uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Integration and Measure

Chapter 1: Measure theory. Section 1.2: Measure spaces

Professors:

Domingo Pestana Galván José Manuel Rodríguez García

1 Measure Theory

1.2. Measure spaces

Definition 1.1 Let (X, \mathcal{A}) be a measurable space. A set function $\mu : \mathcal{A} \longrightarrow [0, \infty]$ is called a (*positive*) <u>measure</u> on X if the following two conditions hold:

- a) $\mu(\emptyset) = 0.$
- b) μ is countably additive, i.e. if $\{A_i\}_{i=1}^{\infty}$ is a disjoint countable collection of members of \mathcal{A} , then

$$\mu\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} \mu(A_i).$$

We also say that (X, \mathcal{A}, μ) is a <u>measure space</u>. A <u>real measure</u> (respectively, complex measure) is a set function $\mu : \mathcal{A} \longrightarrow \mathbb{R}$ (respectively, $\mu : \mathcal{A} \longrightarrow \mathbb{C}$) verifying properties a)-b).

Theorem 1.2 Let (X, \mathcal{A}, μ) be a measure space.

1) If
$$A_1, \ldots, A_n \in \mathcal{A}$$
 and are disjoint, then $\mu\left(\bigcup_{j=1}^n A_j\right) = \sum_{j=1}^n \mu(A_j)$.

- 2) If $A, B \in \mathcal{A}, A \subseteq B$, then $\mu(A) \leq \mu(B)$ and, if $\mu(A) < \infty$, then $\mu(B \setminus A) = \mu(B) \mu(A)$.
- 3) If $\{A_j\}_{j=1}^{\infty} \subset \mathcal{A}$, then $\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mu(A_i)$.
- 4) If $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_n \subseteq \cdots$ and $\{A_n\} \subseteq \mathcal{A}$, then

$$\mu\Big(\bigcup_{n=1}^{\infty} A_n\Big) = \lim_{n \to \infty} \mu(A_n) \,.$$

5) If $A_1 \supseteq A_2 \supseteq \cdots \supseteq A_n \supseteq \cdots$, $\{A_n\} \subseteq \mathcal{A}$ and $\mu(A_1) < \infty$, then

$$\mu\Big(\bigcap_{n=1}^{\infty}A_n\Big) = \lim_{n \to \infty}\mu(A_n)$$

Example 1.3 1) Let X be any set, $\mathcal{A} = \mathcal{P}(X)$ and a function $p: X \longrightarrow [0, \infty]$. The function p is called a <u>weight function</u> and p(x) the <u>weight</u> of x. If $A \subseteq X$, we define

$$\mu(A) = \sum_{x \in A} p(x) := \sup_{\{x_1, \dots, x_n\} \subseteq A} \sum_{j=1}^n p(x_j).$$

Then μ is a measure, the <u>measure defined by the weight function p(x)</u>. Two important particular cases are the following ones:

- If p(x) = 1 for all $x \in X$, then $\mu(A) = \operatorname{card}(A)$ and μ is called the <u>counting measure of X</u>.
- If p(x) = 1 for x = a and p(x) = 0 otherwise, then $\mu(A) = 1$ if $a \in A$ and $\mu(A) = 0$ if $a \notin A$. In this case, μ is called the <u> δ -Dirac measure concentrated at a</u>.

2) Let $X = \mathbb{N}$, $A_n = \{n, n+1, n+2, ...\}$ and let us consider the counting measure on X. Then $\bigcap_n A_n = \emptyset$ but $\mu(A_n) = \infty$ for all $n \in \mathbb{N}$. This example shows that the hypothesis $\mu(A_1) < \infty$ is necessary in the last part of Theorem 1.2.

An important property of measure spaces is completeness, which is defined as follows:

Definition 1.4 Let (X, \mathcal{A}, μ) be a measure space. We say that (X, \mathcal{A}, μ) is <u>complete</u> or that μ is a <u>complete measure</u> if:

$$N \subseteq A \in \mathcal{A}, \ \mu(A) = 0 \implies N \in \mathcal{A} \quad \text{and} \quad \mu(N) = 0$$

The sets N are called the <u>null sets</u> for the measure μ .

Theorem 1.5 (Completion of a measure space) Let (X, \mathcal{A}, μ) be a measure space and let

$$\mathcal{N} := \{ N \subseteq X : N \subseteq B \in \mathcal{A}, \ \mu(B) = 0 \}$$

Then

- 1) $\overline{\mathcal{A}} := \{A \cup N : A \in \mathcal{A}, N \in \mathcal{N}\}$ is a σ -algebra.
- 2) $\bar{\mu}: \bar{\mathcal{A}} \longrightarrow [0,\infty]$ given by $\bar{\mu}(A \cup N) = \mu(A)$ is well-defined and is a measure (extending μ).
- 3) $(X, \overline{A}, \overline{\mu})$ is complete and is called the completion of (X, A, μ) .

Definition 1.6 (True almost everywhere properties).

We say that a property is <u>true almost everywhere</u> if the set of points where the property does not hold has zero measure. We shall use the notation a.e. for "almost everywhere".

Remark 1.7 To allow the use of ∞ in Measure Theory the following conventions are used: 1) $a + \infty = \infty + a = \infty$ for $0 \le a \le \infty$. 2) $a \cdot \infty = \infty \cdot a = \infty$ for $0 < a \le \infty$, but $0 \cdot \infty = \infty \cdot 0 = 0$!!! 3) Cancelation laws: $a + b = a + c \implies b = c$ only if $-\infty < a < \infty$,

 $ab = ac \implies b = c$ only if $0 < a < \infty$.