Universidad Carlos III de Madrid Departamento de Matemáticas uc3m

INTEGRATION AND MEASURE

Intermediate Control 2

Time: 100 minutes

Problem 1 (2,5 points)

- a) (1 point) Let $X = \{a, b, c, d\}$. Construct the σ -algebra generated by $\mathcal{E} = \{\{a\}\}$ and $\mathcal{E} = \{\{a\}, \{b\}\}.$
- b) (1,5 points) Let $E \in \mathcal{A}$ be a fixed measurable subset of X. We define $\mu_E(A) = \mu(A \cap E)$ for any $A \in \mathcal{A}$. Using that μ is a measure in X, prove that μ_E is also a measure in X.

Problem 2 (2,5 points)

- a) (1 point) State the monotone convergence theorem.
- b) (1.5 points) Prove that the function $f(x) = \frac{1}{\sqrt{x}}$ if $x \in (0,1]$, and f(0) = 0, is Lebesgue-integrable in [0, 1] and calculate its integral.

Problem 3 (3 points)

- a) (1 point) State the dominated convergence theorem.
- b) (2 points) Using this last theorem, compute the limit

$$\lim_{n \to \infty} \int_0^n \left(1 - \frac{x}{n} \right)^n e^{x/2} dx \, .$$

Problem 4 (2 points) Let us consider the measure space $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu)$, with μ the counting measure and the product measure space $(\mathbb{N} \times \mathbb{N}, \mathcal{P}(\mathbb{N} \times \mathbb{N}), \mu \otimes \mu)$. Let us define the function

$$g(m,n) = \begin{cases} 1+2^{-m} & \text{if} & m=n, \\ -1-2^{-m} & \text{if} & m=n+1, \\ 0 & \text{otherwise.} \end{cases}$$

Check that $\int_{\mathbb{N}} (\int_{\mathbb{N}} f(m,n) d\mu(m)) d\mu(n)$, and $\int_{\mathbb{N}} (\int_{\mathbb{N}} f(m,n) d\nu(n)) d\mu(m)$) exist and are distinct and that $\int_{\mathbb{N}\times\mathbb{N}} |f(m,n)| d(\mu \otimes \mu)(m,n) = \infty$. What is the relevance of this result?