uc3m Universidad Carlos III de Madrid
 Departamento de Matemáticas

INTEGRATION AND MEASURE

EVALUATION TEST 2

Time: 3 hours

Problem 1 (2,5 points) Let (X, \mathcal{A}, μ) be a measure space and let $f_{n}: X \longrightarrow \mathbb{R}$ be a sequence of measurable functions such that

$$
\sum_{n=1}^{\infty} \int_{X}\left|f_{n}\right| d \mu<\infty
$$

Prove that:
a) The series $\sum_{n} f_{n}$ converges almost everywhere in X to a function $f: X \longrightarrow \mathbb{R}$:

$$
\sum_{n=1}^{\infty} f_{n}(x)=f(x), \quad \text { for almost every } x \in X
$$

b) $f \in L^{1}(\mu)$.
c) $\int_{X} f d \mu=\sum_{n=1}^{\infty} \int_{X} f_{n} d \mu$.

Hints: a) Consider the function $F(x):=\sum_{n=1}^{\infty}\left|f_{n}(x)\right|$ and show that it belongs to $L^{1}(X)$.
c) $g_{n}:=f_{1}+\cdots+f_{n}$ verifies $\lim _{n \rightarrow \infty} g_{n}(x)=f(x)$ a.e. and $\left|g_{n}\right| \leq F$.

Problem 2 (2,5 points)

a) Prove that the sequence of functions $\left\{f_{n}\right\}$ defined as follows

$$
f_{n}(x)=\frac{1+n x^{2}}{\left(1+x^{2}\right)^{n}}
$$

is decreasing on n for every $x \geq 0$.
b) Calculate

$$
L=\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{1+n x^{2}}{\left(1+x^{2}\right)^{n}} d x
$$

and say what theorem you used.

Problem 3 (2,5 points) Consider $p>-1$.
a) Explain why we can derive the parametric integral $H(p)=\int_{0}^{1} \frac{x^{p}-1}{\log x} d x$.
b) Obtain explicitly $H(p)$ deriving with respect to the parameter and integrating later with respect to it.

Problem $4\left(2,5\right.$ points) Solve, for $\omega \neq \omega_{0}$, the initial value problem

$$
\left\{\begin{array}{l}
x^{\prime \prime}+\omega_{0}^{2} x=k \sin \omega t, \quad \text { if } t>0 \\
x(0)=x^{\prime}(0)=0
\end{array}\right.
$$

Hints: You can use the following properties and formulas for the Laplace transform:

$$
\begin{aligned}
& \mathcal{L}\left[f^{\prime \prime}\right](s)=s^{2} \mathcal{L}[f](s)-s f(0)-f^{\prime}(0), \\
& \mathcal{L}[\sin a t](s)=\frac{a}{s^{2}+a^{2}} \quad(s>0) .
\end{aligned}
$$

