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3 Integrals depending on a parameter

3.2. Fourier transform
Given f : R→ C, f ∈ L1(R,m), we define its Fourier transform as

f̂(ω) = F
[
f
]
(ω) =

1

2π

∫ ∞
−∞

f(x) eiωx dx .

In this case, as |f̂(ω)| ≤ 1
2π

∫∞
−∞ |f(x)| dx = ‖f‖1

2π <∞, it is clear that f̂ ∈ L∞(R).

If f /∈ L1(R) but there exists the principal value of the integral, then f̂ is defined as this principal value:

f̂(ω) = F
[
f
]
(ω) = p.v.

1

2π

∫ ∞
−∞

f(x) eiωx dx := lim
R→∞

1

2π

∫ R

−R
f(x) eiωx dx .

Definition 3.1 Given f, g ∈ L1(R), we define its convolution as

(f ∗ g)(x) :=
1

2π

∫ ∞
−∞

f(x− y) g(y) dy .

It is easy to check that ‖f ∗ g‖1 ≤ 1
2π‖f‖1‖g‖1 and so f ∗ g ∈ L1(R).

Theorem 3.2 (Properties of Fourier transform). Let f, g ∈ L1(R), α ∈ R, a, b ∈ C, I ⊆ R an open
interval. Then

(1) F
[
af + bg

]
(ω) = aF

[
f
]
(ω) + bF

[
g
]
(ω).

(2) F
[
eiαxf(x)

]
(ω) = F

[
f
]
(ω + α).

(3) F
[
f(x− α)

]
(ω) = eiαωF

[
f
]
(ω).

(4) F
[
f(αx)

]
(ω) = 1

|α| F
[
f
](

ω
α

)
.

(5) F
[
f
]
(ω) = F

[
f
]
(−ω).

(6) F
[
f ∗ g

]
(ω) = F

[
f
]
(ω)F

[
g
]
(ω).

(7) If xf(x) ∈ L1(R) then f̂ is derivable and

F
[
xf(x)

]
(ω) = −i d

dω

(
F
[
f
]
(ω)
)
.

(8) If f is derivable, f ′ is continuous and f ′ ∈ L1(R), then

F
[
f ′
]
(ω) = −iωF

[
f
]
(ω) .

(9) If f(·, t) ∈ L1(R) for all t ∈ I, ∃∂f∂t (x, t) a.e. x ∈ R and for all t ∈ I, and ∃ F ∈ L1(R) such that∣∣∂f
∂t (x, t)

∣∣ ≤ F (x) a.e. x ∈ R and for all t ∈ I, then

F
[∂f
∂t

(x, t)
]
(ω) =

∂

∂t

(
F
[
f
]
(ω)
)
.

A direct consequence of (8) is the following

Corollary 3.3 If f is derivable, f ′ is continuous and f, f ′ ∈ L1(R), then lim
|ω|→∞

f̂(ω) = 0.

This is a weak version of the following result:
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Lemma 3.4 (Riemann-Lebesgue lemma). If f ∈ L1(R), then f̂ ∈ C0(R), i.e. f̂ is continuous and
vanishes at infinity:

lim
|ω|→∞

f̂(ω) = 0 .

The following result shows that the Fourier transform can be inverted and that its inverse is essentially
a Fourier transform:

Theorem 3.5 (Inversion of Fourier transform). If f ∈ L1(R) and f̂ ∈ L1(R), then

f(x) = F−1
[
f̂
]
(x) :=

∫ ∞
−∞

f̂(ω) e−iωx dω .

In particular, f ∈ C0(R).

3.2.1. Fourier transform on L2(R)
As Cc(R) ⊂ L1(R) ∩ L2(R) and Cc(R) is dense on L2(R) we have that also L1(R) ∩ L2(R) is dense on
L2(R) and so, given f ∈ L2(R),

∃ {fn}∞n=1 ⊂ L1(R) ∩ L2(R) such that ‖fn − f‖2 → 0 as n→∞.

Now, the definition of f̂(ω) applies for f ∈ L1(R) ∩ L2(R). It turns out that in this case f̂ ∈ L2(R) and,
in fact, Plancherel’s theorem holds:

‖f̂‖2 =
1√
2π
‖f‖2 , ∀ f ∈ L1(R) ∩ L2(R) ,

i.e. Fourier transform preserves L2-norm in L1(R) ∩ L2(R) up to a multiplicative constant. This fact
allows us to extend Fourier transform to the whole L2(R): Given f ∈ L2(R) let {fn}∞n=1 ⊂ L1(R)∩L2(R)
be a sequence such that ‖fn − f‖2 → 0 as n→∞. But then {fn}∞n=1 is a Cauchy sequence and as

‖f̂n − f̂m‖2 = ‖F(fn − fm)‖2 =
1√
2π
‖fn − fm‖2

and so we also have that {f̂n}∞n=1 is also a Cauchy sequence and therefore converges to a function

g ∈ L2(R) since L2(R) is complete. We define f̂ = g. But, as ‖f̂n − g‖2 → 0 as n→∞, we also have

‖fn‖2 → ‖f‖2 , ‖f̂n‖2 → ‖g‖2 , ‖f̂n‖2 =
1√
2π
‖fn‖2 .

Hence, as the limit of a sequence is unique, we obtain Plancherel’s theorem for all functions in L2(R):

‖f̂‖2 =
1√
2π
‖f‖2 , ∀ f ∈ L2(R) .

Theorem 3.6 One can associate to each f ∈ L2(R) a function f̂ ∈ L2(R) so that the following properties
hold:

(1) If f ∈ L1(R) ∩ L2(R), then f̂ is the previously defined Fourier transform.

(2) For every f ∈ L2(R), ‖f̂‖2 = 1√
2π
‖f‖2, i.e.

1

2π

∫ ∞
−∞

∣∣f(x)
∣∣2dx =

∫ ∞
−∞

∣∣f̂(ω)
∣∣2dω . (Plancherel’s theorem)

(3) The mapping f 7→ f̂ is a Hilbert’s space isomorphism of L2(R) onto L2(R): 1
2π 〈f, g〉 = 〈f̂ , ĝ〉, i.e.

1

2π

∫ ∞
−∞

f(x)g(x) dx =

∫ ∞
−∞

f̂(ω) ĝ(ω) dω , ∀ f, g ∈ L2(R) .
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(4) The following symmetric relation exists between f and f̂ . If:

ϕR(ω) =
1

2π

∫ R

−R
f(x) eiωx dx , ψR(ω) =

∫ R

−R
f̂(ω) e−iωx dω ,

then
‖ϕR − f̂‖2 → 0 and ‖ψR − f‖2 → 0 as R→∞ .
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