uc3m \quad Universidad Carlos III de Madrid Departamento de Matemáticas

Integration and Measure

Chapter 3: Integrals depending on a parameter
Section 3.2: Fourier transform

Professors:
Domingo Pestana Galván
José Manuel Rodríguez García

3 Integrals depending on a parameter

3.2. Fourier transform

Given $f: \mathbb{R} \rightarrow \mathbb{C}, f \in L^{1}(\mathbb{R}, m)$, we define its $\underline{\text { Fourier transform }}$ as

$$
\hat{f}(\omega)=\mathcal{F}[f](\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} d x
$$

In this case, as $|\hat{f}(\omega)| \leq \frac{1}{2 \pi} \int_{-\infty}^{\infty}|f(x)| d x=\frac{\|f\|_{1}}{2 \pi}<\infty$, it is clear that $\hat{f} \in L^{\infty}(\mathbb{R})$.
If $f \notin L^{1}(\mathbb{R})$ but there exists the principal value of the integral, then \hat{f} is defined as this principal value:

$$
\hat{f}(\omega)=\mathcal{F}[f](\omega)=\text { p.v. } \frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{i \omega x} d x:=\lim _{R \rightarrow \infty} \frac{1}{2 \pi} \int_{-R}^{R} f(x) e^{i \omega x} d x
$$

Definition 3.1 Given $f, g \in L^{1}(\mathbb{R})$, we define its convolution as

$$
(f * g)(x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x-y) g(y) d y
$$

It is easy to check that $\|f * g\|_{1} \leq \frac{1}{2 \pi}\|f\|_{1}\|g\|_{1}$ and so $f * g \in L^{1}(\mathbb{R})$.
Theorem 3.2 (Properties of Fourier transform). Let $f, g \in L^{1}(\mathbb{R}), \alpha \in \mathbb{R}, a, b \in \mathbb{C}, I \subseteq \mathbb{R}$ an open interval. Then
(1) $\mathcal{F}[a f+b g](\omega)=a \mathcal{F}[f](\omega)+b \mathcal{F}[g](\omega)$.
(2) $\mathcal{F}\left[e^{i \alpha x} f(x)\right](\omega)=\mathcal{F}[f](\omega+\alpha)$.
(3) $\mathcal{F}[f(x-\alpha)](\omega)=e^{i \alpha \omega} \mathcal{F}[f](\omega)$.
(4) $\mathcal{F}[f(\alpha x)](\omega)=\frac{1}{|\alpha|} \mathcal{F}[f]\left(\frac{\omega}{\alpha}\right)$.
(5) $\mathcal{F}[\bar{f}](\omega)=\overline{\mathcal{F}[f](-\omega)}$.
(6) $\mathcal{F}[f * g](\omega)=\mathcal{F}[f](\omega) \mathcal{F}[g](\omega)$.
(7) If $x f(x) \in L^{1}(\mathbb{R})$ then \hat{f} is derivable and

$$
\mathcal{F}[x f(x)](\omega)=-i \frac{d}{d \omega}(\mathcal{F}[f](\omega))
$$

(8) If f is derivable, f^{\prime} is continuous and $f^{\prime} \in L^{1}(\mathbb{R})$, then

$$
\mathcal{F}\left[f^{\prime}\right](\omega)=-i \omega \mathcal{F}[f](\omega)
$$

(9) If $f(\cdot, t) \in L^{1}(\mathbb{R})$ for all $t \in I, \exists \frac{\partial f}{\partial t}(x, t)$ a.e. $x \in \mathbb{R}$ and for all $t \in I$, and $\exists F \in L^{1}(\mathbb{R})$ such that $\left|\frac{\partial f}{\partial t}(x, t)\right| \leq F(x)$ a.e. $x \in \mathbb{R}$ and for all $t \in I$, then

$$
\mathcal{F}\left[\frac{\partial f}{\partial t}(x, t)\right](\omega)=\frac{\partial}{\partial t}(\mathcal{F}[f](\omega))
$$

A direct consequence of (8) is the following
Corollary 3.3 If f is derivable, f^{\prime} is continuous and $f, f^{\prime} \in L^{1}(\mathbb{R})$, then $\lim _{|\omega| \rightarrow \infty} \hat{f}(\omega)=0$.
This is a weak version of the following result:

Lemma 3.4 (Riemann-Lebesgue lemma). If $f \in L^{1}(\mathbb{R})$, then $\hat{f} \in C_{0}(\mathbb{R})$, i.e. \hat{f} is continuous and vanishes at infinity:

$$
\lim _{|\omega| \rightarrow \infty} \hat{f}(\omega)=0
$$

The following result shows that the Fourier transform can be inverted and that its inverse is essentially a Fourier transform:

Theorem 3.5 (Inversion of Fourier transform). If $f \in L^{1}(\mathbb{R})$ and $\hat{f} \in L^{1}(\mathbb{R})$, then

$$
f(x)=\mathcal{F}^{-1}[\hat{f}](x):=\int_{-\infty}^{\infty} \hat{f}(\omega) e^{-i \omega x} d \omega
$$

In particular, $f \in C_{0}(\mathbb{R})$.

3.2.1. Fourier transform on $L^{2}(\mathbb{R})$

As $C_{c}(\mathbb{R}) \subset L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ and $C_{c}(\mathbb{R})$ is dense on $L^{2}(\mathbb{R})$ we have that also $L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ is dense on $L^{2}(\mathbb{R})$ and so, given $f \in L^{2}(\mathbb{R})$,

$$
\exists\left\{f_{n}\right\}_{n=1}^{\infty} \subset L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R}) \text { such that }\left\|f_{n}-f\right\|_{2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Now, the definition of $\hat{f}(\omega)$ applies for $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$. It turns out that in this case $\hat{f} \in L^{2}(\mathbb{R})$ and, in fact, Plancherel's theorem holds:

$$
\|\hat{f}\|_{2}=\frac{1}{\sqrt{2 \pi}}\|f\|_{2}, \quad \forall f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})
$$

i.e. Fourier transform preserves L^{2}-norm in $L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ up to a multiplicative constant. This fact allows us to extend Fourier transform to the whole $L^{2}(\mathbb{R})$: Given $f \in L^{2}(\mathbb{R})$ let $\left\{f_{n}\right\}_{n=1}^{\infty} \subset L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ be a sequence such that $\left\|f_{n}-f\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$. But then $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence and as

$$
\left\|\hat{f}_{n}-\hat{f}_{m}\right\|_{2}=\left\|\mathcal{F}\left(f_{n}-f_{m}\right)\right\|_{2}=\frac{1}{\sqrt{2 \pi}}\left\|f_{n}-f_{m}\right\|_{2}
$$

and so we also have that $\left\{\hat{f}_{n}\right\}_{n=1}^{\infty}$ is also a Cauchy sequence and therefore converges to a function $g \in L^{2}(\mathbb{R})$ since $L^{2}(\mathbb{R})$ is complete. We define $\hat{f}=g$. But, as $\left\|\hat{f}_{n}-g\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$, we also have

$$
\left\|f_{n}\right\|_{2} \rightarrow\|f\|_{2}, \quad\left\|\hat{f}_{n}\right\|_{2} \rightarrow\|g\|_{2}, \quad\left\|\hat{f}_{n}\right\|_{2}=\frac{1}{\sqrt{2 \pi}}\left\|f_{n}\right\|_{2}
$$

Hence, as the limit of a sequence is unique, we obtain Plancherel's theorem for all functions in $L^{2}(\mathbb{R})$:

$$
\|\hat{f}\|_{2}=\frac{1}{\sqrt{2 \pi}}\|f\|_{2}, \quad \forall f \in L^{2}(\mathbb{R})
$$

Theorem 3.6 One can associate to each $f \in L^{2}(\mathbb{R})$ a function $\hat{f} \in L^{2}(\mathbb{R})$ so that the following properties hold:
(1) If $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$, then \hat{f} is the previously defined Fourier transform.
(2) For every $f \in L^{2}(\mathbb{R}),\|\hat{f}\|_{2}=\frac{1}{\sqrt{2 \pi}}\|f\|_{2}$, i.e.

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|\hat{f}(\omega)|^{2} d \omega . \quad \text { (Plancherel's theorem) }
$$

(3) The mapping $f \mapsto \hat{f}$ is a Hilbert's space isomorphism of $L^{2}(\mathbb{R})$ onto $L^{2}(\mathbb{R}): \frac{1}{2 \pi}\langle f, g\rangle=\langle\hat{f}, \hat{g}\rangle$, i.e.

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) \overline{g(x)} d x=\int_{-\infty}^{\infty} \hat{f}(\omega) \overline{\hat{g}(\omega)} d \omega, \quad \forall f, g \in L^{2}(\mathbb{R})
$$

(4) The following symmetric relation exists between f and \hat{f}. If:

$$
\varphi_{R}(\omega)=\frac{1}{2 \pi} \int_{-R}^{R} f(x) e^{i \omega x} d x, \quad \psi_{R}(\omega)=\int_{-R}^{R} \hat{f}(\omega) e^{-i \omega x} d \omega
$$

then

$$
\left\|\varphi_{R}-\hat{f}\right\|_{2} \rightarrow 0 \quad \text { and } \quad\left\|\psi_{R}-f\right\|_{2} \rightarrow 0 \quad \text { as } R \rightarrow \infty
$$

