Problem $1\left(2,5\right.$ points) Let (X, \mathcal{A}, μ) be a measure space and let $f_{n}: X \longrightarrow \mathbb{R}$ be a sequence of measurable functions such that

$$
\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty
$$

Prove that:
a) The series $\sum_{n} f_{n}$ converges almost everywhere in X to a function $f: X \longrightarrow \mathbb{R}$:

$$
\sum_{n=1}^{\infty} f_{n}(x)=f(x), \quad \text { for almost every } x \in X
$$

b) $f \in L^{1}(\mu)$.
c) $\int_{X} f d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu$.

Hints: a) Consider the function $F(x):=\sum_{n=1}^{\infty}\left|f_{n}(x)\right|$ and show that it belongs to $L^{1}(X)$. c) $g_{n}:=f_{1}+\cdots+f_{n}$ verifies $\lim _{n \rightarrow \infty} g_{n}(x)=f(x)$ a.e. and $\left|g_{n}\right| \leq F$.
a) Let $F(x)=\sum_{n=1}^{\infty}\left|f_{n}(x)\right| \in[0, \infty]$. Then, as a consequence of monotone convergence theorem

$$
\begin{aligned}
\int_{X} F d \mu & =\int_{X} \lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left|f_{n}(x)\right| d \mu(x)=\lim _{N \rightarrow \infty} \int_{X} \sum_{n=1}^{N}\left|f_{n}(x)\right| d \mu(x) \\
& =\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{X}\left|f_{n}(x)\right| d \mu(x)=\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty
\end{aligned}
$$

by hypothesis. Therefore:

$$
F \in L^{1}(\mu) \Longrightarrow F(x)<\infty \text { a.e. } \Longrightarrow \sum_{n=1}^{\infty}\left|f_{n}(x)\right|<\infty \text { a.e. } \Longrightarrow \sum_{n=1}^{\infty} f_{n}(x) \text { converges a.e. }
$$

b) As $|f(x)|=\left|\sum_{n=1}^{\infty} f_{n}(x)\right| \leq \sum_{n=1}^{\infty}\left|f_{n}(x)\right|=F(x) \in L^{1}(\mu)$ we conclude that also $f \in L^{1}(\mu)$.
c) Let $s_{N}(x)=\sum_{n=1}^{N} f_{n}(x)$. Then:

$$
\left|s_{N}(x)\right| \leq \sum_{n=1}^{N}\left|f_{n}(x)\right| \leq F(x) \in L^{1}(\mu) \quad \text { and } \quad s_{N}(x) \rightarrow f(x) \quad \text { as } N \rightarrow \infty
$$

and so, by the dominated convergence theorem:

$$
\int_{X} f d \mu=\int_{X} \lim _{N \rightarrow \infty} s_{N}(x) d \mu(x)=\lim _{N \rightarrow \infty} \int_{X} s_{N}(x) d \mu(x)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \int_{X} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu
$$

Problem 2 (2,5 points)

a) Prove that the sequence of functions $\left\{f_{n}\right\}$ defined as follows

$$
f_{n}(x)=\frac{1+n x^{2}}{\left(1+x^{2}\right)^{n}}
$$

is decreasing on n for every $x \geq 0$.
b) Calculate

$$
L=\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{1+n x^{2}}{\left(1+x^{2}\right)^{n}} d x
$$

and say what theorem you used.
a) We have that

$$
f_{n}(x) \geq f_{n+1}(x) \Leftrightarrow\left(1+n x^{2}\right)\left(1+x^{2}\right) \geq 1+(n+1) x^{2} \Leftrightarrow n x^{4} \geq 0
$$

and this is obviously true.
b) First, observe that

$$
\begin{aligned}
\int_{0}^{\infty} f_{2}(x) d x & =\int_{0}^{\infty} \frac{1+2 x^{2}}{\left(1+x^{2}\right)^{2}} d x \leq \int_{0}^{1}\left(1+2 x^{2}\right) d x+\int_{1}^{\infty} \frac{1+2 x^{2}}{x^{4}} d x \\
& =\int_{0}^{1}\left(1+2 x^{2}\right) d x+\int_{1}^{\infty} \frac{1}{x^{4}} d x+2 \int_{1}^{\infty} \frac{1}{x^{2}} d x<\infty
\end{aligned}
$$

Hence, using the monotone convergence theorem for decreasing sequences:

$$
L=\lim _{n \rightarrow \infty} \int_{0}^{\infty} f_{n}(x) d x=\int_{0}^{\infty} \lim _{n \rightarrow \infty} f_{n}(x) d x=\int_{0}^{\infty} 0 d x=0
$$

since, for $x \neq 0$,

$$
0 \leq \lim _{n \rightarrow \infty} f_{n}(x) \leq \lim _{n \rightarrow \infty} \frac{1+n x^{2}}{1+n x^{2}+\frac{n(n-1)}{2} x^{4}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}+\frac{x^{2}}{n}}{\frac{1}{n^{2}}+\frac{x^{2}}{n}+\frac{n-1}{2 n} x^{4}}=\frac{0+0}{0+0+\frac{x^{4}}{2}}=0
$$

Problem 3 (2,5 points) Consider $p>-1$.
a) Explain why we can derive the parametric integral $H(p)=\int_{0}^{1} \frac{x^{p}-1}{\log x} d x$.
b) Obtain explicitly $H(p)$ deriving with respect to the parameter and integrating later with respect to it.
a) As $p>-1$ we have that

$$
\left|\frac{\partial}{\partial p}\left[\frac{x^{p}-1}{\log x}\right]\right|=x^{p} \in L^{1}(0,1)
$$

and so, by the theorem on derivation of parametric integrals, we conclude that $H(p)$ is derivable in $(-1, \infty)$.
b) Also, this same theorem gives that

$$
H^{\prime}(p)=\int_{0}^{1} \frac{\partial}{\partial p}\left[\frac{x^{p}-1}{\log x}\right] d x=\int_{0}^{1} x^{p} d x=\left[\frac{x^{p+1}}{p+1}\right]_{x=0}^{x=1}=\frac{1}{p+1},
$$

and therefore

$$
H(p)=\int \frac{1}{p+1} d p=\log (p+1)+c .
$$

As $H(0)=\int_{0}^{1} 0 d x=0$ we obtain that $0=H(0)=\log 1+c=0+c=c$ and therefore $H(p)=\log (p+1)$.

Problem $4\left(2,5\right.$ points) Solve, for $\omega \neq \omega_{0}$, the initial value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\omega_{0}^{2} x=k \sin \omega t, \quad \text { if } t>0 \\
x(0)=x^{\prime}(0)=0
\end{array}\right.
$$

Hints: You can use the following properties and formulas for the Laplace transform:

$$
\begin{aligned}
& \mathcal{L}\left[f^{\prime \prime}\right](s)=s^{2} \mathcal{L}[f](s)-s f(0)-f^{\prime}(0), \\
& \mathcal{L}[\sin a t](s)=\frac{a}{s^{2}+a^{2}} \quad(s>0)
\end{aligned}
$$

Applying the Laplace transform to the equation we obtain:

$$
L\left[x^{\prime \prime}\right](s)+\omega_{0}^{2} L[x](s)=k L[\sin \omega t](s) \Longrightarrow s^{2} L[x](s)-s x(0)-x^{\prime}(0)+\omega_{0}^{2} L[x](s)=\frac{k \omega}{s^{2}+\omega^{2}}
$$

and therefore

$$
L[x](s)=\frac{k \omega}{\left(s^{2}+\omega^{2}\right)\left(s^{2}+\omega_{0}^{2}\right)} .
$$

Decomposing this fraction into simple fractions we obtain:

$$
L[x](s)=\frac{k \omega}{\left(s^{2}+\omega^{2}\right)\left(s^{2}+\omega_{0}^{2}\right)}=\frac{A s+B}{s^{2}+\omega^{2}}+\frac{C s+D}{s^{2}+\omega_{0}^{2}}
$$

with

$$
A=C=0 \quad \text { and } \quad B=-D=\frac{k \omega}{\omega_{0}^{2}-\omega^{2}}
$$

Therefore:

$$
L[x]=\frac{B}{s^{2}+\omega^{2}}+\frac{D}{s^{2}+\omega_{0}^{2}} \Longrightarrow x(t)=\frac{B}{\omega} \sin \omega t+\frac{D}{\omega_{0}} \sin \omega_{0} t=\frac{k}{\omega_{0}} \frac{\omega_{0} \sin \omega t-\omega \sin \omega_{0} t}{\omega_{0}^{2}-\omega^{2}} .
$$

