uc3m Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure
 Chapter 2: Integration theory Section 2.5: L^{p}-spaces

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

2 Integration theory

2.5. L^{p}-spaces

2.5.1.The case $1 \leq p<\infty$

Definition 2.1 A real function $\varphi:(a, b) \longrightarrow \mathbb{R}$ with $-\infty \leq a<b \leq \infty$ is said to be convex if

$$
\varphi((1-\lambda) x+\lambda y) \leq(1-\lambda) \varphi(x)+\lambda \varphi(y), \quad \forall x, y \in(a, b), \quad \forall \lambda \in[0,1] .
$$

Example: $\varphi(x)=e^{x}$.
Theorem 2.2 (Jensen's inequality) Let (X, \mathcal{A}, μ) be a measure space with $\mu(X)=1$. If $f: X \longrightarrow$ (a, b) is integrable $(-\infty \leq a<b \leq \infty)$, i.e. $f \in L^{1}(\mu)$, and $\varphi:(a, b) \longrightarrow \mathbb{R}$ is a convex function, then

$$
\varphi\left(\int_{X} f d \mu\right) \leq \int_{X}(\varphi \circ f) d \mu
$$

Example: Take $X=\left\{p_{1}, \ldots, p_{n}\right\}, \mu\left(p_{i}\right)=\alpha_{1}$ with $\sum_{i} \alpha_{i}=1, f\left(p_{i}\right)=x_{i}, \varphi(x)=e^{x}$. Then Jensen's inequality gives

$$
e^{\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}} \leq \alpha_{1} e^{x_{1}}+\cdots+\alpha_{n} e^{x_{n}}
$$

and writing $y_{i}=e^{x_{i}}$

$$
y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}} \leq \alpha_{1} y_{1}+\cdots+\alpha_{n} y_{n}
$$

In particular we obtain for $n=2$
Corollary 2.3 If $a \geq 0, b \geq 0,0 \leq \lambda \leq 1$, then $a^{\lambda} b^{1-\lambda} \leq \lambda a+(1-\lambda) b$ with equality if and only if $a=b$.
Definition 2.4 Let (X, \mathcal{A}, μ) be a measure space, $0<p<\infty$. Given a complex function $f: X \longrightarrow \mathbb{C}$ we define

$$
\|f\|_{p}:=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}
$$

and

$$
L^{p}(X, \mathcal{A}, \mu)=L^{p}(\mu)=\left\{f: X \longrightarrow \mathbb{C} \mid f \text { is measurable and }\|f\|_{p}<\infty\right\}
$$

We consider that two functions define the same element of $L^{p}(\mu)$ when they are equal almost everywhere with respect to μ.

Example: Let $X=\mathbb{N}$ and μ be the counting measure. In this case we denote $L^{p}(\mu)=\ell^{p}$:

$$
\ell^{p}=\left\{\left\{x_{n}\right\}_{n=1}^{\infty}: \sum_{n=1}^{\infty}\left|x_{n}\right|^{p}<\infty\right\}, \quad\left\|x_{n}\right\|_{p}=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}
$$

Proposition 2.5 $L^{p}(\mu)$ is a complex vector space.
Theorem 2.6 (Hölder's inequality). Suppose that $1<p<\infty$ and p, q are conjugated exponents, i.e. $\frac{1}{p}+\frac{1}{q}=1$. If f, g are complex measurable functions on X then

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

In particular, if $f \in L^{p}(\mu)$ and $g \in L^{q}(\mu)$ then $f g \in L^{1}(\mu)$ and, in this case, equality holds if and only if $\alpha|f|^{p}=\beta|g|^{q}$ a.e. for some $\alpha, \beta \geq 0$, not both of them zero.

Theorem 2.7 (Minkowski's inequality). If $1 \leq p<\infty$ and $f, g \in L^{p}(\mu)$ then $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$.
Corollary 2.8 $L^{p}(\mu)$ is a normed space for $1 \leq p<\infty$. The number $\|f\|_{p}$ is called the $\underline{L^{p}-n o r m ~ o f ~} f$.

In the case $p=2$ the norm $\|\cdot\|_{2}$ comes from the scalar product:

$$
\langle f, g\rangle:=\int_{X} f(x) \overline{g(x)} d \mu(x), \quad f, g \in L^{2}(\mu)
$$

Therefore, $L^{2}(\mu)$ is a Hilbert's space and the richer Hilbert's spaces theory applies. Observe that

$$
\|f\|_{2}^{2}=\langle f, f\rangle, \quad \forall f \in L^{2}(\mu)
$$

2.5.2. The space $L^{\infty}(\mu)$

Definition 2.9 If $f: X \longrightarrow \mathbb{C}$ is a complex measurable function, we define

$$
\|f\|_{\infty}:=\inf \left\{\alpha \geq 0: \mu(\{x:|f(x)|>\alpha\})=\mu\left(|f|^{-1}(\alpha, \infty)\right)=0\right\}
$$

with the convention $\inf \varnothing=\infty$. The number $\|f\|_{\infty}$ is called the essential supremum of $|f|$.
The infimum is in fact a minimum, because

$$
\{x:|f(x)|>\alpha\}=\bigcup_{n}\left\{x:|f(x)|>\alpha+\frac{1}{n}\right\}
$$

and if $\alpha=\|f\|_{\infty}$ then the sets $\left\{x:|f(x)|>\alpha+\frac{1}{n}\right\}$ have zero measure.
Observe also that if $\|f\|_{\infty} \leq K$ then $|f(x)| \leq K$ a.e. on X, and so also

$$
\|f\|_{\infty}=\min \{K>0:|f(x)| \leq K \text { a.e. }\}
$$

Definition $2.10 L^{\infty}(\mu)=\left\{f: X \longrightarrow \mathbb{C} \mid f\right.$ is measurable and $\left.\|f\|_{\infty}<\infty\right\}$, with the convention that two functions in $L^{\infty}(\mu)$ are equal if and only if $f=g$ a.e.

Remark 2.11 1) $L^{\infty}(\mu)$ depends only on the zero-measure sets of μ. Therefore, if $\nu \ll \mu$ and $\mu \ll \nu$ then $L^{\infty}(\mu)=L^{\infty}(\nu)$.
2) Hölder's inequality is trivial for the conjugated exponents 1 and ∞ : $\|f g\|_{1} \leq\|f\|_{1}\|g\|_{\infty}$.
3) Since $|f+g| \leq|f|+|g|$, Minkowski's inequality is also trivial for $p=\infty:\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$

Corollary $2.12 L^{\infty}(\mu)$ is a complex normed space.

2.5.3. Completeness

We say that a sequence of measurable functions $\left\{f_{n}\right\}_{n=1}^{\infty} \underline{\text { converges to } f \text { in } L^{p}(\mu)}$ if

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{p}=0
$$

We say $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^{p}(\mu)$ if

$$
\forall \varepsilon>0, \exists N=N(\varepsilon) \text { such that }\left\|f_{n}-f_{m}\right\|_{p}<\varepsilon, \quad \forall n, m>N
$$

Theorem $2.13 L^{p}(\mu)$ is a complete metric space for $1 \leq p \leq \infty$, i.e. any Cauchy sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ in $L^{p}(\mu)$ converges in $L^{p}(\mu)$.

An interesting corollary of the proof is
Corollary 2.14 Let $1 \leq p \leq \infty$. If $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence in $L^{p}(\mu)$ then there exists a subsequence that converges pointwise a.e. to a function $f \in L^{p}(\mu)$.
As any convergent sequence is also a Cauchy sequence, if $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to f in $L^{p}(\mu)$ then there exists a subsequence that converges pointwise a.e. to f.

As a consequence of Reverse Minkowski's inequality: $\left|\|f\|_{p}-\|g\|_{p}\right| \leq\|f-g\|_{p}$, we also have

Corollary 2.15 If $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges to f in $L^{p}(\mu)$ then $\left\|f_{n}\right\|_{p} \rightarrow\|f\|_{p}$ as $n \rightarrow \infty$.

2.5.4. Density of simple functions

Proposition 2.16 Let S be the class of all complex measurable simple functions on X such that $\mu(\{x$: $s(x) \neq 0\})<\infty$, i.e. such that they are integrable. Then S is dense in $L^{p}(\mu)$ for $1 \leq p<\infty$. This means that each $f \in L^{p}(\mu)$ can be approximated in L^{p}-norm by simple functions in S.

In the case $p=\infty$ we must consider all simple functions in order to get density:
Proposition 2.17 The set of all simple functions is dense in $L^{\infty}(\mu)$.
Let $C_{c}(X)$ be the set of continuous functions with compact support, i.e. such that there exists a compact set K such that $f(x)=0$ for all $x \notin K$. As simple functions on S can be approximated by continuous functions on $C_{c}\left(\mathbb{R}^{n}\right)$ (Lusin's theorem) we get that:

Theorem $2.18 C_{c}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}\left(\mathbb{R}^{n}, m\right)$ for $1 \leq p<\infty$.
This theorem also holds on a large kind of topological spaces with Radon measures.

2.5.5. Duality

If X is a complex linear space, a linear functional on X is a linear map from X to \mathbb{C}.
Let μ be a (positive) measure and suppose $1 \leq q \leq \infty$. Let q be the conjugated exponent of p. By Hölder's inequality, for each $g \in L^{q}(\mu)$ the operator

$$
\Phi_{g}(f)=\int_{X} f g d \mu
$$

is bounded on $L^{p}(\mu)$ and $\left\|\Phi_{g}\right\|:=\sup \left\{\left|\Phi_{g}(f)\right|: f \in L^{p},\|f\|_{p} \leq 1\right\} \leq\|g\|_{q}$. The question that naturally arises is: have all bounded linear functionals on $L^{p}(\mu)$ this form? For $p=\infty$ the answer is negative because $L^{1}(\mu)$ does not furnish all bounded linear functions on $L^{\infty}(\mu)$. But, for σ-finite measures, the answer is affirmative for $1 \leq p<\infty$.

Theorem 2.19 Let $1 \leq p<\infty, \mu$ be a σ-finite measure on X and Φ be a bounded linear functional on $L^{p}(\mu)$. Then, there is a unique $g \in L^{q}(\mu)$, where q is the conjugated exponent of p, such that

$$
\Phi(f)=\int_{X} f g d \mu, \quad \forall f \in L^{p}(\mu)
$$

i.e. $\Phi=\Phi_{g}$. Moreover, $\|\Phi\|=\|g\|_{q}$.

Therefore, for $1 \leq p<\infty$, the dual space of $L^{p}(\mu)$, i.e. the space of all bounded linear functionals on $L^{p}(\mu)$ can be identified with $L^{q}(\mu)$.

