uc3mUniversidad Carlos III de MadridDepartamento de Matemáticas

Integration and Measure

Chapter 3: Integrals depending on a parameter Section 3.2: Fourier transform

Professors:

Domingo Pestana Galván José Manuel Rodríguez García

3 Integrals depending on a parameter

3.2. Fourier transform

Given $f : \mathbb{R} \to \mathbb{C}, f \in L^1(\mathbb{R}, m)$, we define its <u>Fourier transform</u> as

$$\hat{f}(\omega) = \mathcal{F}[f](\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{i\omega x} dx$$

In this case, as $|\hat{f}(\omega)| \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} |f(x)| dx = \frac{\|f\|_1}{2\pi} < \infty$, it is clear that $\hat{f} \in L^{\infty}(\mathbb{R})$. If $f \notin L^1(\mathbb{R})$ but there exists <u>the principal value of the integral</u>, then \hat{f} is defined as this principal value:

$$\hat{f}(\omega) = \mathcal{F}[f](\omega) = \text{p.v.} \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{i\omega x} dx := \lim_{R \to \infty} \frac{1}{2\pi} \int_{-R}^{R} f(x) e^{i\omega x} dx$$

Definition 3.1 Given $f, g \in L^1(\mathbb{R})$, we define its <u>convolution</u> as

$$(f * g)(x) := \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x - y) g(y) \, dy$$

It is easy to check that $||f * g||_1 \leq \frac{1}{2\pi} ||f||_1 ||g||_1$ and so $f * g \in L^1(\mathbb{R})$.

Theorem 3.2 (Properties of Fourier transform). Let $f, g \in L^1(\mathbb{R})$, $\alpha \in \mathbb{R}$, $a, b \in \mathbb{C}$, $I \subseteq \mathbb{R}$ an open interval. Then

- (1) $\mathcal{F}[af + bg](\omega) = a \mathcal{F}[f](\omega) + b \mathcal{F}[g](\omega).$
- (2) $\mathcal{F}[e^{i\alpha x}f(x)](\omega) = \mathcal{F}[f](\omega + \alpha).$
- (3) $\mathcal{F}[f(x-\alpha)](\omega) = e^{i\alpha\omega}\mathcal{F}[f](\omega).$
- (4) $\mathcal{F}[f(\alpha x)](\omega) = \frac{1}{|\alpha|} \mathcal{F}[f](\frac{\omega}{\alpha}).$
- (5) $\mathcal{F}[\overline{f}](\omega) = \overline{\mathcal{F}[f](-\omega)}.$
- (6) $\mathcal{F}[f * g](\omega) = \mathcal{F}[f](\omega) \mathcal{F}[g](\omega).$
- (7) If $xf(x) \in L^1(\mathbb{R})$ then \hat{f} is derivable and

$$\mathcal{F}[xf(x)](\omega) = -i\frac{d}{d\omega} (\mathcal{F}[f](\omega)).$$

(8) If f is derivable, f' is continuous and $f' \in L^1(\mathbb{R})$, then

$$\mathcal{F}[f'](\omega) = -i\omega \mathcal{F}[f](\omega).$$

(9) If $f(\cdot,t) \in L^1(\mathbb{R})$ for all $t \in I$, $\exists \frac{\partial f}{\partial t}(x,t)$ a.e. $x \in \mathbb{R}$ and for all $t \in I$, and $\exists F \in L^1(\mathbb{R})$ such that $\left|\frac{\partial f}{\partial t}(x,t)\right| \leq F(x)$ a.e. $x \in \mathbb{R}$ and for all $t \in I$, then

$$\mathcal{F}\Big[\frac{\partial f}{\partial t}(x,t)\Big](\omega) \ = \ \frac{\partial}{\partial t}\Big(\mathcal{F}\big[f\big](\omega)\Big) \ .$$

A direct consequence of (8) is the following

Corollary 3.3 If f is derivable, f' is continuous and $f, f' \in L^1(\mathbb{R})$, then $\lim_{|\omega| \to \infty} \hat{f}(\omega) = 0$.

This is a weak version of the following result:

Lemma 3.4 (Riemann-Lebesgue lemma). If $f \in L^1(\mathbb{R})$, then $\hat{f} \in C_0(\mathbb{R})$, i.e. \hat{f} is continuous and vanishes at infinity:

$$\lim_{|\omega| \to \infty} \hat{f}(\omega) = 0 \,.$$

The following result shows that the Fourier transform can be inverted and that its inverse is essentially a Fourier transform:

Theorem 3.5 (Inversion of Fourier transform). If $f \in L^1(\mathbb{R})$ and $\hat{f} \in L^1(\mathbb{R})$, then

$$f(x) = \mathcal{F}^{-1}[\hat{f}](x) := \int_{-\infty}^{\infty} \hat{f}(\omega) e^{-i\omega x} d\omega.$$

In particular, $f \in C_0(\mathbb{R})$.

3.2.1. Fourier transform on $L^2(\mathbb{R})$

As $C_c(\mathbb{R}) \subset L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ and $C_c(\mathbb{R})$ is dense on $L^2(\mathbb{R})$ we have that also $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ is dense on $L^2(\mathbb{R})$ and so, given $f \in L^2(\mathbb{R})$,

$$\exists \{f_n\}_{n=1}^{\infty} \subset L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \text{ such that } \|f_n - f\|_2 \to 0 \text{ as } n \to \infty.$$

Now, the definition of $\hat{f}(\omega)$ applies for $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. It turns out that in this case $\hat{f} \in L^2(\mathbb{R})$ and, in fact, Plancherel's theorem holds:

$$\|\hat{f}\|_{2} = \frac{1}{\sqrt{2\pi}} \|f\|_{2}, \quad \forall f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R}),$$

i.e. Fourier transform preserves L^2 -norm in $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ up to a multiplicative constant. This fact allows us to extend Fourier transform to the whole $L^2(\mathbb{R})$: Given $f \in L^2(\mathbb{R})$ let $\{f_n\}_{n=1}^{\infty} \subset L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ be a sequence such that $||f_n - f||_2 \to 0$ as $n \to \infty$. But then $\{f_n\}_{n=1}^{\infty}$ is a Cauchy sequence and as

$$\|\hat{f}_n - \hat{f}_m\|_2 = \|\mathcal{F}(f_n - f_m)\|_2 = \frac{1}{\sqrt{2\pi}} \|f_n - f_m\|_2$$

and so we also have that $\{\hat{f}_n\}_{n=1}^{\infty}$ is also a Cauchy sequence and therefore converges to a function $g \in L^2(\mathbb{R})$ since $L^2(\mathbb{R})$ is complete. We define $\hat{f} = g$. But, as $\|\hat{f}_n - g\|_2 \to 0$ as $n \to \infty$, we also have

$$||f_n||_2 \to ||f||_2$$
, $||\hat{f}_n||_2 \to ||g||_2$, $||\hat{f}_n||_2 = \frac{1}{\sqrt{2\pi}} ||f_n||_2$.

Hence, as the limit of a sequence is unique, we obtain Plancherel's theorem for all functions in $L^2(\mathbb{R})$:

$$\|\hat{f}\|_2 = \frac{1}{\sqrt{2\pi}} \|f\|_2, \qquad \forall f \in L^2(\mathbb{R}).$$

Theorem 3.6 One can associate to each $f \in L^2(\mathbb{R})$ a function $\hat{f} \in L^2(\mathbb{R})$ so that the following properties hold:

- (1) If $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, then \hat{f} is the previously defined Fourier transform.
- (2) For every $f \in L^2(\mathbb{R})$, $\|\hat{f}\|_2 = \frac{1}{\sqrt{2\pi}} \|f\|_2$, i.e.

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(\omega)|^2 d\omega \,. \qquad \text{(Plancherel's theorem)}$$

(3) The mapping $f \mapsto \hat{f}$ is a Hilbert's space isomorphism of $L^2(\mathbb{R})$ onto $L^2(\mathbb{R})$: $\frac{1}{2\pi} \langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$, i.e.

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} f(x)\overline{g(x)} \, dx = \int_{-\infty}^{\infty} \hat{f}(\omega) \, \overline{\hat{g}(\omega)} \, d\omega \,, \qquad \forall \, f,g \in L^2(\mathbb{R}) \,.$$

(4) The following symmetric relation exists between f and \hat{f} . If:

$$\varphi_R(\omega) = \frac{1}{2\pi} \int_{-R}^{R} f(x) e^{i\omega x} dx, \qquad \psi_R(\omega) = \int_{-R}^{R} \hat{f}(\omega) e^{-i\omega x} d\omega,$$

then

$$\|\varphi_R - \hat{f}\|_2 \to 0$$
 and $\|\psi_R - f\|_2 \to 0$ as $R \to \infty$.