uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Integration and Measure

Chapter 2: Integration theory Section 2.2: Integration of general functions

Professors:

Domingo Pestana Galván José Manuel Rodríguez García

2 Integration theory

2.2. Integration of general functions

Definition 2.1 Let (X, \mathcal{A}, μ) be a measure space. The space $L^1(\mu)$ is the collection of all complex measurable functions $f: X \longrightarrow \mathbb{C}$ such that

$$\int_X |f| \, d\mu < \infty \, .$$

The elements of $L^1(\mu)$ are called <u>Lebesgue-integrable functions</u>.

Definition 2.2 If $f: X \longrightarrow \overline{\mathbb{R}} = [-\infty, \infty]$ is integrable, we define for $E \in \mathcal{A}$

$$\int_E f = \int_E f^+ - \int_E f^-$$

If $f: X \longrightarrow \mathbb{C}$ is a measurable function and f = u + iv, we call $u, v: X \longrightarrow \mathbb{R}$ the real and imaginary parts of f. If, in addition, $f \in L^1(\mu)$, then we define for $E \in \mathcal{A}$,

$$\int_E f = \int_E u + i \int_E v \,.$$

Since, $u^+, u^- \leq |u| \leq |f|$ and $v^+, v^- \leq |v| \leq |f|$, the four integrals $\int_E u^+, \int_E u^-, \int_E v^+, \int_E v^-$ are finite and therefore $\int_E f$ is well defined.

Proposition 2.3 If $f \in L^1(\mu)$, then: $\left| \int_X f \, d\mu \right| \leq \int_X |f| \, d\mu$.

Corollary 2.4 $L^{1}(\mu)$ is a complex vector space, i.e. if $f, g \in L^{1}(\mu)$ and $\alpha, \beta \in \mathbb{C}$, then $\alpha f + \beta g \in L^{1}(\mu)$ and

$$\int_{E} (\alpha f + \beta g) = \alpha \int_{E} f + \beta \int_{E} g, \qquad \forall E \in \mathcal{A}.$$

2.2.1. Lebesgue's dominated convergence theorem

Theorem 2.5 (Dominated convergence theorem). Let $\{f_n\}_{n=1}^{\infty}$ be a sequence of complex measurable functions such that $f_n(x) \to f(x)$ as $n \to \infty$ a.e. on X. If there exists a function $F \in L^1(\mu)$ such that

$$|f_n(x)| \le F(x), \quad \forall n \in \mathbb{N}, a.e. x \in X,$$

then $f \in L^1(\mu)$,

$$\lim_{n \to \infty} \int_X |f_n - f| \, d\mu = 0 \qquad and \qquad \lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu \, .$$

This crucial theorem has a lot of consequences. For example:

Corollary 2.6 (Uniform convergence theorem) Let (X, \mathcal{A}, μ) be a finite space measure: $\mu(X) < \infty$. Let $\{f_n\}$ be a sequence of integrable functions such that $f_n(x) \to f(x)$ uniformly on X. Then $f \in L^1(\mu)$ and

$$\int_X f \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu \, .$$

Corollary 2.7 Let (X, \mathcal{A}, μ) be a measure space and let $f_n : X \longrightarrow \mathbb{R}$ be a sequence of measurable functions such that

$$\sum_{n=1}^{\infty} \int_{X} |f_n| \, d\mu < \infty$$

Then:

a) The series $\sum_n f_n$ converges almost everywhere on X to a function $f: X \longrightarrow \mathbb{R}$:

$$\sum_{n=1}^{\infty} f_n(x) = f(x), \quad \text{for almost all } x \in X.$$

b) $f \in L^1(\mu)$.

c)
$$\int_X f d\mu = \sum_{n=1}^{\infty} \int_X f_n d\mu$$
.

2.2.2. Integration with respect to discrete measures

Let $(X, \mathcal{P}(X), \mu)$ be a measure space with X countable, $X = \{x_n\}_{n=1}^{\infty}$ and μ be the discrete measure defined as:

$$\mu(\{x_n\}) = p_n$$
, $\mu(A) = \sum_{x_n \in A} p_n$, $(p_n \ge 0)$.

Let $f: X \longrightarrow \mathbb{C}$ be a complex function.

- a) If $f \ge 0$, then $\int_X f d\mu = \sum_{n=1}^{\infty} f(x_n) p_n$.
- b) $f \in L^1(\mu)$ if and only if $\sum_{n=1}^{\infty} |f(x_n)| p_n < \infty$, and in this case,

$$\int_X f \, d\mu = \sum_{n=1}^\infty f(x_n) \, p_n \, .$$

2.2.3. Integration with respect to image measures

Let (X, \mathcal{A}, μ) be a measure space and $\Phi : X \longrightarrow Y$ be a mapping. Let us consider the image measure space (Y, \mathcal{B}, ν) by Φ $(\mathcal{B} = \Phi(\mathcal{A})$ and $\nu = \mu \circ \Phi^{-1})$ Let $f : Y \longrightarrow \mathbb{C}$ be a function. Then

- a) f is \mathcal{B} -measurable if and only if $f \circ \Phi$ is \mathcal{A} -measurable.
- b) If $f \ge 0$ is \mathcal{B} -measurable, then $\int_Y f \, d\nu = \int_X (f \circ \Phi) \, d\mu$.
- c) If f is \mathcal{B} -measurable, then $f \in L^1(\nu)$ if and only if $f \circ \Phi \in L^1(\mu)$, and in this case

$$\int_Y f \, d\nu = \int_X (f \circ \Phi) \, d\mu \, .$$

2.2.4. Integration with respect to measures defined by densities

Let (X, \mathcal{A}, μ) be a measure space and let $\rho : X \longrightarrow [0, \infty]$ be a positive measurable function. Let us consider the measure defined by the density ρ :

$$\nu(A) = \int_A \rho \, d\mu, \qquad A \in \mathcal{A}.$$

Then:

a) If $f \ge 0$ is measurable, then $\int_X f \, d\nu = \int_X f \rho \, d\mu$.

b) If $f: X \longrightarrow \mathbb{C}$ is measurable, then: $f \in L^1(\nu)$ if and only if $\int_X |f| \rho \, d\mu < \infty$, and in this case

$$\int_X f \, d\nu = \int_X f \rho \, d\mu \, .$$

2.2.5. Integration with respect to Borel-Stieltjes measures

Let $g : \mathbb{R} \longrightarrow \mathbb{R}$ be an increasing derivable function with bounded derivative g' on each compact set. Let us consider the Borel-Stieltjes measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), m_g)$. Then $m_g = g'dm$, that is to say that the Borel-Stieltjes measure m_g coincides with the measure defined by the density g' and therefore for all $f : \mathbb{R} \longrightarrow \mathbb{R}, f \in L^1(m_g)$, we have

$$\int_{\mathbb{R}} f \, dm_g = \int_{\mathbb{R}} fg' \, dm = \int_{\mathbb{R}} f(t) \, g'(t) \, dt$$

2.2.6. Integration with respect to Lebesgue measure on \mathbb{R}^n

Let us consider the Lebesgue measure space $(\mathbb{R}^n, \mathcal{M}, m)$ where \mathcal{M} is the σ -algebra of Lebesgue-measurable sets and m is the Lebesgue measure. Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}$ be a measurable function. Then

a) If $f \ge 0$ or if $f \in L^1(m)$, then

a.1)
$$\int_{\mathbb{R}^n} f(a+x) \, dx = \int_{\mathbb{R}^n} f(x) \, dx \, .$$

a.2)
$$\int_{\mathbb{R}^n} f(T(x)) \, dx = \frac{1}{|\det T|} \int_{\mathbb{R}^n} f(x) \, dx, \text{ for all } T \in GL(n).$$

a.3) More generally,
$$\int_A f(T(x)) \, dx = \frac{1}{|\det T|} \int_{T(A)} f(x) \, dx, \text{ for all } T \in GL(n) \text{ and } A \in \mathcal{M}.$$

b) If $\Phi : \mathbb{R} \longrightarrow [0, \infty]$ is a Borel measurable function then

$$\int_{\mathbb{R}^n} \Phi(\|x\|) \, dx = n\Omega_n \int_0^\infty \Phi(r) \, r^{n-1} \, dr \,, \qquad \text{where } \Omega_n = m(\{x \in \mathbb{R}^n : \|x\| \le 1\}) \,.$$

c) Let $B_n = \{x \in \mathbb{R}^n : ||x|| < 1\}$, Then

$$\int_{B_n} \frac{dx}{\|x\|^{\alpha}} < \infty \quad \Leftrightarrow \quad \alpha < n \qquad \text{and} \qquad \int_{\mathbb{R}^n \setminus B_n} \frac{dx}{\|x\|^{\alpha}} < \infty \quad \Leftrightarrow \quad \alpha > n \,.$$