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3 Integrals depending on a parameter

3.2. Fourier transform

Given f: R — C, f € L*(R,m), we define its Fourier transform as

f(W):}‘[f](w) = %/_00 f(x) e dx.

In this case, as | f(w)] < = [T 1 f ()| de = ”le < o0, it is clear that f € L(R).
If f ¢ L*(R) but there exists the prmczpal value of the integral, then f is defined as this principal value:

flw)=F[f](w) = pV;T/_Zf(x €% dr = lim —/ f(x) e du.
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Definition 3.1 Given f,g € L'(R), we define its convolution as

(f + / -y

It is easy to check that || f * gll1 < 5=|f[l1]lgll: and so f*g € L*(R).

Theorem 3.2 (Properties of Fourier transform). Let f,g € L'(R), « € R, a,b € C, I CR an open
interval. Then

(1) Flaf +bg](w) = aF[f](w) +bF[g](w).
(2) Fle f(x)](w) = F[f](w +a).

(3) Ff@ - a)] @) = e F[f](w).

(1) Flfon)w) = & FI71(2)

(7) If 2f(x) € L'(R) then f is derivable and
Flaf(z)](w) = —z%(}"[f] (w)) .

(8) If f is derivable, f' is continuous and f' € L*(R), then
Ff'(w) = —iwF[f](w).
(9) If f(-,t) € LY(R) for allt € I, EI%(x,t) a.e. x € R and for allt € I, and 3 F € L*(R) such that
’ﬂ(x,tﬂ < F(z) a.e. x €R and for allt € I, then

ot —
]-'[g{(x H|w) = & (FIw).

A direct consequence of (8) is the following

Corollary 3.3 If f is derivable, f' is continuous and f, f' € L*(R), then lim f(w) = 0.
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This is a weak version of the following result:



Lemma 3.4 (Riemann-Lebesgue lemma). If f € LY(R), then f € Co(R), i.e. f is continuous and
vanishes at infinity: R
lim f(w)=0.

|w]—o0

The following result shows that the Fourier transform can be inverted and that its inverse is essentially
a Fourier transform:

Theorem 3.5 (Inversion of Fourier transform). If f € L'(R) and f € L*(R), then
f(x)zf_l[ﬂ(x) = / f(w)e_“”dw.

In particular, f € Co(R).

3.2.1. Fourier transform on L*(R)
As C.(R) C LY(R) N L?(R) and C.(R) is dense on L*(R) we have that also L!'(R) N L?(R) is dense on
L?(R) and so, given f € L?(R),

I {fu)o2, ¢ L*(R) N LA(R) such that || f, — f|l2 — 0 as n — oo.

Now, the definition of f(w) applies for f € L*(R) N L2(R). It turns out that in this case f € L2(R) and,
in fact, Plancherel’s theorem holds:
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i.e. Fourier transform preserves L%norm in L!'(R) N L?(R) up to a multiplicative constant. This fact

allows us to extend Fourier transform to the whole L?(R): Given f € L?(R) let {f,}>>, c L*(R)NL?(R)
be a sequence such that ||f, — f]l2 = 0 as n — oo. But then {f,}52; is a Cauchy sequence and as

I1fll2 = Ifll,  VfeL'R)NL*R),

1 fn = Flle = 1F(fa = fon)ll2 = — fmll2
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and so we also have that { fn}%o:l is also a Cauchy sequence and therefore converges to a function
g € L?(R) since L?(R) is complete. We define f = g. But, as ||f, — g|l2 — 0 as n — oo, we also have

A A 1
n — ) n - ; n = = n .
[ fallz = 1 fll2 [ full2 = llgll2 [ fnll2 \/%Hf 2

Hence, as the limit of a sequence is unique, we obtain Plancherel’s theorem for all functions in L?(R):

1 fll2 = VfeL*(R).
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Theorem 3.6 One can associate to each f € L*(R) a function fe L2(R) so that the following properties
hold:

(1) If f € LY(R) N L*(R), then f is the previously defined Fourier transform.

(2) For every f € L3(R), || f|l2 = = I fles e

1 o0 o0 N
’f(x)‘zdx = / ’f(w)]de. (Plancherel’s theorem)
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(3) The mapping f — f is a Hilbert’s space isomorphism of L2(R) onto L*(R): % (f,g9) = (f, g), i.e.

;T/_o;f(m>g(9c)d$:/_if(w)§(de, Vf,gGLQ(R),



(4) The following symmetric relation exists between f and f L f:

r R
pr(W) = %[R f(z) ™" dz Yr(w) = [R Flw) e ™ duw,

then )
lor = fllo =0 and |¥r—flla—0  asR— .



