
INTEGRATION AND MEASURE INTERMEDIATE CONTROL 1 - SOLUTIONS

Problem 1 (4 points) Let (X,A, µ) be a measure space.

1) Give the definition of σ-algebra and measure.

Prove that:

2) If {Aj}∞j=1 ⊂ A, then
⋂∞

j=1Aj ∈ A.

3) If A,B ∈ A, then A \B ∈ A.

4) If A,B ∈ A, A ⊆ B, then µ(A) ≤ µ(B) and, if µ(A) <∞, then µ(B \A) = µ(B)−µ(A).

5) If {Aj}∞j=1 ⊂ A, then µ
( ∞⋃

i=1

Ai

)
≤

∞∑
i=1

µ(Ai).

1) A collection A of subsets of a set X is said to be a σ-algebra on X, if

(a) ∅ ∈ A.

(b) If A ∈ A, then Ac = X \ A ∈ A.

(c) If {Aj}j∈N is a countable collection of members of A, then ∪∞j=1Aj ∈ A.

The pair (X,A) is called a measurable space and the members of A are called measurable sets.
Let (X,A) be a measurable space. A set function µ : A −→ [′,∞] is called a (positive) measure
on X if the following two conditions hold:

a) µ(∅) = 0.

b) µ is countably additive, i.e. if {Ai}∞i=1 is a disjoint countable collection of members of A,
then

µ
( ∞⋃

i=1

Ai

)
=
∞∑
i=1

µ(Ai) .

We also say that (X,A, µ) is a measure space.

2) As Aj ∈ A then by properties (b) and (c) of a σ-algebra: X \Aj ∈ A and ∪∞j=1(X \Aj) ∈ A.

Applying again property (b) we conclude that ∩∞j=1Aj = X \
(
∪∞j=1 (X \ Aj)

)
∈ A.

3) We have that A \B = A ∩ (X \B) ∈ A by property (b) and part 2).

4) As A ⊆ B we have that B = A ∪ (B \ A) and this union is disjoint. Hence, by property b)
of a measure we conclude that µ(B) = µ(A) + µ(B \ A) ≥ µ(A). Now, if µ(A) < ∞ we can
substract it from both members and so µ(B \ A) = µ(B)− µ(A).



5) Let B1 = A1, B2 = A2 \A1, . . . , Bn = An \ (A1 ∪A2 ∪ · · · ∪An−1). Then, it is easy to check
that the collection {Bj} is disjoint, Aj ⊆ Bj and ∪∞j=1Aj = ∪∞j=1Bj. Hence, by property b) of
a measure and part 4)

µ
( ∞⋃
j=1

Aj

)
= µ

( ∞⋃
j=1

Bj

)
=
∞∑
j=1

µ(Bj) ≤
∞∑
j=1

µ(Aj) .

Problem 2 (3 points) Let (X,A, µ) be a measure space and let f : X −→ R be an integrable
function.

a) Prove Markov’s inequality:

µ({x ∈ X : |f(x)| ≥ ε}) ≤ 1

ε

∫
X

|f | dµ .

b) Using Markov’s inequality, show that if f is a measurable function, then

b1)
∫
|f | dµ = 0 ⇐⇒ µ(f 6= 0) = 0 ,

b2)
∫
|f | dµ <∞ =⇒ µ(|f | =∞) = 0 .

a) µ({x ∈ X : |f(x)| ≥ ε}) =

∫
{|f |≥ε}

1 dµ ≤
∫
{|f |≥ε}

1

ε
|f | dµ ≤ 1

ε

∫
X

|f | dµ.

b1) (⇐)

∫
X

|f | dµ =

∫
{|f |=0}

|f | dµ+

∫
{|f |6=0}

|f | dµ = 0 + 0 = 0.

(⇒) Using part a) we have that µ({x ∈ X : |f | ≥ 1/n}) = 0 for all n ∈ N, and so

µ({x ∈ X : f(x) 6= 0}) = µ
( ∞⋃

n=1

{x ∈ X : |f(x)| ≥ 1/n}
)
≤

∞∑
n=1

µ({x ∈ X : |f | ≥ 1/n}) = 0 .

b2) Using part a) we have that for all n ∈ N, and since
∫
X
|f | dµ <∞:

µ({x ∈ X : f(x) =∞}) ≤ µ({x ∈ X : |f | ≥ n}) ≤ 1

n

∫
X

|f | dµ→ 0 , as n→∞ .

Hence, µ({x ∈ X : f(x) =∞}) = 0.

Problem 3 (3 points) Prove that lim
n→∞

∫ n

0

(
1 +

x

n

)n
e−2xdx = 1

Let gn(x)=(1+ x
2
)ne−2xχ

[0,n]
(x). As limn→∞

(
1 + x

n

)n
=ex, we have lim

n→∞
gn(x)=e−x. Hence, we

guess that:

lim
n→∞

∫ n

0

(
1 +

x

n

)n
e−2xdx = lim

n→∞

∫ ∞
0

gn(x) dx =

∫ ∞
0

(
lim
n→∞

gn(x)
)
dx =

∫ ∞
0

e−x dx = 1.



To prove it, we will show that |gn(x)| ≤ e−x ∈ L1(0,∞) and then our conjecture will be a
consequence of the dominated convergence theorem. To do that it is enough to prove that
(1 + x

n
)n ≤ ex if x ∈ [0, n]. This inequality is equivalent to n log(1 + x

n
) ≤ x. If we define

G(x) := x− n log(1 + x
n
) for x ∈ [0, n], then we must prove that G(x) ≥ 0 for x ∈ [0, n]. But

G′(x) = 1− 1

1 + x
n

=
x/n

1 + x
n

≥ 0 =⇒ G is increasing =⇒ G(x) ≥ G(0) = 0 .


