Problem 1 (2,5 points)

a) (1 point) Let $X=\{a, b, c, d\}$. Construct the σ-algebra generated by $\mathcal{E}_{1}=\{\{a\}\}$ and $\mathcal{E}_{2}=\{\{a\},\{b\}\}$.
b) (1,5 points) Let $E \in \mathcal{A}$ be a fixed measurable subset of X. We define $\mu_{E}(A)=\mu(A \cap E)$ for any $A \in \mathcal{A}$. Using that μ is a measure in X, prove that μ_{E} is also a measure in X.
a) To construct them we must add the necessary subsets so that the σ-algebra properties are verified: $\mathcal{A}_{\mathcal{E}_{1}}=\{\varnothing,\{a\},\{b, c, d\}, X\}, \mathcal{A}_{\mathcal{E}_{2}}=\{\varnothing,\{a\},\{b\},\{b, c, d\},\{a, c, d\},\{a, b\},\{c, d\}, X\}$.
b) Since μ is a measure: $\mu_{E}(\varnothing)=\mu(\varnothing \cap E)=\mu(\varnothing)=0$;

Let $\left\{A_{j}\right\}_{j=1}^{\infty}$ be a disjoint countable collection for sets in \mathcal{A}. Then the collection $\left\{A_{j} \cap E\right\}_{j=1}^{\infty}$ is also disjoint and, as μ is a measure,

$$
\mu_{E}\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\mu\left(\left(\bigcup_{j=1}^{\infty} A_{j}\right) \cap E\right)=\mu\left(\bigcup_{j=1}^{\infty}\left(A_{j} \cap E\right)\right)=\sum_{j=1}^{\infty} \mu\left(A_{j} \cap E\right)=\sum_{j=1}^{\infty} \mu_{E}\left(A_{j}\right)
$$

Problem 2 (2,5 points)

a) (1 point) State the monotone convergence theorem.
b) (1.5 points) Prove that the function $f(x)=\frac{1}{\sqrt{x}}$ if $x \in(0,1]$, and $f(0)=0$, is Lebesgue-integrable in $[0,1]$ and calculate its integral.
a) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of measurable functions such that

$$
0 \leq f_{1}(x) \leq f_{2}(x) \leq \cdots \leq \infty, \quad \forall x \in X
$$

Then

$$
\int_{X} \lim _{n \rightarrow \infty} f_{n}=\lim _{n \rightarrow \infty} \int_{X} f_{n}
$$

b) As $\frac{1}{\sqrt{x}} \chi_{[1 / N, 1]}(x) \nearrow \frac{1}{\sqrt{x}} \chi_{(0,1]}(x)=f(x)$ when $N \rightarrow \infty$ for $x \in[0,1]$, by the monotone convergence theorem,

$$
\int_{0}^{1} f(x) d x=\lim _{N \rightarrow \infty} \int_{0}^{1} f(x) \chi_{[1 / N, 1]}(x) d x=\lim _{N \rightarrow \infty} \int_{1 / N}^{1} f(x) d x
$$

But $f(x)$ is continuous in the bounded interval $[1 / N, 1]$ and so it is Riemann-integrable in $[1 / N, 1]$ and its Lebesgue integral coincide with its Riemann integral, and to compute it we can use Barrow's rule. Hence,

$$
\int_{1}^{\infty} f(x) d x=\lim _{N \rightarrow \infty} \int_{1 / N}^{1} \frac{1}{\sqrt{x}} d x=\lim _{N \rightarrow \infty}[2 \sqrt{x}]_{x=1 / N}^{x=1}=\lim _{N \rightarrow \infty} 2\left(\frac{1}{\sqrt{N}}-1\right)=2
$$

Problem 3 (3 points)

a) (1 point) State the dominated convergence theorem.
b) (2 points) Using this last theorem, compute the limit

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{x / 2} d x
$$

a) Let $\left\{f_{n}\right\}_{n=1}^{\infty}$ be a sequence of complex measurable functions such that $f_{n}(x) \rightarrow f(x)$ as $n \rightarrow \infty$ a.e. on X. If there exists a function $F \in L^{1}(\mu)$ such that

$$
\left|f_{n}(x)\right| \leq F(x), \quad \forall n \in \mathbb{N}, \text { a.e. } x \in X
$$

then $f \in L^{1}(\mu)$,

$$
\lim _{n \rightarrow \infty} \int_{X}\left|f_{n}-f\right| d \mu=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \int_{X} f_{n} d \mu=\int_{X} f d \mu
$$

b) Let $f_{n}(x)=\left(1-\frac{x}{2}\right)^{n} e^{x / 2} \chi_{[0, n]}(x)$. As $\lim _{n \rightarrow \infty}\left(1-\frac{x}{n}\right)^{n}=e^{-x}$, we have $\lim _{n \rightarrow \infty} f_{n}(x)=e^{-x / 2}$. Hence, we guess that:

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1-\frac{x}{n}\right)^{n} e^{x / 2} d x=\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{\infty}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x=\int_{0}^{\infty} e^{-x / 2} d x=2
$$

To prove it, we will show that $\left|f_{n}(x)\right| \leq e^{-x / 2} \in L^{1}(0, \infty)$ and then our conjecture will be a consequence of the dominated convergence theorem. To do that it is enough to prove that $\left(1-\frac{x}{n}\right)^{n} \leq e^{-x}$ if $x \in[0, n]$. This inequality is equivalent to $n \log \left(1-\frac{x}{n}\right) \leq-x$. If we define $F(x):=x+n \log \left(1-\frac{x}{n}\right)$ for $x \in[0, n]$, then we must prove that $F(x) \leq 0$ for $x \in[0, n]$. But

$$
F^{\prime}(x)=1-\frac{1}{1-\frac{x}{n}}=-\frac{x / n}{1-\frac{x}{n}} \leq 0 \Longrightarrow F \text { is decreasing } \Longrightarrow F(x) \leq F(0)=0
$$

Problem 4 (2 points) Let us consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$, with μ the counting measure and the product measure space $(\mathbb{N} \times \mathbb{N}, \mathcal{P}(\mathbb{N} \times \mathbb{N}), \mu \otimes \mu)$. Let us define the function

$$
g(m, n)=\left\{\begin{array}{lll}
1+2^{-m} & \text { if } & m=n \\
-1-2^{-m} & \text { if } & m=n+1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Check that $\int_{\mathbb{N}}\left(\int_{\mathbb{N}} f(m, n) d \mu(m)\right) d \mu(n)$, and $\left.\int_{\mathbb{N}}\left(\int_{\mathbb{N}} f(m, n) d \nu(n)\right) d \mu(m)\right)$ exist and are distinct and that $\int_{\mathbb{N} \times \mathbb{N}}|f(m, n)| d(\mu \otimes \mu)(m, n)=\infty$. What is the relevance of this result?

For fixed n we have:

$$
\int_{\mathbb{N}} f(m, n) d \mu(m)=\sum_{m=1}^{\infty} f(m, n)=f(n, n)+f(n+1, n)=1+2^{-n}-1-2^{-n-1}=2^{-n-1}
$$

and, for fixed m,

$$
\begin{aligned}
\int_{\mathbb{N}} f(m, n) d \mu(n) & =\sum_{n=1}^{\infty} f(m, n)= \begin{cases}f(1,1), & \text { if } m=1 \\
f(m, m-1)+f(m, m), & \text { if } m \geq 2\end{cases} \\
& =\left\{\begin{array}{ll}
1+2^{-1}, & \text { if } m=1 \\
-1-2^{-m}+1+2^{-m}, & \text { if } m \geq 2
\end{array}= \begin{cases}3 / 2, & \text { if } m=1 \\
0, & \text { if } m \geq 2\end{cases} \right.
\end{aligned}
$$

Hence,

$$
\int_{\mathbb{N}}\left(\int_{\mathbb{N}} f(m, n) d \mu(m)\right) d \mu(n)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} f(m, n)=\sum_{n=1}^{\infty} 2^{-n-1}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2} \cdot 1=\frac{1}{2}
$$

and

$$
\int_{\mathbb{N}}\left(\int_{\mathbb{N}} f(m, n) d \mu(n)\right) d \mu(m)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f(m, n)=\frac{3}{2}+0+\cdots+0+\cdots=\frac{3}{2} .
$$

Hence, the iterated integrals do not coincide also in this case. Therefore, Fubini's theorem can not be applied and since $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$ is σ-finite the only possibility is that $f \notin L^{1}(\mu \otimes \mu)$ (as it can be easily verified).

