# uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

# **Integration and Measure**

Chapter 1: Measure theory. Section 1.3: Construction of measures

**Professors:** 

Domingo Pestana Galván José Manuel Rodríguez García



## 1 Measure Theory

### 1.3. Construction of measures

#### 1.3.1. Outer measures

**Definition 1.1** An <u>outer measure</u> is a set function  $\mu^* : \mathcal{P}(X) \longrightarrow [0, \infty]$  verifying:

- (1)  $\mu^*(\emptyset) = 0.$
- (2)  $A \subseteq B \implies \mu^*(A) \le \mu^*(B).$
- (3) If  $\{A_j\}$  is a collection of subsets of X then:  $\mu^*\left(\bigcup_{j=1}^{\infty} A_j\right) \leq \sum_{j=1}^{\infty} \mu^*(A_j).$

We are trying to find a collection  $\mathcal{M} \subseteq \mathcal{P}(\mathcal{X})$  such that  $\mu^*|_{\mathcal{M}}$  is a measure. The following theorem gives an original solution:

#### Theorem 1.2 (Caratheodory's theorem)

Let  $\mu^*$  be an outer measure on X. A subset  $M \subseteq X$  is said to be  $\mu^*$ -measurable if

$$\mu^*(A) = \mu^*(A \cap M) + \mu^*(A \setminus M), \qquad \forall A \subseteq X$$

Let  $\mathcal{M} = \{ M \subseteq X : M \text{ is } \mu^*\text{-measurable} \}$ . Then

- i)  $\mathcal{M}$  is a  $\sigma$ -algebra.
- *ii)*  $\mu = \mu^*|_{\mathcal{M}}$  *is a complete measure.*

Hence, in order to construct measures we must construct outer measures: a simpler problem!!!

**Definition 1.3** A collection  $\mathcal{E} \subseteq \mathcal{P}(\mathcal{X})$  is said to be a <u>semi-algebra</u> if

- (1)  $\varnothing \in \mathcal{E}$ .
- (2)  $E, F \in \mathcal{E} \implies E \cap F \in \mathcal{E}.$
- (3)  $E \in \mathcal{E} \implies E^c = F_1 \cup F_2 \cup \cdots \cup F_n$  where  $F_j \in \mathcal{E}$  and are disjoint.

**Example 1.4** If  $X = \mathbb{R}$ , then the family  $\mathcal{E}$  of semi-open intervals of type [a, b),  $[a, \infty)$ ,  $(-\infty, b)$  and  $(-\infty, \infty)$  is a semi-algebra.

**Definition 1.5** Let  $\mathcal{E}$  be a semi-algebra. A set function  $\mu_0 : \mathcal{E} \longrightarrow [0, \infty)$  is said to be <u>countably additive</u> if

$$\{E_j\}_{j=1}^{\infty} \subseteq \mathcal{E} \quad \text{disjoint}, \quad \bigcup_{j=1}^{\infty} E_j \in \mathcal{E} \implies \mu_0 \Big(\bigcup_{j=1}^{\infty} E_j\Big) = \sum_{j=1}^{\infty} \mu_0(E_j).$$

#### Theorem 1.6 (Caratheodory-Hopf's extension theorem)

Let  $\mathcal{E} \subseteq \mathcal{P}(\mathcal{X})$  be a semi-algebra and  $\mu_0 : \mathcal{E} \longrightarrow [0, \infty)$  be a countably additive function. Let us define for all  $A \in \mathcal{P}(X)$ :

$$\mu^*(A) = \inf\left\{\sum_{j=1}^{\infty} \mu_0(E_j): E_j \in \mathcal{E}, A \subseteq \bigcup_{j=1}^{\infty} E_j\right\}.$$

Then:

- 1)  $\mu^*$  is an outer measure and  $\mu = \mu^*|_{\mathcal{M}}$  is a complete measure which is an extension of  $\mu_0$ , i.e.  $\mu^*(E) = \mu_0(E)$  for all  $E \in \mathcal{E}$ .
- 2) If  $\mu_0$  is  $\sigma$ -finite (i.e. if  $X = \bigcup_{i=1}^{\infty} X_i$  with  $\mu_0(X_i) < \infty$ ), then

- 2.a)  $\mu$  is the unique measure which is an extension of  $\mu_0$  to  $\sigma(\mathcal{E})$ .
- 2.b)  $\mathcal{M} = \overline{\sigma(\mathcal{E})}$ , i.e.  $\mathcal{M}$  is the completion relative to  $\mu$  of  $\sigma(\mathcal{E})$ .

#### 1.3.2. Lebesgue measure

A <u>semi-open interval in  $\mathbb{R}$ </u> is an interval of one of the types [a, b),  $[a, \infty)$ ,  $(-\infty, b)$  or  $(-\infty, \infty)$ . A <u>semi-open interval in  $\mathbb{R}^n$ </u> is a set of the type  $I = I_1 \times \cdots \times I_n$ , where each  $I_j$  is a semi-open interval in  $\mathbb{R}$ .

**Proposition 1.7** The collection  $\mathcal{E}$  of all semi-open intervals in  $\mathbb{R}^n$  is a semi-algebra and  $\sigma(\mathcal{E}) = \mathcal{B}(\mathbb{R}^n)$ .

**Definition 1.8** Let  $I = I_1 \times \cdots \times I_n$  be a semi-open interval in  $\mathbb{R}^n$ . We define the <u>elemental measure</u> of I as:

 $\mu_0(I) = (b_1 - a_1) \cdots (b_n - a_n), \quad \text{where } I_j = [a_j, b_j).$ 

If some  $I_j$  is not bounded then we define  $\mu_0(I) = \infty$  and if  $I_j = \emptyset$  for some j, then  $\mu_0(I) = 0$ .

It can be proved that  $\mu_0$  is countably additive and  $\sigma$ -finite. Hence, by Caratheodory-Hopf's extension theorem

**Theorem 1.9** There exists a unique measure space  $(\mathbb{R}^n, \mathcal{M}, m)$  such that  $\mathcal{M} = \overline{\mathcal{B}(\mathbb{R}^n)}$  and  $m|_{\mathcal{E}} = \mu_0$ . In particular,

- i) For all  $M \in \mathcal{M}$ ,  $M = B \cup N$  where  $B \in \mathcal{B}(\mathbb{R}^n)$  and m(N) = 0.
- ii) For all  $N \in \mathcal{M}$  with m(N) = 0 there exists  $A \in \mathcal{B}(\mathbb{R}^n)$  with  $N \subseteq A$  and  $\mu(A) = 0$ .

This unique measure m is called the <u>Lebesgue measure</u> on  $\mathbb{R}^n$ .

#### **Remarks:**

N = {N ∈ M : m(N) = 0}.
{N<sub>j</sub>}<sub>j=1</sub><sup>∞</sup> ⊆ N ⇒ U<sub>j=1</sub><sup>∞</sup> N<sub>j</sub> ∈ N.
a ∈ ℝ<sup>n</sup> ⇒ {a} ∈ N
A ⊆ ℝ<sup>n</sup> countable ⇒ A ∈ N.
There exist non-countable sets in N. For example, the Cantor ternary set.
If H ⊆ ℝ<sup>n</sup> is a translated (n − 1)-dimensional hyperplane, then m(H) = 0.
B(ℝ<sup>n</sup>) ⊆ M ⊆ P(ℝ<sup>n</sup>).
If A ⊂ ℝ<sup>n</sup> is an open set, then m(A) > 0.
If K ⊂ ℝ<sup>n</sup> is a compact set, then m(K) < ∞.</li>
m is regular, i.e. for all A ∈ M,

$$m(A) = \inf\{m(V) : A \subset V \text{ open}\} = \sup\{m(K) : K \subset A \text{ compact}\}.$$

If X is a topological space with its Borel  $\sigma$ -algebra, we say that a measure  $\mu$  on X is a <u>Radon measure</u> if every compact set has finite  $\mu$ -measure.

**Theorem 1.10** Lebesgue measure is the unique (up to multiplicative constants) translations-invariant Radon measure on  $\mathbb{R}^n$ :

i)  $(\mathbb{R}^n, \mathcal{M}, m)$  is translations-invariant, i.e.

 $A \in \mathcal{M}, \ a \in \mathbb{R}^n \implies a + A \in \mathcal{M} \ and \ m(a + A) = m(A).$ 

ii) If  $\mu : \mathcal{M} \longrightarrow [0, \infty]$  is a Radon measure which is translations-invariant, then  $\mu = k m$  for some positive constant k.

#### 1.3.3. Borel-Stieltjes measures on $\mathbb{R}$

What are the Radon measures on  $\mathcal{B}(\mathbb{R})$ ? Let us observe that the function  $g(t) := \mu((-\infty, t))$  is increasing and  $\mu([a, b)) = g(b) - g(a)$ . These equations allow to determine g from  $\mu$  and vice versa.

**Theorem 1.11** Let  $g : \mathbb{R} \longrightarrow \mathbb{R}$  be an increasing function. Then, there exists a unique Radon measure  $\mu : \mathcal{B}(\mathbb{R}) \longrightarrow [0, \infty]$  such that  $\mu([a, b)) = g(b^-) - g(a^-)$ . This measure  $\mu = \mu_g$  is called the Borel-Stieltjes measure with distribution function g.

Here  $g(x_0^-) = \lim_{x \to x_0^-} g(x)$ .

**Remark 1.12** An increasing function  $g : \mathbb{R} \longrightarrow \mathbb{R}$  only can be discontinuous on a countable set. By defining  $\tilde{g}(t) = g(t^{-})$  we obtain an increasing function which also is left-continuous and as

$$\mu_q([a,b)) = g(b^-) - g(a^-) = \tilde{g}(b) - \tilde{g}(a) = \mu_{\tilde{g}}([a,b))$$

applying Caratheodory-Hopf's theorem we deduce that  $\mu_q = \mu_{\tilde{q}}$ .

**Theorem 1.13** If  $\mu : \mathcal{B}(\mathbb{R}) \longrightarrow [0, \infty]$  is a Radon measure, then there exists an increasing and leftcontinuous function  $g: \mathbb{R} \longrightarrow \mathbb{R}$  such that  $\mu = \mu_g$ . Besides, g is unique up to add constants.

**Example 1.14** 1) If g(t) = t then  $\mu_g = m$  with m the Lebesgue measure on  $\mathbb{R}$ . 2) If  $g = \chi_{(0,\infty)}$  then  $\mu_g = \delta_0$ , the  $\delta$ -Dirac measure concentrated at x = 0.

#### 1.3.4. Image measure

Let  $(X, \mathcal{A}, \mu)$  be a measure space and let  $\Phi : X \longrightarrow Y$  be a mapping. We define:

$$\mathcal{B} = \Phi(\mathcal{A}) := \{ B \subseteq Y : \Phi^{-1}(B) \in \mathcal{A} \},\$$

and the set function:  $\nu = \Phi(\mu) : \mathcal{B} \longrightarrow [0, \infty]$  given by  $\nu(B) = \mu(\Phi^{-1}(B))$  for  $B \in \mathcal{B}$ .

**Theorem 1.15**  $(Y, \mathcal{B}, \nu)$  is a measure space. It is complete if  $(X, \mathcal{A}, \mu)$  is. It is called the <u>image measure</u> space of  $(X, \mathcal{A}, \mu)$ .

#### Examples

1) Let  $g : \mathbb{R} \longrightarrow \mathbb{R}$  be continuous and strictly increasing. Therefore g is injective and it has continuous inverse  $g^{-1}$  (in fact, g is a homeomorphism). Then  $g^{-1}(m) = \mu_g$ , i.e. the image measure by  $g^{-1}$  of Lebesgue measure coincides with the Borel-Stieltjes measure with distribution function g.

2)  $g: (0,\infty) \longrightarrow \mathbb{R}$  given by  $g(t) = \log t$ . Then  $\mu_g = g^{-1}(m) = e^m$  is rotations-invariant.

3) The (n-1)-dimensional Lebesgue measure  $\sigma$  on the sphere  $S_{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$  of  $\mathbb{R}^n$  is defined as a image measure on the following way: let us consider the projection mapping  $\pi : B_n \setminus \{0\} \longrightarrow S_{n-1}$ given by  $\pi(x) = x/||x||$ . Here  $B_n = \{x \in \mathbb{R}^n : ||x|| < 1\}$  is the *n*-dimensional open ball. Then we define:  $\sigma = n \cdot \pi(m)$  where *m* denotes the Lebesgue measure on  $B_n$ . Hence

$$\sigma(U) = n m(\pi^{-1}(U)), \qquad \forall U \in \mathcal{B}(S_{n-1}).$$

This measure  $\sigma$  is rotations-invariant.

#### 1.3.5. Product measure

Let  $(X, \mathcal{A}, \mu)$  and  $(Y, \mathcal{B}, \nu)$  be  $\sigma$ -finite measure spaces.

**Definition 1.16** Let  $X \times Y := \{(x, y) : x \in X, y \in Y\}$ . The *product*  $\sigma$ -algebra is defined as

 $\mathcal{A} \otimes \mathcal{B} := \sigma(\mathcal{E}), \qquad \mathcal{E} = \{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\}.$ 

**Theorem 1.17** There exists a unique measure  $\mu \otimes \nu : \mathcal{A} \otimes \mathcal{B} \longrightarrow [0, \infty]$  such that

 $(\mu \otimes \nu)(A \times B) = \mu(A) \nu(B), \quad \forall A \in \mathcal{A}, \forall B \in \mathcal{B}.$ 

**Definition 1.18** The product measure space of  $(X, \mathcal{A}, \mu)$  and  $(Y, \mathcal{B}, \nu)$  is  $(X \times Y, \overline{\mathcal{A} \otimes \mathcal{B}}, \mu \otimes \nu)$ .

**Proposition 1.19** The product measure space of the Lebesgue measure spaces on  $\mathbb{R}^k$  and  $\mathbb{R}^{n-k}$  is the Lebesgue measure space on  $\mathbb{R}^n$ .