Problem 1 (4 points) Let (X, \mathcal{A}, μ) be a measure space.

1) Give the definition of σ -algebra and measure.

Prove that:

- 2) If $\{A_j\}_{j=1}^{\infty} \subset \mathcal{A}$, then $\bigcap_{j=1}^{\infty} A_j \in \mathcal{A}$.
- 3) If $A, B \in \mathcal{A}$, then $A \setminus B \in \mathcal{A}$.
- 4) If $A, B \in \mathcal{A}, A \subseteq B$, then $\mu(A) \le \mu(B)$ and, if $\mu(A) < \infty$, then $\mu(B \setminus A) = \mu(B) \mu(A)$.

5) If
$$\{A_j\}_{j=1}^{\infty} \subset \mathcal{A}$$
, then $\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mu(A_i)$.

1) A collection \mathcal{A} of subsets of a set X is said to be a <u> σ -algebra</u> on X, if

- (a) $\emptyset \in \mathcal{A}$.
- (b) If $A \in \mathcal{A}$, then $A^c = X \setminus A \in \mathcal{A}$.
- (c) If $\{A_j\}_{j\in\mathbb{N}}$ is a countable collection of members of \mathcal{A} , then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{A}$.

The pair (X, \mathcal{A}) is called a <u>measurable space</u> and the members of \mathcal{A} are called <u>measurable sets</u>. Let (X, \mathcal{A}) be a measurable space. A set function $\mu : \mathcal{A} \longrightarrow [\prime, \infty]$ is called a (<u>positive</u>) <u>measure</u> on X if the following two conditions hold:

- a) $\mu(\emptyset) = 0.$
- b) μ is countably additive, i.e. if $\{A_i\}_{i=1}^{\infty}$ is a disjoint countable collection of members of \mathcal{A} , then

$$\mu\Big(\bigcup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} \mu(A_i).$$

We also say that (X, \mathcal{A}, μ) is a <u>measure space</u>.

2) As $A_j \in \mathcal{A}$ then by properties (b) and (c) of a σ -algebra: $X \setminus A_j \in \mathcal{A}$ and $\bigcup_{j=1}^{\infty} (X \setminus A_j) \in \mathcal{A}$. Applying again property (b) we conclude that $\bigcap_{j=1}^{\infty} A_j = X \setminus (\bigcup_{j=1}^{\infty} (X \setminus A_j)) \in \mathcal{A}$.

3) We have that $A \setminus B = A \cap (X \setminus B) \in \mathcal{A}$ by property (b) and part 2).

4) As $A \subseteq B$ we have that $B = A \cup (B \setminus A)$ and this union is disjoint. Hence, by property b) of a measure we conclude that $\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A)$. Now, if $\mu(A) < \infty$ we can substract it from both members and so $\mu(B \setminus A) = \mu(B) - \mu(A)$.

5) Let $B_1 = A_1$, $B_2 = A_2 \setminus A_1, \ldots, B_n = A_n \setminus (A_1 \cup A_2 \cup \cdots \cup A_{n-1})$. Then, it is easy to check that the collection $\{B_j\}$ is disjoint, $A_j \subseteq B_j$ and $\bigcup_{j=1}^{\infty} A_j = \bigcup_{j=1}^{\infty} B_j$. Hence, by property b) of a measure and part 4)

$$\mu\left(\bigcup_{j=1}^{\infty} A_j\right) = \mu\left(\bigcup_{j=1}^{\infty} B_j\right) = \sum_{j=1}^{\infty} \mu(B_j) \le \sum_{j=1}^{\infty} \mu(A_j).$$

Problem 2 (3 points) Let (X, \mathcal{A}, μ) be a measure space and let $f : X \longrightarrow \mathbb{R}$ be an integrable function.

a) Prove Markov's inequality:

$$\mu(\{x \in X : |f(x)| \ge \varepsilon\}) \le \frac{1}{\varepsilon} \int_X |f| \, d\mu$$

b) Using Markov's inequality, show that if f is a measurable function, then

b1)
$$\int |f| d\mu = 0 \quad \iff \quad \mu(f \neq 0) = 0,$$

b2) $\int |f| d\mu < \infty \quad \implies \quad \mu(|f| = \infty) = 0$

a)
$$\mu(\{x \in X : |f(x)| \ge \varepsilon\}) = \int_{\{|f| \ge \varepsilon\}} 1 \, d\mu \le \int_{\{|f| \ge \varepsilon\}} \frac{1}{\varepsilon} |f| \, d\mu \le \frac{1}{\varepsilon} \int_X |f| \, d\mu.$$

b1) (\Leftarrow) $\int_X |f| \, d\mu = \int_{\{|f| = 0\}} |f| \, d\mu + \int_{\{|f| \ne 0\}} |f| \, d\mu = 0 + 0 = 0.$
(\Rightarrow) Using part a) we have that $\mu(\{x \in X : |f| \ge 1/n\}) = 0$ for all $n \in \mathbb{N}$, and so

$$\mu(\{x \in X : f(x) \neq 0\}) = \mu\Big(\bigcup_{n=1}^{\infty} \{x \in X : |f(x)| \ge 1/n\}\Big) \le \sum_{n=1}^{\infty} \mu(\{x \in X : |f| \ge 1/n\}) = 0.$$

b2) Using part a) we have that for all $n \in \mathbb{N}$, and since $\int_X |f| d\mu < \infty$:

$$\mu(\{x \in X : f(x) = \infty\}) \le \mu(\{x \in X : |f| \ge n\}) \le \frac{1}{n} \int_X |f| \, d\mu \to 0, \qquad \text{as } n \to \infty$$

Hence, $\mu(\{x \in X : f(x) = \infty\}) = 0.$

Problem 3 (3 points) Prove that
$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx = 1$$

Let $g_n(x) = (1 + \frac{x}{2})^n e^{-2x} \chi_{[0,n]}(x)$. As $\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$, we have $\lim_{n \to \infty} g_n(x) = e^{-x}$. Hence, we guess that:

$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n} \right)^n e^{-2x} dx = \lim_{n \to \infty} \int_0^\infty g_n(x) \, dx = \int_0^\infty \left(\lim_{n \to \infty} g_n(x) \right) dx = \int_0^\infty e^{-x} \, dx = 1.$$

To prove it, we will show that $|g_n(x)| \leq e^{-x} \in L^1(0,\infty)$ and then our conjecture will be a consequence of the dominated convergence theorem. To do that it is enough to prove that $(1 + \frac{x}{n})^n \leq e^x$ if $x \in [0, n]$. This inequality is equivalent to $n \log(1 + \frac{x}{n}) \leq x$. If we define $G(x) := x - n \log(1 + \frac{x}{n})$ for $x \in [0, n]$, then we must prove that $G(x) \geq 0$ for $x \in [0, n]$. But

$$G'(x) = 1 - \frac{1}{1 + \frac{x}{n}} = \frac{x/n}{1 + \frac{x}{n}} \ge 0 \implies G \text{ is increasing } \implies G(x) \ge G(0) = 0.$$