uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure
Chapter 2: Integration theory
Section 2.3: Integration on product spaces

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

2 Integration theory

2.3. Integration on product spaces

Along this section (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) will denote σ-finite measure spaces. Let us consider the product measure space $(X \times Y, \overline{\mathcal{A} \otimes \mathcal{B}}, \mu \otimes \nu)$.
Notations.
If $E \subseteq X \times Y$ and $x \in X$, we define the section E_{x} of E as

$$
E_{x}:=\{y \in Y:(x, y) \in E\} \subseteq Y
$$

and if $y \in Y$, the section E^{y} of E as

$$
E^{y}:=\{x \in X:(x, y) \in E\} \subseteq X
$$

If $f: X \times Y \longrightarrow \overline{\mathbb{R}}$, given $x \in X$, the section f_{x} of f is the function $f_{x}: Y \longrightarrow \overline{\mathbb{R}}$ given by $f_{x}(y)=f(x, y)$, and given $y \in Y$, the section f^{y} of f is the function $f^{y}: X \longrightarrow \overline{\mathbb{R}}$ given by $f^{y}(x)=f(x, y)$.

Proposition 2.1 (1) If $E \in \mathcal{A} \otimes \mathcal{B}$ then $E_{x} \in \mathcal{B}$ for all $x \in X$ and $E^{y} \in \mathcal{A}$ for all $y \in Y$.
(2) If $f: X \times Y \longrightarrow \overline{\mathbb{R}}$ is $\mathcal{A} \otimes \mathcal{B}$-measurable then f_{x} is \mathcal{B}-measurable for all $x \in X$ and f^{y} is \mathcal{A}-measurable for all $y \in Y$.

Proposition 2.2 (Cavalieri's principle: Volume calculus by sections) Let $E \in \mathcal{A} \otimes \mathcal{B}$. Then
(1) The function $g(x)=\nu\left(E_{x}\right)$ is \mathcal{A}-measurable and

$$
\int_{X} g d \mu=\int_{X} \nu\left(E_{x}\right) d \mu=(\mu \otimes \nu)(E)
$$

(2) The function $h(y)=\mu\left(E^{y}\right)$ is \mathcal{B}-measurable and

$$
\int_{Y} h d \nu=\int_{Y} \mu\left(E^{y}\right) d \nu=(\mu \otimes \nu)(E)
$$

Theorem 2.3 (Tonelli-Fubini theorem) Let $f: X \times Y \longrightarrow[0, \infty]$ be a positive $\mathcal{A} \otimes \mathcal{B}$-measurable function. Then
(1) The function $F(x)=\int_{Y} f_{x} d \nu$ is \mathcal{A}-measurable and

$$
\int_{X} F d \mu=\int_{X \times Y} f d(\mu \otimes \nu)
$$

(2) The function $G(y)=\int_{X} f^{y} d \mu$ is \mathcal{B}-measurable and

$$
\int_{Y} G d \nu=\int_{X \times Y} f d(\mu \otimes \nu)
$$

Therefore,

$$
\int_{X \times Y} f d(\mu \otimes \nu)=\int_{X} d \mu(x) \int_{Y} f(x, y) d \nu(y)=\int_{Y} d \nu(y) \int_{X} f(x, y) d \mu(x)
$$

Theorem 2.4 (Fubini's theorem) Let $f: X \times Y \longrightarrow \overline{\mathbb{R}}$ be an $\mathcal{A} \otimes \mathcal{B}$-measurable function. Then the integrals

$$
I_{1}(f)=\int_{X \times Y}|f(x, y)| d \mu(x) d \nu(y)
$$

and

$$
I_{2}(f)=\int_{X} d \mu(x) \int_{Y}|f(x, y)| d \nu(y), \quad I_{3}(f)=\int_{Y} d \nu(y) \int_{X}|f(x, y)| d \mu(x)
$$

exist and are equal (they can be finite or infinite). Besides, if they are finite, (i.e. if $f \in L^{1}(\mu \otimes \nu)$) then

$$
\int_{X \times Y} f(x, y) d \mu(x) d \nu(y)=\int_{X} d \mu(x) \int_{Y} f(x, y) d \nu(y)=\int_{Y} d \nu(y) \int_{X} f(x, y) d \mu(x)
$$

2.3.1. Integration on \mathbb{R}^{n} using polar coordinates

Given $x \in \mathbb{R}^{n} \backslash\{0\}$, let us consider its polar coordinates $\left(r, x^{\prime}\right)$ where $r=\|x\| \in(0, \infty), x^{\prime}=x /\|x\| \in$ $S_{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$. The mapping

$$
\varphi: \mathbb{R}^{n} \backslash\{0\} \longrightarrow(0, \infty) \times S_{n-1} \quad \text { given by } \varphi(x)=\left(r, x^{\prime}\right)
$$

is a bijection. We have that:
a) If μ is the image measure under φ of the Lebesgue measure on $\mathbb{R}^{n} \backslash\{0\}$, then

$$
\mu(E \times U)=\sigma(U) \int_{E} r^{n-1} d r, \quad \text { for all Borel sets } E \subseteq(0, \infty), U \subseteq S_{n-1}
$$

b) If $f: \mathbb{R}^{n} \backslash\{0\} \longrightarrow[0, \infty]$ is a positive measurable function, then

$$
\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{\infty} r^{n-1} d r \int_{S_{n-1}} f\left(r x^{\prime}\right) d \sigma\left(x^{\prime}\right)
$$

where σ is the $(n-1)$-dimensional Lebesgue measure on S_{n-1}.

