uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Integration and Measure

Chapter 2: Integration theory Section 2.4: Decomposition of measures

Professors:

Domingo Pestana Galván José Manuel Rodríguez García

2 Integration theory

2.4. Decomposition of measures

Definition 2.1 Let μ , ν be (positive) measures defined on a measurable space (X, \mathcal{A}) . We say that ν is <u>absolutely continuous</u> with respect to μ , and we denote it as $\nu \ll \mu$, if

$$\mu(A) = 0 \implies \nu(A) = 0.$$

We say that μ and ν are <u>mutually singular</u>, and we denote it as $\mu \perp \nu$, if we can decompose X as $X = A \cup B$ with $A \cap B = \emptyset$ and A is a null-set for μ and B is a null-set for ν .

Theorem 2.2 (Radon-Nikodym theorem for finite measures) Let μ , ν be finite (positive) measures defined on (X, \mathcal{A}) . Then, there exists a positive integrable function $f : X \longrightarrow [0, \infty]$, $f \in L^1(\mu)$, and a measure ν_s mutually singular with μ such that

$$d\nu = f \, d\mu + d\nu_s$$

i.e. for all $E \in \mathcal{A}$

$$\nu(E) = \int_E f \, d\mu + \nu_s(E) \, .$$

Besides, f and ν_s are unique (almost everywhere).

Theorem 2.3 (Radon-Nikodym theorem for σ -finite measures) If μ and ν are only σ -finite the same is true, but now not necessarily $f \in L^1(\mu)$.