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2 Integration theory
2.5. LP-spaces

2.5.1.The case 1 <p < 0

Definition 2.1 A real function ¢ : (a,b) — R with —co < a < b < oo is said to be convez if
(1= N+ Xg) < (1= N o) + Agy), Yoy e (ab), YAe,1].
Example: p(z) = €.

Theorem 2.2 (Jensen’s inequality) Let (X, A, u) be a measure space with (X)) =1. If f: X —
(a,b) is integrable (—oo < a < b < 00), i.e. f € LY(u), and ¢ : (a,b) — R is a convex function, then

so(/deu)S/X(wOf)dw

Example: Take X = {p1,...,pn}, p(pi) = o with >~ a5 = 1, f(p;) = @i, p(x) = €*.
inequality gives

Then Jensen’s

ea1w1+”'+anﬂﬂn < 0116931 + .-+ Oénegc" .

and writing y; = €%
Yty <oaayr 4+ anyn

In particular we obtain for n = 2
Corollary 2.3 Ifa>0,b>0,0 <\ <1, then a*b'~ < Xa+ (1 —\)b with equality if and only if a = b.

Definition 2.4 Let (X, A, 1) be a measure space, 0 < p < co. Given a complex function f: X — C

we define Y
P
fllp = /f”du ,

171 := ([ 1417 dw)

LP(X, A, p) = LP(u) = {f : X — C| f is measurable and || f||, < oo} .

and

We consider that two functions define the same element of L? (1) when they are equal almost everywhere
with respect to u.

Example: Let X = N and p be the counting measure. In this case we denote LP(u) = ¢7:

o0 o0 1/p
o= ok s Y lwalr <o} el = (D lwal?)
n=1 n=1

Proposition 2.5 LP(u) is a complex vector space.

Theorem 2.6 (Hélder’s inequality). Suppose that 1 < p < co and p,q are conjugated exponents, i.e.
% + % =1. If f,g are complex measurable functions on X then

gl < I f1lpllgllq -

In particular, if f € LP(u) and g € L(p) then fg € L'(u) and, in this case, equality holds if and only if
alf|P = Blg|? a.e. for some a, B > 0, not both of them zero.

Theorem 2.7 (Minkowski’s inequality). If1 < p < oo and f,g € LP(u) then || f+gll, < | fllp+9llp -

Corollary 2.8 LP(u) is a normed space for 1 < p < co. The number || f||, is called the LP-norm of f.



In the case p = 2 the norm || - || comes from the scalar product:

()= [ F@a@du). o€ ),
Therefore, L?(11) is a Hilbert’s space and the richer Hilbert’s spaces theory applies. Observe that

IF13= (0, VieL*(u).
2.5.2. The space L>™(u)

Definition 2.9 If f : X — C is a complex measurable function, we define

I £llo := inf{a >0 p({z: [f(2)] > a}) = u(|fI~ (a, 0)) = 0}

with the convention inf @ = co. The number || f]|o is called the essential supremum of |f]|.

The infimum is in fact a minimum, because
1
{z: [f@)]>a}=J{z: /@) >a+ ~

and if a = || f||oc then the sets {z : |f(z)| > o+ 1} have zero measure.

Observe also that if || f]lcoc < K then |f(z)] < K a.e. on X, and so also

[fllo = min{K >0: |f(z)] < K a.e.}.

Definition 2.10 L*®(u) = {f : X — C]| f is measurable and || f||cc < 00}, with the convention that
two functions in L*°(u) are equal if and only if f = g a.e.

Remark 2.11 1) L*°(u) depends only on the zero-measure sets of u. Therefore, if v < p and p < v
then L>°(u) = L™ (v).

2) Holder’s inequality is trivial for the conjugated exponents 1 and oo: || fgll1 < || fll1llglleo-

3) Since |f + g] < |f| + |g|, Minkowski’s inequality is also trivial for p = 00: || f + gllec < | f]loo + [I9]lo

Corollary 2.12 L*(u) is a complex normed space.

2.5.3. Completeness

We say that a sequence of measurable functions {f,}52; converges to f in LP(u) if

lim |[fn — fllp =0.

n— oo

We say {f,}52, is a Cauchy sequence in LP(u) if

Ve >0, IN = N(e) such that ||f, — fmllp <e, Vn,m> N.

Theorem 2.13 LP(u) is a complete metric space for 1 < p < oo, i.e. any Cauchy sequence {f,}32 in
LP () converges in LP(u).

An interesting corollary of the proof is

Corollary 2.14 Let 1 < p < oo. If {f,}52, is a Cauchy sequence in LP(u) then there exists a subse-
quence that converges pointwise a.e. to a function f € LP(u).

As any convergent sequence is also a Cauchy sequence, if {f,}2, converges to f in LP(u) then there
ezists a subsequence that converges pointwise a.e. to f.

As a consequence of Reverse Minkowski’s inequality: |[|f|l, — llgll»| < lf — gll», we also have



Corollary 2.15 If {f,}52, converges to f in LP(u) then || fullp — || fllp as n — oco.

2.5.4. Density of simple functions

Proposition 2.16 Let S be the class of all complex measurable simple functions on X such that u({x :
s(x) # 0}) < 00, i.e. such that they are integrable. Then S is dense in LP(u) for 1 < p < co. This means
that each f € LP(u) can be approzimated in LP-norm by simple functions in S.

In the case p = oo we must consider all simple functions in order to get density:
Proposition 2.17 The set of all simple functions is dense in L (u).

Let C.(X) be the set of continuous functions with compact support, i.e. such that there exists a compact
set K such that f(x) =0 for all x ¢ K. As simple functions on S can be approximated by continuous
functions on C.(R™) (Lusin’s theorem) we get that:

Theorem 2.18 C.(R™) is dense in LP(R™,m) for 1 < p < oo.
This theorem also holds on a large kind of topological spaces with Radon measures.

2.5.5. Duality

If X is a complex linear space, a linear functional on X is a linear map from X to C.
Let u be a (positive) measure and suppose 1 < ¢ < oco. Let ¢ be the conjugated exponent of p. By
Holder’s inequality, for each g € LI(u) the operator

%W:me,

is bounded on LP(u) and || @, := sup{|®4(f)| : f € L?, || fll, <1} < |gllq- The question that naturally
arises is: have all bounded linear functionals on LP(u) this form? For p = oo the answer is negative
because L'(11) does not furnish all bounded linear functions on L>(uz). But, for o-finite measures, the
answer is affirmative for 1 < p < oc.

Theorem 2.19 Let 1 < p < oo, pu be a o-finite measure on X and ® be a bounded linear functional on
LP(u). Then, there is a unique g € LI(u), where q is the conjugated exponent of p, such that

<I>(f)=/ngdu, Ve L),

i.e. & =®,. Moreover, ||®| = |gllq-

Therefore, for 1 < p < oo, the dual space of LP(u), i.e. the space of all bounded linear functionals on
L?(u) can be identified with L(pu).



