Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure

Chapter 2: Integration theory

Section 2.3: Integration on product spaces

Professors:

Domingo Pestana Galván José Manuel Rodríguez García

2 Integration theory

2.3. Integration on product spaces

Along this section (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) will denote σ -finite measure spaces. Let us consider the product measure space $(X \times Y, \overline{\mathcal{A} \otimes \mathcal{B}}, \mu \otimes \nu)$.

Notations.

If $E \subseteq X \times Y$ and $x \in X$, we define the section E_x of E as

$$E_x := \{ y \in Y : (x, y) \in E \} \subseteq Y,$$

and if $y \in Y$, the section E^y of E as

$$E^y := \{ x \in X : (x, y) \in E \} \subseteq X.$$

If $f: X \times Y \longrightarrow \overline{\mathbb{R}}$, given $x \in X$, the section f_x of f is the function $f_x: Y \longrightarrow \overline{\mathbb{R}}$ given by $f_x(y) = f(x, y)$, and given $y \in Y$, the section f^y of f is the function $f^y: X \longrightarrow \overline{\mathbb{R}}$ given by $f^y(x) = f(x, y)$.

Proposition 2.1 (1) If $E \in A \otimes B$ then $E_x \in B$ for all $x \in X$ and $E^y \in A$ for all $y \in Y$.

(2) If $f: X \times Y \longrightarrow \mathbb{R}$ is $A \otimes B$ -measurable then f_x is B-measurable for all $x \in X$ and f^y is A-measurable for all $y \in Y$.

Proposition 2.2 (Cavalieri's principle: Volume calculus by sections) Let $E \in A \otimes B$. Then

(1) The function $g(x) = \nu(E_x)$ is A-measurable and

$$\int_X g \, d\mu = \int_X \nu(E_x) \, d\mu = (\mu \otimes \nu)(E) \, .$$

(2) The function $h(y) = \mu(E^y)$ is \mathcal{B} -measurable and

$$\int_{Y} h \, d\nu = \int_{Y} \mu(E^{y}) \, d\nu = (\mu \otimes \nu)(E) \, .$$

Theorem 2.3 (Tonelli-Fubini theorem) Let $f: X \times Y \longrightarrow [0, \infty]$ be a positive $A \otimes \mathcal{B}$ -measurable function. Then

(1) The function $F(x) = \int_{Y} f_x d\nu$ is A-measurable and

$$\int_X F d\mu = \int_{X \times Y} f d(\mu \otimes \nu).$$

(2) The function $G(y) = \int_X f^y d\mu$ is \mathcal{B} -measurable and

$$\int_{Y} G d\nu = \int_{X \times Y} f d(\mu \otimes \nu).$$

Therefore,

$$\int_{X\times Y} f \, d(\mu\otimes\nu) = \int_X d\mu(x) \int_Y f(x,y) \, d\nu(y) = \int_Y d\nu(y) \int_X f(x,y) \, d\mu(x) \, .$$

Theorem 2.4 (Fubini's theorem) Let $f: X \times Y \longrightarrow \overline{\mathbb{R}}$ be an $A \otimes \mathcal{B}$ -measurable function. Then the integrals

$$I_1(f) = \int_{Y \times Y} |f(x,y)| \, d\mu(x) \, d\nu(y)$$

and

$$I_2(f) = \int_X d\mu(x) \int_Y |f(x,y)| d\nu(y), \qquad I_3(f) = \int_Y d\nu(y) \int_X |f(x,y)| d\mu(x),$$

exist and are equal (they can be finite or infinite). Besides, if they are finite, (i.e. if $f \in L^1(\mu \otimes \nu)$) then

$$\int_{X \times Y} f(x, y) \, d\mu(x) \, d\nu(y) = \int_{X} d\mu(x) \int_{Y} f(x, y) \, d\nu(y) = \int_{Y} d\nu(y) \int_{X} f(x, y) \, d\mu(x) \, .$$

2.3.1. Integration on \mathbb{R}^n using polar coordinates

Given $x \in \mathbb{R}^n \setminus \{0\}$, let us consider its polar coordinates (r, x') where $r = ||x|| \in (0, \infty)$, $x' = x/||x|| \in S_{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$. The mapping

$$\varphi: \mathbb{R}^n \setminus \{0\} \longrightarrow (0, \infty) \times S_{n-1}$$
 given by $\varphi(x) = (r, x')$

is a bijection. We have that:

a) If μ is the image measure under φ of the Lebesgue measure on $\mathbb{R}^n \setminus \{0\}$, then

$$\mu(E \times U) = \sigma(U) \int_E r^{n-1} dr$$
, for all Borel sets $E \subseteq (0, \infty), \ U \subseteq S_{n-1}$.

b) If $f: \mathbb{R}^n \setminus \{0\} \longrightarrow [0, \infty]$ is a positive measurable function, then

$$\int_{\mathbb{R}^n} f(x) dx = \int_0^\infty r^{n-1} dr \int_{S_{n-1}} f(rx') d\sigma(x')$$

where σ is the (n-1)-dimensional Lebesgue measure on S_{n-1} .