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2 Integration theory

2.1. Integration of positive functions

2.1.1. Simple functions

A simple function on a measure space (X,A, µ) is a measurable function whose range consists of only
finitely many points. In other words, a simple function s : X −→ R is given by

s =

n∑
j=1

cj χAj
, with cj ∈ R, Aj ∈ A .

Theorem 2.1 Let f : X −→ [0,∞] be a positive measurable function. Then, there exists simple positive
measurable functions {sn}∞n=1 such that

(1) 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ · · · ≤ f .

(2) sn(x)→ f(x) as n→∞, ∀x ∈ X.

Besides, if f is bounded then sn → f uniformly.

This crucial result gives as a method to prove results about measurable functions: 1) to prove it for
characteristic functions; 2) to prove it for simple functions; 3) to prove it for positive functions by passing
to the limit; 4) to prove it for real functions using that f = f+ − f−. For example:

Corollary 2.2 Let f, g : X −→ R be measurable functions and λ ∈ R (or λ ∈ C). Then λf , f + g, fg
and 1/f are measurable functions.

2.1.2. Positive functions

Let (X,A, µ) be a measure space and let f be a positive bounded function: 0 ≤ f ≤ H. Let us do a
partition of the range of f : [0, H] = ∪j [cj−1, cj). Then, it is easy to check that

s :=
∑
j

cj−1 χf−1([cj−1,cj))
≤ f ≤ t :=

∑
j

cj χf−1([cj−1,cj))
,

and then it has sense to write:∫
X

s dµ :=
∑
j

cj−1 µ(f−1([cj−1, cj))) ≤
∫
X

f dµ ≤
∑
j

cj µ(f−1([cj−1, cj))) =:

∫
X

t dµ .

Therefore we see that we could approximate the integral
∫
X
f by upper and lower sums like in the

Riemann integral, but now the integral is more general because we are using measurable sets instead of
only intervals (in the Riemann integral we approximate by simple functions of type

∑
j cj χIj

with Ij
intervals. As we will see, this approach will allow us to obtain good convergence results.

Definition 2.3 Let s =

n∑
j=1

cj χAj
be a measurable simple function. We define the integral of s as

∫
X

s =

∫
X

s dµ :=

n∑
j=1

cj µ(Aj)

and if E ∈ A: ∫
E

s =

∫
E

s dµ :=

n∑
j=1

cj µ(Aj ∩ E) .
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Now, if f : X −→ [0,∞] is a positive measurable function, we define its integral as∫
E

f =

∫
E

f dµ := sup
0≤s≤f

∫
E

s

where the supremum is extended over all the simple functions s such that 0 ≤ s ≤ f .

Therefore, every measurable positive function has Lebesgue integral. The value of the integral can be
zero, positive or infinite. We say that f is Lebesgue-integrable if

∫
X
f <∞.

Properties of the Lebesgue integral.
Let f, g ≥ 0 be measurable functions, A,B,E ∈ A, λ ≥ 0. Then

(1)
∫
E
f =

∫
X
f χ

E
.

(2)
∫
E

(f + g) =
∫
E
f +

∫
E
g.

(3)
∫
E
λ f = λ

∫
E
f .

(4) f ≤ g =⇒
∫
E
f ≤

∫
E
g.

(5) A ⊆ B =⇒
∫
A
f ≤

∫
B
f .

(6)
∫
E
f = 0 ⇐⇒ f = 0 almost everywhere on E, i.e. µ({x ∈ E : f(x) 6= 0}) = 0.

(7) µ(E) = 0 =⇒
∫
E
f = 0.

(8) A ∩B = ∅ =⇒
∫
A∪B f =

∫
A
f +

∫
B
f .

In fact, we have more:

Proposition 2.4 Let f, g ≥ 0 be measurable functions. Then

f ≤ g a.e. =⇒
∫
X

f ≤
∫
X

g .

In particular, if f = g a.e. then
∫
X
f =

∫
X
g.

2.1.3. Lebesgue’s monotone convergence theorem and Fatou’s lemma

Theorem 2.5 (Monotone convergence theorem). Let {fn}∞n=1 be a sequence of measurable func-
tions such that

0 ≤ f1(x) ≤ f2(x) ≤ · · · ≤ ∞ , ∀x ∈ X .

Then ∫
X

lim
n→∞

fn = lim
n→∞

∫
X

fn .

This result has a lot of consequences. For example:

Corollary 2.6 Let {fn}∞n=1 be a sequence of positive measurable functions and

f(x) :=

∞∑
n=1

fn(x) x ∈ X .

Then ∫
X

f dµ =

∞∑
n=1

∫
X

fn dµ .
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Corollary 2.7 If aij ≥ 0 for i, j ∈ N, then:
∞∑
i=1

∞∑
j=1

aij =

∞∑
j=1

∞∑
i=1

aij .

Theorem 2.8 (Fatou’s lemma).
Let {fn}∞n=1 be a sequence of positive measurable functions. Then∫

X

lim inf
n→∞

fn ≤ lim inf
n→∞

∫
X

fn .

2.1.4. Measures defined by a density

Let (X,A, µ) be a measure space and f : X −→ [0,∞] be a positive measurable function. Let us define

ϕ(E) :=

∫
E

f dµ , ∀E ∈ A .

Then, ϕ is a measure on A, and∫
X

g dϕ =

∫
X

gf dµ , ∀ g : X −→ [0,∞] measurable.

This fact justifies the notation dϕ = f dµ. This measure is said to be defined by the density function f .
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