Problem $1(2,5$ points) Let (X, \mathcal{A}, μ) be a measure space, let $f, g: X \longrightarrow[0, \infty]$ be measurable positive functions, $E \in \mathcal{A}$ and $\lambda \geq 0$.
a) Define the integral of f. By using this definition:
b) Prove that $\int_{E} \lambda f d \mu=\lambda \int_{E} f d \mu$.
c) Prove that $\int_{E} f d \mu=\int_{X} f \chi_{E} d \mu$.
d) Prove that $f \leq g \Longrightarrow \int_{E} f d \mu \leq \int_{E} g d \mu$.
a) If $s=\sum_{j=1}^{n} c_{j} \chi_{A_{j}}$ is a simple function with $c_{j} \in \mathbb{R}$ and $A_{j} \in \mathcal{A}$, then we define

$$
\int_{X} s d \mu=\sum_{j=1}^{n} c_{j} \mu\left(A_{j}\right)
$$

and if $E \in \mathcal{A}$:

$$
\int_{E} s d \mu=\sum_{j=1}^{n} c_{j} \mu\left(A_{j} \cap E\right)
$$

Now if f is a positive function we define

$$
\int_{E} f d \mu=\sup _{\substack{0 \leq s \leq f \\ s \text { simple }}} \int_{E} s d \mu
$$

b) Let us observe that s is a simple function if and only if $\tilde{s}=s / \lambda$ is also a simple function. Hence

$$
\int_{E} \lambda f d \mu=\sup _{\substack{0 \leq s \leq \lambda f \\ s \text { simple }}} \int_{E} s d \mu=\sup _{\substack{0 \leq s / \lambda \leq f \\ s \text { simple }}} \lambda \int_{E} \frac{s}{\lambda} d \mu=\lambda \sup _{\substack{0 \leq s \leq f \\ \tilde{s} \text { simple }}} \int_{E} \tilde{s} d \mu=\lambda \int_{E} f d \mu
$$

c) We have that

$$
\int_{E} f d \mu=\sup _{\substack{0 \leq \leq \leq f \\ s \text { simple }}} \int_{E} s d \mu=\sup _{\substack{00 s \leq f \\ s=\sum_{j} c_{j} \chi_{A_{j}}}} \sum_{j} c_{j} \mu\left(A_{j} \cap E\right)
$$

Now, it is easy to check that

$$
\int_{X} f \chi_{E} d \mu=\sup _{\substack{0 \leq \tilde{s} \leq f \chi_{E} \\ \tilde{s}=\sum_{j} c_{j} \chi_{A_{j}} \cap E}} \int_{X} \tilde{s} d \mu=\sup _{\substack{0 \leq s \leq f \\ s=\sum_{j} c_{j} \chi_{A_{j}}}} \sum_{j} c_{j} \mu\left(A_{j} \cap E\right)=\int_{E} f d \mu
$$

d) As $f \leq g$ we have that

$$
\{s \text { simple }: 0 \leq s \leq f\} \subseteq\{s \text { simple }: 0 \leq s \leq g\}
$$

and so

$$
\int_{E} f d \mu=\sup _{0 \leq s \leq f} \int_{E} s d \mu \leq \sup _{0 \leq s \leq g} \int_{E} s d \mu=\int_{E} g d \mu .
$$

Problem $2(2,5$ points) Consider $a>0$.
a) Prove that for each $x \geq a$ the function

$$
v(t)=\frac{t}{1+t^{2} x^{2}}
$$

decreases for $t \geq 1 / a$.
b) Find an upper bound of

$$
\frac{n}{1+n^{2} x^{2}}
$$

for every $x \geq a$ and $n \geq 1 / a$, by a function which just depends on x and a.
c) Calculate

$$
L=\lim _{n \rightarrow \infty} \int_{a}^{\infty} \frac{n}{1+n^{2} x^{2}} d x
$$

and say what theorem you used.
a) We have that

$$
v^{\prime}(t)=\frac{1-t^{2} x^{2}}{\left(1+t^{2} x^{2}\right)^{2}}=0 \quad \Leftrightarrow \quad t^{2}=\frac{1}{x^{2}}
$$

and therefore, since $x \geq a>0$,

$$
t \geq \frac{1}{a} \Longrightarrow t \geq \frac{1}{x} \Longrightarrow t^{2} \geq \frac{1}{x^{2}} \Longrightarrow 1-x^{2} t^{2} \leq 0 \Longrightarrow v^{\prime}(t) \leq 0
$$

Hence $v(t)$ decreases in the interval $[1 / a, \infty)$.
b) As a consequence of a)

$$
v(t) \leq v(1 / a)=\frac{a}{a^{2}+x^{2}} \quad \text { if } t \geq 1 / a
$$

Therefore, if $n \geq 1 / a$,

$$
\frac{n}{1+n^{2} x^{2}}=v(n) \leq v(1 / a)=\frac{a}{a^{2}+x^{2}}
$$

c) As $F(x)=\frac{a}{a^{2}+x^{2}} \in L^{1}(a, \infty)$, by the dominated convergence theorem:

$$
\lim _{n \rightarrow \infty} \int_{a}^{\infty} \frac{n}{1+n^{2} x^{2}} d x=\int_{a}^{\infty} \lim _{n \rightarrow \infty} \frac{n}{1+n^{2} x^{2}} d x=\int_{a}^{\infty} 0 d x=0
$$

Problem 3 (2,5 points) Consider $a \in \mathbb{R}$.
a) Explain why we can derive the parametric integral $G(a)=\int_{0}^{\infty} \log \left(1+\frac{a^{2}}{x^{2}}\right) d x$ when $a \neq 0$.
b) Obtain explicitly $G(a)$ by deriving with respect to the parameter and integrating later with respect to it. You can use, without a proof, that G is a continuous function on \mathbb{R}.

Hint: Since G is a continuous even function, it suffices to consider the case $a>0$; if we consider two constants $0<\varepsilon<M$ and $a \in[\varepsilon, M]$, find a bound of $\left|\frac{\partial}{\partial a}\left[\log \left(1+\frac{a^{2}}{x^{2}}\right)\right]\right|$ by a function (which just depends on x, ε and $M)$ in $L^{1}(0, \infty)$.
a) As

$$
\frac{\partial}{\partial a}\left[\log \left(1+\frac{a^{2}}{x^{2}}\right)\right]=\frac{2 a}{x^{2}+a^{2}} \leq \frac{2 M}{x^{2}+\varepsilon^{2}} \in L^{1}(0, \infty)
$$

for all $a \in[\varepsilon, M]$ with $0<\varepsilon<M<\infty$, using the theorem on differentiation of parametric integrals we deduce that $G(a)$ is derivable in (ε, M) for all ε and M and therefore, since G is also even, is derivable in $\mathbb{R} \backslash\{0\}$ and

$$
G^{\prime}(a)=\int_{0}^{\infty} \frac{\partial}{\partial a}\left[\log \left(1+\frac{a^{2}}{x^{2}}\right)\right] d x=\int_{0}^{\infty} \frac{2 a}{x^{2}+a^{2}} d x .
$$

b) Therefore

$$
G^{\prime}(a)=\int_{0}^{\infty} \frac{2 a}{x^{2}+a^{2}} d x=2\left[\arctan \frac{x}{a}\right]_{x=0}^{x=\infty}=2 \frac{\pi}{2}=\pi .
$$

This implies that $G(a)=\pi a+c$ for $a>0$, where c is a constant. As G is continuous in \mathbb{R}, we deduce that $G(0)=c$. But, it is clear from the definition of G that $G(0)=0$. Hence, $G(a)=\pi a$ for $a \geq 0$. Since $G(a)$ is an even function, we conclude that $G(a)=\pi|a|$ for $a \in \mathbb{R}$.

Problem $4(2,5$ points) Find a solution of the initial value problem for the heat equation:

$$
\begin{cases}\frac{\partial}{\partial t} u(x, t)=\frac{\partial^{2}}{\partial x^{2}} u(x, t), & \text { if } x \in \mathbb{R}, t>0 \\ u(x, 0)=e^{-x^{2}}, & \text { if } x \in \mathbb{R}\end{cases}
$$

Hint: The solution of the differential equation $\frac{d}{d t} y(t)=a y(t)$ is $y(t)=C e^{a t}$, where C is a constant (it does not depend on t).

Applying the Fourier transform to the PDE equation we obtain:

$$
u_{t}=u_{x x} \Longrightarrow \hat{u}_{t}=-\omega^{2} \hat{u} .
$$

For each fixed $w \in \mathbb{R}$ this last equation is an ordinary differential equation whose solution is $\hat{u}(\omega, t)=C(\omega) e^{-\omega^{2} t}$ where $\omega \in \mathbb{R}$ and $t>0$. From this equation we deduce that $C(\omega)=\hat{u}(\omega, 0)$,

But using now the initial condition $u(x, 0)=e^{-x^{2}}$ we deduce taking again Fourier transforms that $C(\omega)=\hat{u}(\omega, 0)=\mathcal{F}\left[e^{-x^{2}}\right](\omega)=\frac{1}{\sqrt{4 \pi}} e^{-\omega^{2} / 4}$.
Hence,

$$
\hat{u}(\omega, t)=\frac{1}{\sqrt{4 \pi}} e^{-\omega^{2} / 4} e^{-\omega^{2} t}=\frac{1}{\sqrt{4 \pi}} e^{-\omega^{2}(t+1 / 4)}
$$

and taking now the inverse Fourier transform, we obtain that

$$
u(x, t)=\frac{1}{\sqrt{4 \pi}} \mathcal{F}^{-1}\left[e^{-\omega^{2}(t+1 / 4)}\right](x)=\frac{1}{\sqrt{4 \pi}} \sqrt{\frac{\pi}{t+1 / 4}} e^{-x^{2} /[4(t+1 / 4)]}=\frac{1}{\sqrt{4 t+1}} e^{-x^{2} /(4 t+1)}
$$

