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2 Integration theory

2.5. Lp-spaces

2.5.1.The case 1 ≤ p <∞

Definition 2.1 A real function ϕ : (a, b) −→ R with −∞ ≤ a < b ≤ ∞ is said to be convex if

ϕ((1− λ)x+ λy) ≤ (1− λ)ϕ(x) + λϕ(y) , ∀x, y ∈ (a, b) , ∀λ ∈ [0, 1] .

Example: ϕ(x) = ex.

Theorem 2.2 (Jensen’s inequality) Let (X,A, µ) be a measure space with µ(X) = 1. If f : X −→
(a, b) is integrable (−∞ ≤ a < b ≤ ∞), i.e. f ∈ L1(µ), and ϕ : (a, b) −→ R is a convex function, then

ϕ
(∫

X

f dµ
)
≤
∫
X

(ϕ ◦ f) dµ .

Example: Take X = {p1, . . . , pn}, µ(pi) = α1 with
∑
i αi = 1, f(pi) = xi, ϕ(x) = ex. Then Jensen’s

inequality gives
eα1x1+···+αnxn ≤ α1e

x1 + · · ·+ αne
xn .

and writing yi = exi

yα1
1 · · · yαn

n ≤ α1y1 + · · ·+ αnyn .

In particular we obtain for n = 2

Corollary 2.3 If a ≥ 0, b ≥ 0, 0 ≤ λ ≤ 1, then aλb1−λ ≤ λa+ (1−λ)b with equality if and only if a = b.

Definition 2.4 Let (X,A, µ) be a measure space, 0 < p < ∞. Given a complex function f : X −→ C
we define

‖f‖p :=
(∫

X

|f |p dµ
)1/p

,

and
Lp(X,A, µ) = Lp(µ) = {f : X −→ C | f is measurable and ‖f‖p <∞} .

We consider that two functions define the same element of Lp(µ) when they are equal almost everywhere
with respect to µ.

Example: Let X = N and µ be the counting measure. In this case we denote Lp(µ) = `p:

`p =
{
{xn}∞n=1 :

∞∑
n=1

|xn|p <∞
}
, ‖xn‖p =

( ∞∑
n=1

|xn|p
)1/p

.

Proposition 2.5 Lp(µ) is a complex vector space.

Theorem 2.6 (Hölder’s inequality). Suppose that 1 < p <∞ and p, q are conjugated exponents, i.e.
1
p + 1

q = 1. If f, g are complex measurable functions on X then

‖fg‖1 ≤ ‖f‖p‖g‖q .

In particular, if f ∈ Lp(µ) and g ∈ Lq(µ) then fg ∈ L1(µ) and, in this case, equality holds if and only if
α|f |p = β|g|q a.e. for some α, β ≥ 0, not both of them zero.

Theorem 2.7 (Minkowski’s inequality). If 1 ≤ p <∞ and f, g ∈ Lp(µ) then ‖f+g‖p ≤ ‖f‖p+‖g‖p .

Corollary 2.8 Lp(µ) is a normed space for 1 ≤ p <∞. The number ‖f‖p is called the Lp-norm of f .
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In the case p = 2 the norm ‖ · ‖2 comes from the scalar product:

〈f, g〉 :=

∫
X

f(x) g(x) dµ(x) , f, g ∈ L2(µ) .

Therefore, L2(µ) is a Hilbert’s space and the richer Hilbert’s spaces theory applies. Observe that

‖f‖22 = 〈f, f〉 , ∀ f ∈ L2(µ) .

2.5.2. The space L∞(µ)

Definition 2.9 If f : X −→ C is a complex measurable function, we define

‖f‖∞ := inf{α ≥ 0 : µ({x : |f(x)| > α}) = µ(|f |−1(α,∞)) = 0}

with the convention inf ∅ =∞. The number ‖f‖∞ is called the essential supremum of |f |.

The infimum is in fact a minimum, because

{x : |f(x)| > α} =
⋃
n

{
x : |f(x)| > α+

1

n

}
and if α = ‖f‖∞ then the sets {x : |f(x)| > α+ 1

n} have zero measure.

Observe also that if ‖f‖∞ ≤ K then |f(x)| ≤ K a.e. on X, and so also

‖f‖∞ = min{K > 0 : |f(x)| ≤ K a.e.} .

Definition 2.10 L∞(µ) = {f : X −→ C | f is measurable and ‖f‖∞ <∞} , with the convention that
two functions in L∞(µ) are equal if and only if f = g a.e.

Remark 2.11 1) L∞(µ) depends only on the zero-measure sets of µ. Therefore, if ν � µ and µ � ν
then L∞(µ) = L∞(ν).
2) Hölder’s inequality is trivial for the conjugated exponents 1 and ∞: ‖fg‖1 ≤ ‖f‖1‖g‖∞.
3) Since |f + g| ≤ |f |+ |g|, Minkowski’s inequality is also trivial for p =∞: ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞

Corollary 2.12 L∞(µ) is a complex normed space.

2.5.3. Completeness

We say that a sequence of measurable functions {fn}∞n=1 converges to f in Lp(µ) if

lim
n→∞

‖fn − f‖p = 0 .

We say {fn}∞n=1 is a Cauchy sequence in Lp(µ) if

∀ ε > 0, ∃N = N(ε) such that ‖fn − fm‖p < ε, ∀n,m > N .

Theorem 2.13 Lp(µ) is a complete metric space for 1 ≤ p ≤ ∞, i.e. any Cauchy sequence {fn}∞n=1 in
Lp(µ) converges in Lp(µ).

An interesting corollary of the proof is

Corollary 2.14 Let 1 ≤ p ≤ ∞. If {fn}∞n=1 is a Cauchy sequence in Lp(µ) then there exists a subse-
quence that converges pointwise a.e. to a function f ∈ Lp(µ).
As any convergent sequence is also a Cauchy sequence, if {fn}∞n=1 converges to f in Lp(µ) then there
exists a subsequence that converges pointwise a.e. to f .

As a consequence of Reverse Minkowski’s inequality:
∣∣‖f‖p − ‖g‖p∣∣ ≤ ‖f − g‖p, we also have
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Corollary 2.15 If {fn}∞n=1 converges to f in Lp(µ) then ‖fn‖p → ‖f‖p as n→∞.

2.5.4. Density of simple functions

Proposition 2.16 Let S be the class of all complex measurable simple functions on X such that µ({x :
s(x) 6= 0}) <∞, i.e. such that they are integrable. Then S is dense in Lp(µ) for 1 ≤ p <∞. This means
that each f ∈ Lp(µ) can be approximated in Lp-norm by simple functions in S.

In the case p =∞ we must consider all simple functions in order to get density:

Proposition 2.17 The set of all simple functions is dense in L∞(µ).

Let Cc(X) be the set of continuous functions with compact support, i.e. such that there exists a compact
set K such that f(x) = 0 for all x /∈ K. As simple functions on S can be approximated by continuous
functions on Cc(Rn) (Lusin’s theorem) we get that:

Theorem 2.18 Cc(Rn) is dense in Lp(Rn,m) for 1 ≤ p <∞.

This theorem also holds on a large kind of topological spaces with Radon measures.

2.5.5. Duality

If X is a complex linear space, a linear functional on X is a linear map from X to C.
Let µ be a (positive) measure and suppose 1 ≤ q ≤ ∞. Let q be the conjugated exponent of p. By
Hölder’s inequality, for each g ∈ Lq(µ) the operator

Φg(f) =

∫
X

fg dµ ,

is bounded on Lp(µ) and ‖Φg‖ := sup{|Φg(f)| : f ∈ Lp , ‖f‖p ≤ 1} ≤ ‖g‖q. The question that naturally
arises is: have all bounded linear functionals on Lp(µ) this form? For p = ∞ the answer is negative
because L1(µ) does not furnish all bounded linear functions on L∞(µ). But, for σ-finite measures, the
answer is affirmative for 1 ≤ p <∞.

Theorem 2.19 Let 1 ≤ p < ∞, µ be a σ-finite measure on X and Φ be a bounded linear functional on
Lp(µ). Then, there is a unique g ∈ Lq(µ), where q is the conjugated exponent of p, such that

Φ(f) =

∫
X

fg dµ , ∀ f ∈ Lp(µ) ,

i.e. Φ = Φg. Moreover, ‖Φ‖ = ‖g‖q.

Therefore, for 1 ≤ p < ∞, the dual space of Lp(µ), i.e. the space of all bounded linear functionals on
Lp(µ) can be identified with Lq(µ).
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