Problem 1 (4 points) Let (X, \mathcal{A}, μ) be a measure space.

1) Give the definition of σ-algebra and measure.

Prove that:
2) If $\left\{A_{j}\right\}_{j=1}^{\infty} \subset \mathcal{A}$, then $\bigcap_{j=1}^{\infty} A_{j} \in \mathcal{A}$.
3) If $A, B \in \mathcal{A}$, then $A \backslash B \in \mathcal{A}$.
4) If $A, B \in \mathcal{A}, A \subseteq B$, then $\mu(A) \leq \mu(B)$ and, if $\mu(A)<\infty$, then $\mu(B \backslash A)=\mu(B)-\mu(A)$.
5) If $\left\{A_{j}\right\}_{j=1}^{\infty} \subset \mathcal{A}$, then $\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(A_{i}\right)$.

1) A collection \mathcal{A} of subsets of a set X is said to be a $\underline{\sigma \text {-algebra }}$ on X, if
(a) $\varnothing \in \mathcal{A}$.
(b) If $A \in \mathcal{A}$, then $A^{c}=X \backslash A \in \mathcal{A}$.
(c) If $\left\{A_{j}\right\}_{j \in \mathbb{N}}$ is a countable collection of members of \mathcal{A}, then $\cup_{j=1}^{\infty} A_{j} \in \mathcal{A}$.

The pair (X, \mathcal{A}) is called a measurable space and the members of \mathcal{A} are called measurable sets. Let (X, \mathcal{A}) be a measurable space. A set function $\mu: \mathcal{A} \longrightarrow[\prime, \infty]$ is called a (positive) measure on X if the following two conditions hold:
a) $\mu(\varnothing)=0$.
b) μ is countably additive, i.e. if $\left\{A_{i}\right\}_{i=1}^{\infty}$ is a disjoint countable collection of members of \mathcal{A}, then

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

We also say that (X, \mathcal{A}, μ) is a measure space.
2) As $A_{j} \in \mathcal{A}$ then by properties (b) and (c) of a σ-algebra: $X \backslash A_{j} \in \mathcal{A}$ and $\cup_{j=1}^{\infty}\left(X \backslash A_{j}\right) \in \mathcal{A}$. Applying again property (b) we conclude that $\cap_{j=1}^{\infty} A_{j}=X \backslash\left(\cup_{j=1}^{\infty}\left(X \backslash A_{j}\right)\right) \in \mathcal{A}$.
3) We have that $A \backslash B=A \cap(X \backslash B) \in \mathcal{A}$ by property (b) and part 2).
4) As $A \subseteq B$ we have that $B=A \cup(B \backslash A)$ and this union is disjoint. Hence, by property b) of a measure we conclude that $\mu(B)=\mu(A)+\mu(B \backslash A) \geq \mu(A)$. Now, if $\mu(A)<\infty$ we can substract it from both members and so $\mu(B \backslash A)=\mu(B)-\mu(A)$.
5) Let $B_{1}=A_{1}, B_{2}=A_{2} \backslash A_{1}, \ldots, B_{n}=A_{n} \backslash\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n-1}\right)$. Then, it is easy to check that the collection $\left\{B_{j}\right\}$ is disjoint, $A_{j} \subseteq B_{j}$ and $\cup_{j=1}^{\infty} A_{j}=\cup_{j=1}^{\infty} B_{j}$. Hence, by property b) of a measure and part 4)

$$
\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\mu\left(\bigcup_{j=1}^{\infty} B_{j}\right)=\sum_{j=1}^{\infty} \mu\left(B_{j}\right) \leq \sum_{j=1}^{\infty} \mu\left(A_{j}\right) .
$$

Problem 2 (3 points) Let (X, \mathcal{A}, μ) be a measure space and let $f: X \longrightarrow \mathbb{R}$ be an integrable function.
a) Prove Markov's inequality:

$$
\mu(\{x \in X:|f(x)| \geq \varepsilon\}) \leq \frac{1}{\varepsilon} \int_{X}|f| d \mu .
$$

b) Using Markov's inequality, show that if f is a measurable function, then

$$
\begin{array}{lll}
\text { b1) } \int|f| d \mu=0 & \Longleftrightarrow & \mu(f \neq 0)=0, \\
\text { b2) } \int|f| d \mu<\infty & \Longrightarrow & \mu(|f|=\infty)=0 .
\end{array}
$$

a) $\mu(\{x \in X:|f(x)| \geq \varepsilon\})=\int_{\{|f| \geq \varepsilon\}} 1 d \mu \leq \int_{\{|f| \geq \varepsilon\}} \frac{1}{\varepsilon}|f| d \mu \leq \frac{1}{\varepsilon} \int_{X}|f| d \mu$.
b1) $(\Leftarrow) \int_{X}|f| d \mu=\int_{\{|f|=0\}}|f| d \mu+\int_{\{|f| \neq 0\}}|f| d \mu=0+0=0$.
(\Rightarrow) Using part a) we have that $\mu(\{x \in X:|f| \geq 1 / n\})=0$ for all $n \in \mathbb{N}$, and so

$$
\mu(\{x \in X: f(x) \neq 0\})=\mu\left(\bigcup_{n=1}^{\infty}\{x \in X:|f(x)| \geq 1 / n\}\right) \leq \sum_{n=1}^{\infty} \mu(\{x \in X:|f| \geq 1 / n\})=0
$$

b2) Using part a) we have that for all $n \in \mathbb{N}$, and since $\int_{X}|f| d \mu<\infty$:

$$
\mu(\{x \in X: f(x)=\infty\}) \leq \mu(\{x \in X:|f| \geq n\}) \leq \frac{1}{n} \int_{X}|f| d \mu \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

Hence, $\mu(\{x \in X: f(x)=\infty\})=0$.
Problem 3 (3 points) Prove that $\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x=1$
Let $g_{n}(x)=\left(1+\frac{x}{2}\right)^{n} e^{-2 x} \chi_{[0, n]}(x)$. As $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}$, we have $\lim _{n \rightarrow \infty} g_{n}(x)=e^{-x}$. Hence, we guess that:

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x=\lim _{n \rightarrow \infty} \int_{0}^{\infty} g_{n}(x) d x=\int_{0}^{\infty}\left(\lim _{n \rightarrow \infty} g_{n}(x)\right) d x=\int_{0}^{\infty} e^{-x} d x=1
$$

To prove it, we will show that $\left|g_{n}(x)\right| \leq e^{-x} \in L^{1}(0, \infty)$ and then our conjecture will be a consequence of the dominated convergence theorem. To do that it is enough to prove that $\left(1+\frac{x}{n}\right)^{n} \leq e^{x}$ if $x \in[0, n]$. This inequality is equivalent to $n \log \left(1+\frac{x}{n}\right) \leq x$. If we define $G(x):=x-n \log \left(1+\frac{x}{n}\right)$ for $x \in[0, n]$, then we must prove that $G(x) \geq 0$ for $x \in[0, n]$. But

$$
G^{\prime}(x)=1-\frac{1}{1+\frac{x}{n}}=\frac{x / n}{1+\frac{x}{n}} \geq 0 \Longrightarrow G \text { is increasing } \Longrightarrow G(x) \geq G(0)=0
$$

