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1 Measure Theory

1.3. Construction of measures

1.3.1. Outer measures

Definition 1.1 An outer measure is a set function µ∗ : P(X) −→ [0,∞] verifying:

(1) µ∗(∅) = 0.

(2) A ⊆ B =⇒ µ∗(A) ≤ µ∗(B).

(3) If {Aj} is a collection of subsets of X then: µ∗
( ∞⋃

j=1

Aj

)
≤
∞∑
j=1

µ∗(Aj).

We are trying to find a collection M⊆ P(X ) such that µ∗|M is a measure. The following theorem gives
an original solution:

Theorem 1.2 (Caratheodory’s theorem)
Let µ∗ be an outer measure on X. A subset M ⊆ X is said to be µ∗-measurable if

µ∗(A) = µ∗(A ∩M) + µ∗(A \M) , ∀A ⊆ X .

Let M = {M ⊆ X : M is µ∗-measurable}. Then

i) M is a σ-algebra.

ii) µ = µ∗|M is a complete measure.

Hence, in order to construct measures we must construct outer measures: a simpler problem!!!

Definition 1.3 A collection E ⊆ P(X ) is said to be a semi-algebra if

(1) ∅ ∈ E .

(2) E,F ∈ E =⇒ E ∩ F ∈ E .

(3) E ∈ E =⇒ Ec = F1 ∪ F2 ∪ · · · ∪ Fn where Fj ∈ E and are disjoint.

Example 1.4 If X = R, then the family E of semi-open intervals of type [a, b), [a,∞), (−∞, b) and
(−∞,∞) is a semi-algebra.

Definition 1.5 Let E be a semi-algebra. A set function µ0 : E −→ [0,∞) is said to be countably additive
if

{Ej}∞j=1 ⊆ E disjoint,

∞⋃
j=1

Ej ∈ E =⇒ µ0

( ∞⋃
j=1

Ej

)
=

∞∑
j=1

µ0(Ej) .

Theorem 1.6 (Caratheodory-Hopf’s extension theorem)
Let E ⊆ P(X ) be a semi-algebra and µ0 : E −→ [0,∞) be a countably additive function. Let us define for
all A ∈ P(X):

µ∗(A) = inf
{ ∞∑

j=1

µ0(Ej) : Ej ∈ E , A ⊆
∞⋃
j=1

Ej

}
.

Then:

1) µ∗ is an outer measure and µ = µ∗|M is a complete measure which is an extension of µ0, i.e.
µ∗(E) = µ0(E) for all E ∈ E.

2) If µ0 is σ-finite (i.e. if X = ∪∞j=1Xj with µ0(Xj) <∞), then
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2.a) µ is the unique measure which is an extension of µ0 to σ(E).

2.b) M = σ(E), i.e. M is the completion relative to µ of σ(E).

1.3.2. Lebesgue measure
A semi-open interval in R is an interval of one of the types [a, b), [a,∞), (−∞, b) or (−∞,∞). A semi-
open interval in Rn is a set of the type I = I1 × · · · × In, where each Ij is a semi-open interval in R.

Proposition 1.7 The collection E of all semi-open intervals in Rn is a semi-algebra and σ(E) = B(Rn).

Definition 1.8 Let I = I1× · · · × In be a semi-open interval in Rn. We define the elemental measure of
I as:

µ0(I) = (b1 − a1) · · · (bn − an) , where Ij = [aj , bj) .

If some Ij is not bounded then we define µ0(I) =∞ and if Ij = ∅ for some j, then µ0(I) = 0.

It can be proved that µ0 is countably additive and σ-finite. Hence, by Caratheodory-Hopf’s extension
theorem

Theorem 1.9 There exists a unique measure space (Rn,M,m) such that M = B(Rn) and m|E = µ0.
In particular,

i) For all M ∈M, M = B ∪N where B ∈ B(Rn) and m(N) = 0.

ii) For all N ∈M with m(N) = 0 there exists A ∈ B(Rn) with N ⊆ A and µ(A) = 0.

This unique measure m is called the Lebesgue measure on Rn.

Remarks:
1) N = {N ∈M : m(N) = 0}.
2) {Nj}∞j=1 ⊆ N =⇒

⋃∞
j=1Nj ∈ N .

3) a ∈ Rn =⇒ {a} ∈ N
4) A ⊆ Rn countable =⇒ A ∈ N .
5) There exist non-countable sets in N . For example, the Cantor ternary set.
6) If H ⊆ Rn is a translated (n− 1)-dimensional hyperplane, then m(H) = 0.
7) B(Rn) (M ( P(Rn).
8) If A ⊂ Rn is an open set, then m(A) > 0.
9) If K ⊂ Rn is a compact set, then m(K) <∞.
10) m is regular, i.e. for all A ∈M,

m(A) = inf{m(V ) : A ⊂ V open} = sup{m(K) : K ⊂ A compact}.

If X is a topological space with its Borel σ-algebra, we say that a measure µ on X is a Radon measure
if every compact set has finite µ-measure.

Theorem 1.10 Lebesgue measure is the unique (up to multiplicative constants) translations-invariant
Radon measure on Rn:

i) (Rn,M,m) is translations-invariant, i.e.

A ∈M, a ∈ Rn =⇒ a+A ∈M and m(a+A) = m(A) .

ii) If µ : M −→ [0,∞] is a Radon measure which is translations-invariant, then µ = km for some
positive constant k.

1.3.3. Borel-Stieltjes measures on R
What are the Radon measures on B(R)? Let us observe that the function g(t) := µ

(
(−∞, t)

)
is increasing

and µ([a, b)) = g(b)− g(a). These equations allow to determine g from µ and vice versa.
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Theorem 1.11 Let g : R −→ R be an increasing function. Then, there exists a unique Radon measure
µ : B(R) −→ [0,∞] such that µ([a, b)) = g(b−)− g(a−). This measure µ = µg is called the Borel-Stieltjes
measure with distribution function g.

Here g(x−0 ) = lim
x→x−0

g(x).

Remark 1.12 An increasing function g : R −→ R only can be discontinuous on a countable set. By
defining g̃(t) = g(t−) we obtain an increasing function which also is left-continuous and as

µg([a, b)) = g(b−)− g(a−) = g̃(b)− g̃(a) = µg̃([a, b))

applying Caratheodory-Hopf’s theorem we deduce that µg = µg̃ .

Theorem 1.13 If µ : B(R) −→ [0,∞] is a Radon measure, then there exists an increasing and left-
continuous function g : R −→ R such that µ = µg. Besides, g is unique up to add constants.

Example 1.14 1) If g(t) = t then µg = m with m the Lebesgue measure on R.
2) If g = χ

(0,∞)
then µg = δ0, the δ-Dirac measure concentrated at x = 0.

1.3.4. Image measure
Let (X,A, µ) be a measure space and let Φ : X −→ Y be a mapping. We define:

B = Φ(A) := {B ⊆ Y : Φ−1(B) ∈ A} ,

and the set function: ν = Φ(µ) : B −→ [0,∞] given by ν(B) = µ(Φ−1(B)) for B ∈ B.

Theorem 1.15 (Y,B, ν) is a measure space. It is complete if (X,A, µ) is. It is called the image measure
space of (X,A, µ).

Examples

1) Let g : R −→ R be continuous and strictly increasing. Therefore g is injective and it has continuous
inverse g−1 (in fact, g is a homeomorphism). Then g−1(m) = µg, i.e. the image measure by g−1 of
Lebesgue measure coincides with the Borel-Stieltjes measure with distribution function g.

2) g : (0,∞) −→ R given by g(t) = log t. Then µg = g−1(m) = em is rotations-invariant.

3) The (n−1)-dimensional Lebesgue measure σ on the sphere Sn−1 = {x ∈ Rn : ‖x‖ = 1} of Rn is defined
as a image measure on the following way: let us consider the projection mapping π : Bn \ {0} −→ Sn−1
given by π(x) = x/‖x‖. Here Bn = {x ∈ Rn : ‖x‖ < 1} is the n-dimensional open ball. Then we define:
σ = n · π(m) where m denotes the Lebesgue measure on Bn. Hence

σ(U) = nm(π−1(U)) , ∀U ∈ B(Sn−1) .

This measure σ is rotations-invariant.

1.3.5. Product measure
Let (X,A, µ) and (Y,B, ν) be σ-finite measure spaces.

Definition 1.16 Let X × Y := {(x, y) : x ∈ X, y ∈ Y }. The product σ-algebra is defined as

A⊗ B := σ
(
E
)
, E = {A×B : A ∈ A, B ∈ B} .

Theorem 1.17 There exists a unique measure µ⊗ ν : A⊗ B −→ [0,∞] such that

(µ⊗ ν)(A×B) = µ(A) ν(B) , ∀A ∈ A,∀B ∈ B .

Definition 1.18 The product measure space of (X,A, µ) and (Y,B, ν) is (X × Y,A⊗ B, µ⊗ ν).

Proposition 1.19 The product measure space of the Lebesgue measure spaces on Rk and Rn−k is the
Lebesgue measure space on Rn.
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