# uc3m Universidad Carlos III de Madrid

OpenCourseWare (2023)

### **CHEMISTRY II**

Verónica San Miguel Arnanz

Teresa Pérez Prior

Berna Serrano Prieto

Department of Materials Science and Engineering and Chemical Engineering

## **EVALUATION TEST 1**



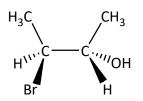
**1.** (3 points) Mark the correct answer, there is only one correct in each question. (Correct answers mark as +1, incorrect ones mark as - 0.2, and non-answered questions mark as 0. The resulting mark will not be smaller than 0 in any case).

|   | Given the following standard reduction potentials:                                                                                        |                                  |                    |                                    |
|---|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|------------------------------------|
|   |                                                                                                                                           | Redox Pair                       | E <sup>0</sup> (V) | ]                                  |
|   |                                                                                                                                           | Ag <sup>+</sup> /Ag              | +0.80              |                                    |
| Α |                                                                                                                                           | Cl₂/Cl⁻                          | +1.36              |                                    |
|   |                                                                                                                                           | NO <sub>3</sub> <sup>-</sup> /NO | +0.96              |                                    |
|   |                                                                                                                                           | Na⁺/Na                           | -2.71              |                                    |
|   | Mark the <b>correct</b> statement:                                                                                                        |                                  |                    |                                    |
|   | Cl <sup>-</sup> is a stronger red                                                                                                         | ucing agent than N               | 10.                |                                    |
|   | NO <sub>3</sub> <sup>-</sup> is a strong reducing agent.                                                                                  |                                  |                    |                                    |
|   | Ag metal can be oxi                                                                                                                       | dized spontaneous                | ly in the prese    | ence of Cl <sub>2</sub> .          |
|   | Na <sup>+</sup> and Ag <sup>+</sup> will be always reduced spontaneously to Na and Ag, respectively, in the presence of a reducing agent. |                                  |                    | to Na and Ag, respectively, in the |
|   |                                                                                                                                           |                                  |                    |                                    |

| В | Regarding Crevice corrosion, select the correct answer:                       |
|---|-------------------------------------------------------------------------------|
|   | It takes place when two metals are electrically coupled.                      |
|   | It occurs in the region of the metal that has the lower oxygen concentration. |
|   | It occurs when a force is applied to the metal.                               |
|   | It is favored in uniform surfaces.                                            |

| С | Regarding reactivity of substituted aromatic compounds, select the <b>correct</b> statement: |
|---|----------------------------------------------------------------------------------------------|
|   | Nitro group accepts electron density from the ring by induction.                             |
|   | Hydroxyl groups can accept electron density by resonance.                                    |
|   | Methyl group is an electron donor group by resonance.                                        |
|   | Nitro group is an electron withdrawing group by resonance.                                   |

| D | Select the <b>correct</b> statement:                                    |  |
|---|-------------------------------------------------------------------------|--|
|   | p-Hydroxybenzaldehyde is less acidic than p-nitrophenol.                |  |
|   | Haloalkanes have higher boiling points than alcohols.                   |  |
|   | Acidity of alcohols is lower than that of the alkanes and haloalkanes.  |  |
|   | In carbonyl compounds, oxygen atom is electrophilic and slightly basic. |  |


| E | An enzyme that follows Michaelis-Menten kinetics has a catalytic constant of 900 s <sup>-1</sup> and K <sub>m</sub> for the substrate of 40 $\mu$ M. When substrate concentration is 50 $\mu$ M, the reaction velocity, V <sub>0</sub> , is 20 $\mu$ M·s <sup>-1</sup> . Determine the V <sub>max</sub> in presence of an inhibitor if a competitive inhibition is followed. |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 18 μM·s <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                        |
|   | 36 μM·s <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                        |
|   | 72 μM·s <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                        |
|   | 45 μM·s <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                        |

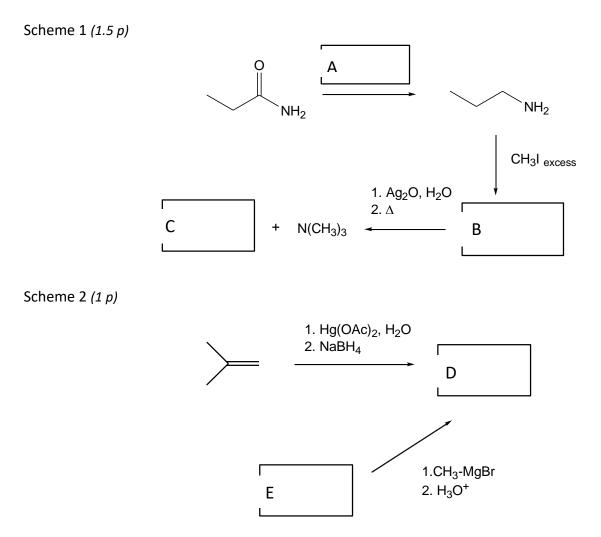
| F | Select the <u>wrong</u> statement:                                                                                                                                                                                         |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | The anomeric carbon, which corresponds to the most reduced carbon of a cyclized monosaccharide, is chiral.                                                                                                                 |
|   | Presence of double bonds in fatty acids produces bends in the hydrocarbon chain which<br>avoid close packing and van der Waals interactions and consequently melting point is<br>lower than that in saturated fatty acids. |
|   | The information contained in the sequence of one strand of DNA is conserved in the sequence of the other strand.                                                                                                           |
|   | The peptide bonds link amino acids in proteins and they are rigid and planar.                                                                                                                                              |

**2.** (1.5 points) Magnesium metal (6.00 g) is electroplated from molten magnesium chloride using a current of 7.50 A during 2 h. Determine the volume (in L) of chlorine gas at 25 °C and 1.00 atm that is produced at the anode.

Data: Atomic mass: Mg = 24.3; F = 96500 C/mol  $e^-$ .

**3.** (1.5 points) In the enclosed figure you may find the 3D structural formula of 2-bromo-3-butanol.




a) (0.5 p) Find how many quiral centers exist and determine their configuration (R or S) in the current figure.

b) (0.6 p) Draw the Newman projection along the C2-C3 axis (C2 in front) and draw a scheme of the variation of the potential energy as a function of rotation angle in  $60^{\circ}$  steps assuming that the main substituents (–CH<sub>3</sub>, –OH, and –Br) have the same size. How many maxima appear in a  $360^{\circ}$  rotation?

c) (0.4 p) Haloalkanes contain an electrophilic carbon atom, which may react with nucleophiles. Identify each of the following statements for nucleophilic substitution reactions that occur through the  $S_N 1$  or  $S_N 2$  mechanism:

|                                                                                                                                                       | S <sub>N</sub> 1 | S <sub>N</sub> 2 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|
| 1. Primary and most secondary haloalkanes react with nucleophiles through this mechanism.                                                             |                  |                  |
| 2. It is a stereospecific reaction and proceeds by posterior displacement, thus, producing the inversion of the configuration in the reaction center. |                  |                  |
| 3. Nucleophilicity increases with negative charge, and in polar aprotic solvents.                                                                     |                  |                  |
| 4. Secondary haloalkanes undergo a slow substitution reaction while tertiary ones undergo rapid substitution in polar media.                          |                  |                  |
| 5. The slowest step, or speed determining factor, in this substitution, is the dissociation of the C-X bond to form an intermediate carbocation.      |                  |                  |
| 6. The transition state implies a planar trigonal sp <sup>2</sup> hybridized carbon center.                                                           |                  |                  |
| 7. When the solvent acts as a nucleophile, the process is called solvolysis.                                                                          |                  |                  |
| 8. Substitution is favored by unhindered substrates and small, less basic nucleophiles.                                                               |                  |                  |

4. (2.5 points) Complete the following schemes:



5. (1.5 points) A compound with formula  $C_8H_{10}O$  exhibits the following <sup>1</sup>H NMR spectrum:  $\delta$  = 1.50 (doublet, 3 H), 1.90 (broad singlet, 1 H), 4.75 (quartet, 1 H), 7.20-7.35 (multiplet, 5 H) ppm. Moreover, this compound shows an infrared absorption peak, among others, at 3547 cm<sup>-1</sup>.

- a) (1 p) Deduce its structure.
- b) (0.5 p) Justify how many signals you would expect this compound to have in its <sup>13</sup>C NMR spectrum.

#### ANNEX

| Type of hydrogen  | Chemical shift (δ)                |           |
|-------------------|-----------------------------------|-----------|
| Reference         | Si(CH <sub>3</sub> ) <sub>4</sub> | 0         |
| Alkyl (primary)   | -CH <sub>3</sub>                  | 0.7–1.3   |
| Alkyl (secondary) |                                   | 1.2-1.6   |
| Alkyl (tertiary)  | <br>CH                            | 1.4–1.8   |
| Allylic           | c=c-c                             | 1.6-2.2   |
| Methyl ketone     | с_сн3                             | 2.0-2.4   |
| Aromatic methyl   | Ar—CH <sub>3</sub>                | 2.4–2.7   |
| Alkynyl           | $-C \equiv C - H$                 | 2.5–3.0   |
| Alkyl halide      | H<br> <br> <br> <br> <br>Hal      | 2.5–4.0   |
| Alcohol           | —с—о—н<br>                        | 2.5–5.0   |
| Alcohol, ether    | H<br>                             | 3.3–4.5   |
| Vinylic           | )<br>c=c                          | 4.5-6.5   |
| Aryl              | Ar—H                              | 6.5–8.0   |
| Aldehyde          | о<br>Ш<br>с_н                     | 9.7–10.0  |
| Carboxylic acid   | о<br>Ш<br>с-о-н                   | 11.0-12.0 |

#### Chemical Shifts in <sup>1</sup>H NMR

5

| Functional Group  |                 | Absorption (cm <sup>-1</sup> ) | Intensity     |
|-------------------|-----------------|--------------------------------|---------------|
| Alkane            | C-H             | 2850-2960                      | Medium        |
| Alkene            | =C-H            | 3020-3100                      | Medium        |
|                   | C=C             | 1640-1680                      | Medium        |
| Alkyne            | ≡С–Н            | 3300                           | Strong        |
|                   | C≡C             | 2100-2260                      | Medium        |
| Alkyl halide      | C-Cl            | 600-800                        | Strong        |
|                   | C–Br            | 500-600                        | Strong        |
| Alcohol           | 0-H             | 3400-3650                      | Strong, broad |
|                   | C-0             | 1050-1150                      | Strong        |
| Arene             | C-H             | 3030                           | Weak          |
| Aromatic ring     |                 | 1660-2000                      | Weak          |
|                   |                 | 1450-1600                      | Medium        |
| Amine             | N-H             | 3300-3500                      | Medium        |
|                   | C–N             | 1030-1230                      | Medium        |
| Carbonyl compound | C=0             | 1670-1780                      | Strong        |
|                   | Aldehyde        | 1730                           | Strong        |
|                   | Ketone          | 1715                           | Strong        |
|                   | Ester           | 1735                           | Strong        |
|                   | Amide           | 1690                           | Strong        |
|                   | Carboxylic acid | 1710                           | Strong        |

Characteristic IR bands of some common functional groups:

#### IMAGE CREDITS

- Images were made by authors.
- Tables of Annex: Organic Chemistry. A tenth Edition. John McMurry, Cornell University (Emeritus), CC BY-SA 4.0, <u>https://openstax.org/details/books/organic-chemistry</u>.