uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Integration and Measure

Chapter 3: Integrals depending on a parameter Section 3.1: Continuity and differentiability

Professors:

Domingo Pestana Galván José Manuel Rodríguez García

3 Integrals depending on a parameter

3.1. Continuity and differentiability

Let (X, \mathcal{A}, μ) be a measure space, $I \subseteq \mathbb{R}$ be an open interval and $f : X \times I \longrightarrow \mathbb{R}$ be a function such that for all $t \in I$ the function $f(\cdot, t) \in L^1(X, \mu)$. Hence we can define a new function

$$F(t) = \int_X f(x,t) \, d\mu(x) \, .$$

Theorem 3.1 (Continuity). Let t_0 be an accumulation point of I, i.e. there is a sequence $\{t_n\}_{n=1}^{\infty} \subset I$ such that $t_n \to t_0$ as $n \to \infty$. Let us also suppose that

- (1) $\exists \lim_{t \to t_0} f(x,t) \text{ a.e. } x \in X.$
- (2) $\exists g \in L^1(X,\mu)$ such that $|f(x,t)| \leq g(x)$ a.e. $x \in X$, for all $t \in I$, $t \neq t_0$.

Then

$$\lim_{t \to t_0} F(t) = \int_X \left(\lim_{t \to t_0} f(x, t) \right) d\mu(x) \, .$$

Hence, if $\lim_{t \to t_0} f(x,t) = f(x,t_0)$ a.e. $x \in X$, then F(t) is continuous at $t = t_0$.

Theorem 3.2 (Differentiability). Let us suppose that

- (1) $\exists \frac{\partial f}{\partial t}(x,t)$ a.e. $x \in X$ and for all $t \in I$.
- (2) $\exists F \in L^1(X \mu)$ such that $\left|\frac{\partial f}{\partial t}(x,t)\right| \leq F(x)$ a.e. $x \in X$, for all $t \in I$.

Then F is derivable on I and

$$F'(t) = \int_X \frac{\partial f}{\partial t}(x,t) \, d\mu(x) \, .$$