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3 Integrals depending on a parameter

3.3. Laplace transform
Given a complex function f ∈ L1(0,∞), let us consider its Fourier transform with argument ω ∈ C. As
|eiωx| = e−βx if ω = α+ iβ, the following integral converges∫ ∞

0

|f(t) eiωt| dt =

∫ ∞
0

|f(t)| e−βt <∞ if β > 0.

If we restrict to the half-plane Im (ω) > a > 0 we can weaken the requirement that f be integrable, since:∫ ∞
0

|f(t) eiωt| dt ≤
∫ ∞

0

|f(t)| e−at <∞

if f has exponential growth and f is, for example, piecewise continuous. In this situation, it is customary
to make the change of variable z = −iω and to define the Laplace transform of f to be Lf(z) =∫∞

0
f(t) e−ztdt = 2π f̂(iz) .

Definition 3.1 Let E be the class of complex functions f : (0,∞) −→ C such that

(1) f is integrable on [0, T ] for all T > 0 (this condition holds, for example if f is piecewise continuous).

(2) f has exponential growth: limt→∞ f(t) e−αt = 0 for some α ∈ R.

Definition 3.2 If f ∈ E , then we define its Laplace transform as

Lf(z) =

∫ ∞
0

f(t) e−ztdt = 2π f̂(iz) .

This integral converges for Re z > α.

Lemma 3.3 (Riemann-Lebesgue lemma for Laplace transform). Let f ∈ E. Then

a) Lf(x+ iy)→ 0 as |y| → ∞ for each fixed x > α.

b) Lf(x+ iy)→ 0 as x→∞ for each fixed y.

Theorem 3.4 (Properties of Laplace transform). Let f, g ∈ E, α, β ∈ C, a ∈ R.

(1) L[αf + βg](z) = αL[f ](z) + β L[g](z).

(2) L[eatf(t)](z) = L[f ](z − a).

(3) L[f(at)](z) =
1

a
L[f(t)](z/a), (a > 0).

(4) L[f(t− a)H(t− a)](z) = e−azL[f ](z), where a > 0 and H(t) is the Heaviside function:

H(t) =

{
0 , if x ≤ 0 ,

1 , if x > 0 .

(5) If f is continuous and f ′ is piecewise continuous on (0,∞), and f, f ′ ∈ E, then

Lf ′(z) = z Lf(z)− f(0) .

(6) If f, f ′, . . . , f (n−1) are continuous and f (n) is piecewise continuous on (0,∞), and f, f ′, . . . , f (n) ∈
E, then

L[f (n)](z) = zn Lf(z)− zn−1f(0)− zn−2f ′(0)− · · · − zf (n−2)(0)− f (n−1)(0) .
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(7) Lf(z) is infinitely derivable on Re z > α if f(t), tnf(t) ∈ E (both with exponential growth α and

dn

dzn
[Lf(z)] = (−1)n L[tnf(t)](z) .

(8) If f ∈ E then g(t) =
∫ t

0
f(x) dx ∈ E and Lg(z) = 1

z Lf(z).

(9) If f(t)/t is integrable on [0, T ] for all T > 0, then L[ f(t)
t ](z) =

∫∞
z
Lf(z) dz.

Remark 3.5 In (9)
∫∞
z

denotes integration over any curve in the z-plane starting at z and such that
along the curve Im z stays bounded and Re z →∞.

Definition 3.6 (Convolution for Laplace transform). If f, g ∈ E then the convolution of f and g is
defined as

(f ∗ g)(t) =

∫ t

0

f(x) g(t− x) dx .

Proposition 3.7 f ∗ g ∈ E and L[f ∗ g](z) = Lf(z)Lg(z).

3.3.1. Inverse Laplace transform

We want to solve the equation Lf(z) = F (z) where F (z) is a known function. It is clear that the solution,
if exists, is not unique since changing the value of f at a countable set does not change the value of Lf(z).
However, we have

Theorem 3.8 (Lerch’s theorem). If f and g are two different continuous functions on (0,∞) such
that their Laplace transforms exist, then Lf 6= Lg.

Definition 3.9 Given a derivable function F (z) on Re z > α, we define its inverse Laplace transform as
the unique continuous function f : (0,∞) −→ C such that Lf = F .

Theorem 3.10 (Mellin’s inversion formula) Let F (z) be a derivable function on the half-plane Re z >
α such that F = Lf with f : (0,∞) −→ C continuous. Then

f(t) =
1

2πi

∫ x+i∞

x−i∞
eztF (z) dz = lim

R→∞

∫
ΓR

eztF (z) dz

where ΓR is the vertical segment {x+ iy : |y| ≤ R} oriented from x− iR to x+ iR.
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