
INTEGRATION AND MEASURE TEST 2 - SOLUTIONS

Problem 1 (2,5 points) Let (X,A, µ) be a measure space and let fn : X −→ R be a sequence
of measurable functions such that

∞∑
n=1

∫
X

|fn| dµ <∞ .

Prove that:

a) The series
∑

n fn converges almost everywhere in X to a function f : X −→ R:
∞∑
n=1

fn(x) = f(x) , for almost every x ∈ X .

b) f ∈ L1(µ).

c)

∫
X

f dµ =
∞∑
n=1

∫
X

fn dµ .

Hints: a) Consider the function F (x) :=
∑∞

n=1 |fn(x)| and show that it belongs to L1(X). c)
gn := f1 + · · ·+ fn verifies limn→∞ gn(x) = f(x) a.e. and |gn| ≤ F .

a) Let F (x) =
∑∞

n=1 |fn(x)| ∈ [0,∞]. Then, as a consequence of monotone convergence theorem∫
X

F dµ =

∫
X

lim
N→∞

N∑
n=1

|fn(x)| dµ(x) = lim
N→∞

∫
X

N∑
n=1

|fn(x)| dµ(x)

= lim
N→∞

N∑
n=1

∫
X

|fn(x)| dµ(x) =
∞∑
n=1

∫
X

|fn| dµ <∞ ,

by hypothesis. Therefore:

F ∈ L1(µ) =⇒ F (x) <∞ a.e. =⇒
∞∑
n=1

|fn(x)| <∞ a.e. =⇒
∞∑
n=1

fn(x) converges a.e.

b) As |f(x)| =
∣∣∣ ∞∑
n=1

fn(x)
∣∣∣ ≤ ∞∑

n=1

|fn(x)| = F (x) ∈ L1(µ) we conclude that also f ∈ L1(µ).

c) Let sN(x) =
N∑

n=1

fn(x). Then:

|sN(x)| ≤
N∑

n=1

|fn(x)| ≤ F (x) ∈ L1(µ) and sN(x)→ f(x) as N →∞ ,

and so, by the dominated convergence theorem:∫
X

f dµ =

∫
X

lim
N→∞

sN(x) dµ(x) = lim
N→∞

∫
X

sN(x) dµ(x) = lim
N→∞

N∑
n=1

∫
X

fn dµ =
∞∑
n=1

∫
X

|fn| dµ .



Problem 2 (2,5 points)

a) Prove that the sequence of functions {fn} defined as follows

fn(x) =
1 + nx2

(1 + x2)n

is decreasing on n for every x ≥ 0.

b) Calculate

L = lim
n→∞

∫ ∞
0

1 + nx2

(1 + x2)n
dx ,

and say what theorem you used.

a) We have that

fn(x) ≥ fn+1(x)⇔ (1 + nx2)(1 + x2) ≥ 1 + (n+ 1)x2 ⇔ nx4 ≥ 0

and this is obviously true.

b) First, observe that∫ ∞
0

f2(x) dx =

∫ ∞
0

1 + 2x2

(1 + x2)2
dx ≤

∫ 1

0

(1 + 2x2) dx+

∫ ∞
1

1 + 2x2

x4
dx

=

∫ 1

0

(1 + 2x2) dx+

∫ ∞
1

1

x4
dx+ 2

∫ ∞
1

1

x2
dx <∞ .

Hence, using the monotone convergence theorem for decreasing sequences:

L = lim
n→∞

∫ ∞
0

fn(x) dx =

∫ ∞
0

lim
n→∞

fn(x) dx =

∫ ∞
0

0 dx = 0,

since, for x 6= 0,

0 ≤ lim
n→∞

fn(x) ≤ lim
n→∞

1 + nx2

1 + nx2 + n(n−1)
2

x4
= lim

n→∞

1
n2 + x2

n
1
n2 + x2

n
+ n−1

2n
x4

=
0 + 0

0 + 0 + x4

2

= 0 .

Problem 3 (2,5 points) Consider p > −1.

a) Explain why we can derive the parametric integral H(p) =

∫ 1

0

xp − 1

log x
dx .

b) Obtain explicitly H(p) deriving with respect to the parameter and integrating later
with respect to it.



a) As p > −1 we have that ∣∣∣ ∂
∂p

[xp − 1

log x

]∣∣∣ = xp ∈ L1(0, 1)

and so, by the theorem on derivation of parametric integrals, we conclude that H(p) is derivable
in (−1,∞).
b) Also, this same theorem gives that

H ′(p) =

∫ 1

0

∂

∂p

[xp − 1

log x

]
dx =

∫ 1

0

xp dx =
[ xp+1

p+ 1

]x=1

x=0
=

1

p+ 1
,

and therefore

H(p) =

∫
1

p+ 1
dp = log(p+ 1) + c .

As H(0) =
∫ 1

0
0 dx = 0 we obtain that 0 = H(0) = log 1 + c = 0 + c = c and therefore

H(p) = log(p+ 1).

Problem 4 (2,5 points) Solve, for ω 6= ω0, the initial value problem{
x′′ + ω2

0 x = k sinωt , if t > 0 ,

x(0) = x′(0) = 0 .

Hints: You can use the following properties and formulas for the Laplace transform:

L[f ′′](s) = s2L[f ](s)− sf(0)− f ′(0) ,

L[sin at](s) =
a

s2 + a2
(s > 0) .

Applying the Laplace transform to the equation we obtain:

L[x′′](s) + ω2
0 L[x](s) = k L[sinωt](s) =⇒ s2L[x](s)− s x(0)− x′(0) + ω2

0 L[x](s) =
kω

s2 + ω2

and therefore

L[x](s) =
kω

(s2 + ω2)(s2 + ω2
0)
.

Decomposing this fraction into simple fractions we obtain:

L[x](s) =
kω

(s2 + ω2)(s2 + ω2
0)

=
As+B

s2 + ω2
+
Cs+D

s2 + ω2
0

with

A = C = 0 and B = −D =
kω

ω2
0 − ω2

.

Therefore:

L[x] =
B

s2 + ω2
+

D

s2 + ω2
0

=⇒ x(t) =
B

ω
sinωt+

D

ω0

sinω0t =
k

ω0

ω0 sinωt− ω sinω0t

ω2
0 − ω2

.


