \subset \mathcal{P}(X)$. Then

$$\sigma(\mathcal{S}) = \mathcal{A}_{\mathcal{S}} = \bigcap \{ \mathcal{A} : \mathcal{A} \text{ is } \sigma\text{-algebra}, \mathcal{S} \subseteq \mathcal{A} \subseteq \mathcal{P}(X) \}$$

is a σ -algebra. It is called the $\underline{\sigma}$ -algebra generated by \underline{S} .

Special Case: If (X, \mathcal{T}) is a topological space, the σ -algebra generated by \mathcal{T} , i.e. by the open sets, is called the <u>Borel σ -algebra</u> $\mathcal{B}(X)$ and its members are called the <u>Borel sets</u>. Examples of Borel sets are open sets, closed sets and unions and intersections of a countable number of open or closed sets.

Proposition 1.11 Let (Y, \mathcal{T}_Y) , (Z, \mathcal{T}_Z) be topological spaces and let $g: Y \longrightarrow Z$ be a continuous mapping.

- i) If (X, \mathcal{T}_X) is a topological space and $f: X \longrightarrow Y$ is continuous, then $h = g \circ f$ is continuous.
- ii) If (X, \mathcal{A}) is a measurable space and $f: X \longrightarrow Y$ is measurable, then $h = g \circ f$ is measurable.

Proposition 1.12 Let $u, v : X \longrightarrow \mathbb{R}$ be real measurable functions on a measurable space (X, \mathcal{A}) . Let $\Phi : Imag(u, v) \subseteq \mathbb{R}^2 \longrightarrow Y$ be a continuous mapping into (Y, \mathcal{T}) topological space. Then $h = \Phi(u, v) : X \longrightarrow Y$ is measurable.

- **Corollary 1.13** Let $u, v : X \longrightarrow \mathbb{R}$ be measurable functions, $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function. Then: u + v, uv, $|u|^{\alpha}$ ($\alpha > 0$), $\varphi \circ u$, 1/u (if $u(x) \neq 0$ for all $x \in X$) are measurable functions.
 - If f = u + iv and $u, v : X \longrightarrow \mathbb{R}$ are measurable, then $f : X \longrightarrow \mathbb{C}$ is measurable.
 - If f = u + iv is measurable with $u, v : X \longrightarrow \mathbb{R}$, then u, v, |f| are real measurable functions.
 - The first part also holds if we replace \mathbb{R} by \mathbb{C} .

1.1.2. Upper and lower limits

Definition 1.14 Let $\{a_n\}$ be a sequence in $\mathbb{R} = [-\infty, \infty] = \mathbb{R} \cup \{-\infty\} \cup \{\infty\}$. Then the sequence $b_k := \sup\{a_k, a_{k+1}, \ldots\}$ is monotonically decreasing: $b_1 \ge b_2 \ge \cdots$. Therefore:

$$\exists \beta := \lim_{n \to \infty} b_n = \inf_{n \in \mathbb{N}} b_n$$

We call β the <u>upper limit of the sequence</u> $\{a_n\}$ and write

$$\beta = \limsup_{n \to \infty} a_n = \lim_{k \to \infty} \sup\{a_j : j \ge k\}.$$

The *lower limit* is defined similarly (only interchange the symbols sup, inf in the above definition).

- The upper limit is the largest number which is limit of a subsequence $\{a_{n_j}\}$ of $\{a_n\}$ and the lower limit is the smallest number with this property. Both numbers always exist.
- It is easy to see that if $\{a_n\}$ converges then

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} a_n = \liminf_{n \to \infty} a_n \,.$$

Definition 1.15 Let $\{f_n\}$ be a sequence of functions $f_n : X \longrightarrow \overline{\mathbb{R}}$. Then, $\sup_n f_n$, $\inf_n f_n$, $\limsup_{n \to \infty} f_n$, $\liminf_{n \to \infty} f_n$ are the functions:

$$(\sup_{n} f_{n})(x) = \sup_{n} f_{n}(x), \qquad (\limsup_{n \to \infty} f_{n})(x) = \limsup_{n \to \infty} f_{n}(x), \qquad \forall x \in X,$$

$$(\inf_{n} f_{n})(x) = \inf_{n} f_{n}(x), \qquad (\liminf_{n \to \infty} f_{n})(x) = \liminf_{n \to \infty} f_{n}(x), \qquad \forall x \in X.$$

If there exists $\lim_{n\to\infty} f_n(x)$ we define the function $f = \lim_{n\to\infty} f_n$ on the set of points where the convergence holds and we say that f is the *pointwise limit* of f_n on that set.

Theorem 1.16 If $f_n: X \longrightarrow \overline{\mathbb{R}}$ are measurable functions for $n = 1, 2, 3, \ldots$, then

$$\sup_{n} f_n, \inf_{n} f_n, \limsup_{n \to \infty} f_n, \liminf_{n \to \infty} f_n$$

are measurable functions. As a corollary, the limit $\lim_{n\to\infty} f_n$, if there exists, is a measurable function.

Corollary 1.17 If $f, g: X \longrightarrow \overline{\mathbb{R}}$ are measurable functions, then $\max\{f, g\}$ and $\min\{f, g\}$ are also measurable functions. In particular

$$f^+ = \max\{f, 0\}, \qquad f^- = -\min\{f, 0\}$$

are positive measurable functions. Let us observe that $f = f^+ - f^-$, $|f| = f^+ + f^-$.