uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Integration and Measure

Chapter 2: Integration theory

Section 2.5: L^p-spaces

Professors:

Domingo Pestana Galván José Manuel Rodríguez García

2 Integration theory

2.5. L^p -spaces

2.5.1.The case $1 \le p < \infty$

Definition 2.1 A real function $\varphi : (a, b) \longrightarrow \mathbb{R}$ with $-\infty \le a < b \le \infty$ is said to be <u>convex</u> if

$$\varphi((1-\lambda)x+\lambda y) \le (1-\lambda)\,\varphi(x) + \lambda\,\varphi(y)\,, \qquad \forall \, x,y \in (a,b)\,, \; \forall \, \lambda \in [0,1]\,.$$

Example: $\varphi(x) = e^x$.

Theorem 2.2 (Jensen's inequality) Let (X, \mathcal{A}, μ) be a measure space with $\mu(X) = 1$. If $f : X \longrightarrow (a, b)$ is integrable $(-\infty \le a < b \le \infty)$, i.e. $f \in L^1(\mu)$, and $\varphi : (a, b) \longrightarrow \mathbb{R}$ is a convex function, then

$$\varphi\Big(\int_X f \, d\mu\Big) \le \int_X (\varphi \circ f) \, d\mu$$
.

Example: Take $X = \{p_1, \ldots, p_n\}, \mu(p_i) = \alpha_1$ with $\sum_i \alpha_i = 1, f(p_i) = x_i, \varphi(x) = e^x$. Then Jensen's inequality gives

$$e^{\alpha_1 x_1 + \dots + \alpha_n x_n} \le \alpha_1 e^{x_1} + \dots + \alpha_n e^{x_n}.$$

and writing $y_i = e^{x_i}$

$$y_1^{\alpha_1}\cdots y_n^{\alpha_n} \leq \alpha_1 y_1 + \cdots + \alpha_n y_n$$
.

In particular we obtain for n = 2

Corollary 2.3 If $a \ge 0$, $b \ge 0$, $0 \le \lambda \le 1$, then $a^{\lambda}b^{1-\lambda} \le \lambda a + (1-\lambda)b$ with equality if and only if a = b.

Definition 2.4 Let (X, \mathcal{A}, μ) be a measure space, $0 . Given a complex function <math>f : X \longrightarrow \mathbb{C}$ we define

$$||f||_p := \left(\int_X |f|^p \, d\mu\right)^{1/p},$$

and

$$L^p(X, \mathcal{A}, \mu) = L^p(\mu) = \{f : X \longrightarrow \mathbb{C} \mid f \text{ is measurable and } \|f\|_p < \infty\}.$$

We consider that two functions define the same element of $L^p(\mu)$ when they are equal almost everywhere with respect to μ .

Example: Let $X = \mathbb{N}$ and μ be the counting measure. In this case we denote $L^p(\mu) = \ell^p$:

$$\ell^p = \left\{ \{x_n\}_{n=1}^{\infty} : \sum_{n=1}^{\infty} |x_n|^p < \infty \right\}, \qquad \|x_n\|_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}.$$

Proposition 2.5 $L^p(\mu)$ is a complex vector space.

Theorem 2.6 (Hölder's inequality). Suppose that 1 and <math>p, q are <u>conjugated exponents</u>, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. If f, g are complex measurable functions on X then

$$||fg||_1 \leq ||f||_p ||g||_q$$

In particular, if $f \in L^p(\mu)$ and $g \in L^q(\mu)$ then $fg \in L^1(\mu)$ and, in this case, equality holds if and only if $\alpha |f|^p = \beta |g|^q$ a.e. for some $\alpha, \beta \ge 0$, not both of them zero.

Theorem 2.7 (Minkowski's inequality). If $1 \le p < \infty$ and $f, g \in L^p(\mu)$ then $||f+g||_p \le ||f||_p + ||g||_p$.

Corollary 2.8 $L^p(\mu)$ is a normed space for $1 \le p < \infty$. The number $||f||_p$ is called the <u>L^p-norm of f</u>.

In the case p = 2 the norm $\|\cdot\|_2$ comes from the scalar product:

$$\langle f,g \rangle := \int_X f(x) \,\overline{g(x)} \, d\mu(x) \,, \qquad f,g \in L^2(\mu) \,.$$

Therefore, $L^{2}(\mu)$ is a Hilbert's space and the richer Hilbert's spaces theory applies. Observe that

$$||f||_2^2 = \langle f, f \rangle, \qquad \forall f \in L^2(\mu).$$

2.5.2. The space $L^{\infty}(\mu)$

Definition 2.9 If $f: X \longrightarrow \mathbb{C}$ is a complex measurable function, we define

$$||f||_{\infty} := \inf\{\alpha \ge 0: \ \mu(\{x: \ |f(x)| > \alpha\}) = \mu(|f|^{-1}(\alpha, \infty)) = 0\}$$

with the convention $\inf \emptyset = \infty$. The number $||f||_{\infty}$ is called the <u>essential supremum of |f|</u>.

The infimum is in fact a minimum, because

$$\{x: |f(x)| > \alpha\} = \bigcup_{n} \{x: |f(x)| > \alpha + \frac{1}{n}\}$$

and if $\alpha = ||f||_{\infty}$ then the sets $\{x : |f(x)| > \alpha + \frac{1}{n}\}$ have zero measure.

Observe also that if $||f||_{\infty} \leq K$ then $|f(x)| \leq K$ a.e. on X, and so also

$$||f||_{\infty} = \min\{K > 0 : |f(x)| \le K \text{ a.e.}\}.$$

Definition 2.10 $L^{\infty}(\mu) = \{f : X \longrightarrow \mathbb{C} \mid f \text{ is measurable and } \|f\|_{\infty} < \infty\}$, with the convention that two functions in $L^{\infty}(\mu)$ are equal if and only if f = g a.e.

Remark 2.11 1) $L^{\infty}(\mu)$ depends only on the zero-measure sets of μ . Therefore, if $\nu \ll \mu$ and $\mu \ll \nu$ then $L^{\infty}(\mu) = L^{\infty}(\nu)$.

2) Hölder's inequality is trivial for the conjugated exponents 1 and ∞ : $||fg||_1 \le ||f||_1 ||g||_{\infty}$.

3) Since $|f+g| \le |f| + |g|$, Minkowski's inequality is also trivial for $p = \infty$: $||f+g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty}$

Corollary 2.12 $L^{\infty}(\mu)$ is a complex normed space.

2.5.3. Completeness

We say that a sequence of measurable functions $\{f_n\}_{n=1}^{\infty}$ <u>converges to f in $L^p(\mu)$ </u> if

$$\lim_{n \to \infty} \|f_n - f\|_p = 0.$$

We say ${f_n}_{n=1}^{\infty}$ is a Cauchy sequence in $L^p(\mu)$ if

 $\forall \varepsilon > 0, \exists N = N(\varepsilon) \text{ such that } \|f_n - f_m\|_p < \varepsilon, \quad \forall n, m > N.$

Theorem 2.13 $L^p(\mu)$ is a complete metric space for $1 \le p \le \infty$, i.e. any Cauchy sequence $\{f_n\}_{n=1}^{\infty}$ in $L^p(\mu)$ converges in $L^p(\mu)$.

An interesting corollary of the proof is

Corollary 2.14 Let $1 \le p \le \infty$. If $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^p(\mu)$ then there exists a subsequence that converges pointwise a.e. to a function $f \in L^p(\mu)$.

As any convergent sequence is also a Cauchy sequence, if $\{f_n\}_{n=1}^{\infty}$ converges to f in $L^p(\mu)$ then there exists a subsequence that converges pointwise a.e. to f.

As a consequence of Reverse Minkowski's inequality: $|||f||_p - ||g||_p| \le ||f - g||_p$, we also have

Corollary 2.15 If $\{f_n\}_{n=1}^{\infty}$ converges to f in $L^p(\mu)$ then $||f_n||_p \to ||f||_p$ as $n \to \infty$.

2.5.4. Density of simple functions

Proposition 2.16 Let S be the class of all complex measurable simple functions on X such that $\mu(\{x : s(x) \neq 0\}) < \infty$, i.e. such that they are integrable. Then S is dense in $L^p(\mu)$ for $1 \leq p < \infty$. This means that each $f \in L^p(\mu)$ can be approximated in L^p -norm by simple functions in S.

In the case $p = \infty$ we must consider all simple functions in order to get density:

Proposition 2.17 The set of all simple functions is dense in $L^{\infty}(\mu)$.

Let $C_c(X)$ be the set of continuous functions with compact support, i.e. such that there exists a compact set K such that f(x) = 0 for all $x \notin K$. As simple functions on S can be approximated by continuous functions on $C_c(\mathbb{R}^n)$ (Lusin's theorem) we get that:

Theorem 2.18 $C_c(\mathbb{R}^n)$ is dense in $L^p(\mathbb{R}^n, m)$ for $1 \le p < \infty$.

This theorem also holds on a large kind of topological spaces with Radon measures.

2.5.5. Duality

If X is a complex linear space, a <u>linear functional</u> on X is a linear map from X to \mathbb{C} . Let μ be a (positive) measure and suppose $1 \leq q \leq \infty$. Let q be the conjugated exponent of p. By Hölder's inequality, for each $g \in L^q(\mu)$ the operator

$$\Phi_g(f) = \int_X fg\,d\mu\,,$$

is bounded on $L^p(\mu)$ and $\|\Phi_g\| := \sup\{|\Phi_g(f)| : f \in L^p, \|f\|_p \le 1\} \le \|g\|_q$. The question that naturally arises is: have all bounded linear functionals on $L^p(\mu)$ this form? For $p = \infty$ the answer is negative because $L^1(\mu)$ does not furnish all bounded linear functions on $L^{\infty}(\mu)$. But, for σ -finite measures, the answer is affirmative for $1 \le p < \infty$.

Theorem 2.19 Let $1 \le p < \infty$, μ be a σ -finite measure on X and Φ be a bounded linear functional on $L^p(\mu)$. Then, there is a unique $g \in L^q(\mu)$, where q is the conjugated exponent of p, such that

$$\Phi(f) = \int_X fg \, d\mu \,, \qquad \forall \, f \in L^p(\mu) \,,$$

i.e. $\Phi = \Phi_g$. Moreover, $\|\Phi\| = \|g\|_g$.

Therefore, for $1 \le p < \infty$, the dual space of $L^p(\mu)$, i.e. the space of all bounded linear functionals on $L^p(\mu)$ can be identified with $L^q(\mu)$.