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1. The Real Line

In a loose sense, Calculus can be defined as the “algebra of real numbers”. Real numbers are
therefore its most basic ingredient. At present, we are all familiar with real numbers, but constructing
them was a long process that took us more than two-thousand years. For the most intuitive numbers,
those that are a human universal and that we use to count, are what mathematicians call natural
numbers. Any other set of numbers is a construction deliberately introduced to solve a problem.

What we require of a number set so that it can be algebraically manipulated is that it satisfies
a set of properties that we globally refer to as an ordered field. So let us start by setting up those
properties and exploring what they allow us to do.

1.1 Ordered Fields

An ordered field is a set of elements —that we call numbers— with two binary operations: addition
(denoted with “+”) and multiplication (denoted with “·”), which satisfy two set of properties: field
axioms and order axioms.

Definition 1.1.1 — Field. For all x, y, and z the following properties hold:
I. Addition axioms:

1. x+ y = y+ x commutativity
2. x+(y+ z) = (x+ y)+ z associativity
3. There is a number 0 such that x+0 = x zero
4. For each x there is a number, denoted −x, such that x+(−x) = 0 inverse

II. Multiplication axioms:
5. x · y = y · x commutativity
6. x · (y · z) = (x · y) · z associativity
7. There is a number 1 such that x ·1 = x unity
8. For each x ̸= 0 there is a number, denoted x−1, such that x · x−1 = 1 reciprocal
9. x · (y+ z) = x · y+ x · z distributive law

10. 1 ̸= 0 nontriviality
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R Another way of representing the multiplicative reciprocal is using a division bar: xy−1 =

x/y =
x
y

.

Any set with two binary opeartions satisfying these axioms is called a field. But to be an
ordered field there must be also a relation, denoted “⩽” (and read “smaller than or equal to”), with
the following properties:

Definition 1.1.2 For all x, y, and z the following properties hold:
III. Order axioms:

11. x ⩽ x reflexivity
12. If x ⩽ y and y ⩽ x then x = y antisymmetry
13. If x ⩽ y and y ⩽ z then x ⩽ z transitivity
14. Either x ⩽ y or y ⩽ x linear ordering
15. If x ⩽ y then x+ z ⩽ y+ z compatibility with addition
16. If 0 ⩽ x and 0 ⩽ y then 0 ⩽ x · y compatibility with multiplication

Properties 11–13 define an ordering (sometimes call partial ordering). Property 14 defines a
linear or total ordering, meaning that any two elements can be compared and decided which one
is on the left and which one on the right (alternatively, it means that we can place the elements
on a straight line in such a way that x < y means that x is ‘to the left of’ y). An ordered field is a
field satisfying all properties 11–16. The last two properties are important in order to manipulate
inequalities.

We will also introduce some other order symbols: “⩾”, read “greater than or equal to”, so that
x ⩾ y is equivalent to y ⩽ x; “<”, read “smaller than”, so that x < y is equivalent to x ⩽ y but x ̸= y;
“>”, read “greater than”, so that x > y is equivalent to x ⩾ y but x ̸= y.

We can use properties 11, 12, and 14 to proof the following:

Proposition 1.1.1 — Law of trichotomy. For every pair of elements x and y of an ordered field,
one and only one of the following relations hold: x < y, x = y, or x > y.

The next proposition list a set of properties that can be proven to follow from the axioms of
an ordered field. You will recognise them as the standard algebraic operations we perform when
manipulating equations. It is important to make clear that they strongly depend on the axioms
above, hence the importance to have sets of numbers that are ordered fields in order to do algebra.

R Notice that in general we will omit the symbol “·” in multiplications, unless it is necessary to
avoid ambiguitiy.

Proposition 1.1.2 The following properties hold in any ordered field:
i. Unique neutrals If a+ x = a for all a, then x = 0. If ax = a for all a, then x = 1.

ii. Unique inverses If a+ x = 0, then x =−a. If ax = 1, then x = a−1.
iii. No divisors of zero If xy = 0, then x = 0 or y = 0 (or both).
iv. Cancellation laws for addition If a+ x = b+ x, then a = b. If a+ x ⩽ b+ x, then a ⩽ b.
v. Cancellation laws for multiplication If ax = bx and x ̸= 0, then a = b. If ax ⩾ bx, then

a ⩾ b if x > 0 and a ⩽ b if x < 0.
vi. 0x = 0 for all x.

vii. −(−x) = x for all x.
viii. −x = (−1)x for all x.

ix. If x ̸= 0, the x−1 ̸= 0 and (x−1)−1 = x.
x. If x ̸= 0 and y ̸= 0, then xy ̸= 0 and (xy)−1 = x−1y−1.

xi. If x ⩽ y and 0 ⩽ z, then xz ⩽ yz. If x ⩽ y and z ⩽ 0, then xz ⩾ yz.
xii. If x ⩽ 0 and y ⩽ 0, then xy ⩾ 0. If x ⩽ 0 and y ⩾ 0, then xy ⩽ 0.
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xiii. 0 < 1.
xiv. x2 ⩾ 0 for all x.

■ Example 1.1 Using property xiv above it follows that (a−b)2 ⩾ 0 for any two numbers a and b.
Using twice the distributive law, (a−b)2 = a2 −2ab+b2 ⩾ 0. Thus, adding 2ab to both terms of
the inequality we get a2 +b2 ⩾ 2ab. Dividing by 2(> 0) and using property v,

ab ⩽ a2 +b2

2
.

■

■ Example 1.2 Applying twice the distributive law we get, for any pair of numbers a and b,

(a−b)(a+b) = a2 −b2.

(This identity is more useful applied right to left.) ■

■ Example 1.3 If 0 ⩽ a < b, then it follows that a2 < b2. To see that, applying property xi above
we obtain a2 ⩽ ab (multiplying by a ⩾ 0) and also ab ⩽ b2 (multiplying by b ⩾ 0). So a2 ⩽ b2. But
we can exclude that a2 = b2, for if that were true, then b2 −a2 = (b−a)(b+a) = 0. But b+a > 0,
so the only possibility we are left with is b = a, which is not true. Therefore we must conclude that
a2 < b2. ■

1.2 Number Systems

Let us have a look at the different number systems that have been constructed, the kind of problems
that they are meant to solve and their peculiarities, up to the appearance of real numbers. There is
a further set of numbers, complex numbers, which to a certain extent close the need for different
number systems —at least from an algebraic point of view. In a way they “complete” real numbers
and are necessary in linear algebra and in advanced applications of analysis. They will not be
covered in this course though, so we will just mention them briefly.

1.2.1 Natural Numbers
This is the most basic set of numbers. Their meaning is intuitive and its main use is counting. All
human cultures have a name for at least the first few natural numbers, and most have a way to give
a name to natural numbers of arbitrary (or al least very large) size. Most cultures can add natural
numbers, and many can multiply them.

In mathematics, they are introduced as the set N= {1,2,3, . . .}. In more abstract terms, natural
numbers are constructed with two axioms:

1. There is one (and only one) first element 1 ∈ N.
2. Every element n ∈ N has a successor n+1.

Notice that 1, n, or n+1 are just arbitrary numbers. We commonly use the arabic numerals with
positional notation to name them, but their names change in different languages. Often we even
denote them with roman numerals (I, II, III, IV, etc.). As a matter of fact, this is the reason why
sometimes 0 is considered the first element of N, instead of 1.

Natural numbers can be added and multiplied (multiplication is the abbreviation of a repeated
addition). However, addition is conmutative and associative (and may even have a neutral element
if we start in 0 rather than 1), but there is no inverse of a number. In other words, the equation
n+ x = 0 cannot be solved in N (there is no x ∈ N that satisfies the equation). This means that we
cannot define a substraction operation that works for all pairs of natural numbers.
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Multiplication is also problematic. It is conmutative, associative, there is a neutral element (1),
and it is distributive. But there is not inverse either (equation nx = 1, in general, has no solution in
N). This means that we cannot define a division in N (this is another way of saying that divisions in
N have, in general, a nonzero remainder).

Natural numbers do satisfy all axioms of order, so N is a totally ordered set. Not just that: since
every subset of N contains a first element, we say that the order is perfect (or that N is well-ordered).

1.2.2 Induction principle
The recursive construction of natural numbers leads to an important type of mathematical proof:
proofs by induction. The idea is that we have a proposition, p(n), which is supposed to be valid
for all n ∈ N, and we want to prove it. Then all we need to do is to prove these two alternative
propositions:

1. Proposition p(1) is true.
2. If proposition p(n) is true then necessarily proposition p(n+1) is also true.

■ Example 1.4 We will prove by induction this famous formula (first obtained by Gauss):

1+2+ · · ·+n =
n(n+1)

2
, n ∈ N. (1.1)

This is a proposition that is supposed to hold for all natural numbers.
So let us have a look at p(1):

1 =
1(1+1)

2
,

which is evindently true. This proves the first induction step. As for the second, let us assume that
(1.1) holds for a given n ∈ N and let us add n+1 to both sides of the equation:

1+2+ · · ·+n+(n+1) =
n(n+1)

2
+(n+1) = (n+1)

�n
2
+1

�
=

(n+1)(n+2)
2

.

This is equation (1.1) with n replaced by n+1. Thus we have derived proposition p(n+1) out of
proposition p(n), and therefore, if p(n) is true so must be p(n+1).

The formula is proven for all n ∈ N. ■

R It is important to realise the difference between the proposition
p(n) is true for all n ∈ N,

and the proposition
p(n) is true.

The former is what we want to prove. The latter is valid for that particular n and no other,
and is what we are assuming as the second induction step in order to actually prove p(n+1).

Exercise 1.1 Prove by induction the formulas

12 +22 + · · ·+n2 =
n(n+1)(2n+1)

6
,

13 +23 + · · ·+n3 =
n2(n+1)2

4
.

■
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1.2.3 Integer numbers
The set of integer numbers is introduced to satisfy all the addition axioms of the definition of field.
Without being rigorous, the set of integers numbers is Z= {. . . ,−3,−2,−1,0,1,2,3, . . .}. In other
words, we complete the set N with 0 and with another copy of N, which we label with a minus sign
(−N) and call negative numbers. Thus, Z= N∪{0}∪ (−N).

Addition can be defined casewise:
1. Natural numbers follow the standard addition rule.
2. To add two negative numbers we add the numbers without sign and put a minus sign to the

result.
3. To add x ∈ N and y ∈ −N we ignore signs, substract the smallest from the largest, and put

the original sign of the largest to the result (with the caveat that 0 has no sign).
If you find these rules bizarre and lacking common sense, think of an alternative, more practical

definition. Assume that Z is an infinite storey building, 0 being the ground floor, 1 the first floor,
2 the second floor, etc, and likewise −1 is the first basement (underneath the ground floor), −2
the second basement (underneath the first basement), etc. Now think of addition as the result of
moving through floors in a lift. The first number of the addition will be the floor we start off from;
the second number is the number of floors that the lift will move up (if sign is positive) or down
(if sign is negative). Thus 3+(−2) = 1 because going down two floors from the 3rd floor we end
up in the 1st one. Similarly, 2+(−3) =−1 because going down three floors from the 2nd one we
end up in the 1st basement. And (−1)+(−2) =−3 means that starting from the 1st basement and
going down two floors we end up in the 3rd basement.

Multiplication of integers follows the rule of multiplication of natural numbers, ignoring signs,
and then the sign of the result follows the sign rules

Again it is not difficult to understand why we have to adopt these rules. We do not need to
justify the + ·+=+ rule, because that is the standard multiplication in N. As for − ·+=− (or
+ ·−=−), consider the product (−1) ·3. The standard way to interpret this multiplication is ‘add
−1 three times’, and if we do that we obtain

(−1) ·3 = (−1)+(−1)+(−1) =−3.

Now think of this sequence of operations:

(−1) ·3 =−3,

(−1) ·2 =−2,

(−1) ·1 =−1,

(−1) ·0 = 0,

(−1) · (−1) =?

What number should we put in place of the question mark? Well, if we continue the sequence we
observe on the right-hand sides of these equations, logically it would be 1. Thus (−1) · (−1) = 1,
and this justifies the rule − ·−=+.

It is not difficult to prove that all addition axioms are satified by Z, so substraction is well
defined. However, we have not added any new axiom to the multiplication, for zx = 1 is still an
equation without solution for most z ∈ Z.
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Z is also a totally ordered set, although it has lost the perfect order of N because it lacks a first
element.

1.2.4 Rational numbers
Rational numbers are the response to the search for a solution of the equation ax = 1 for any number
a, and the first ordered field. They are defined as Q= {n/m : n,m ∈ Z, m ̸= 0}= Z× (Z−{0}).
The fraction n/m is the solution of the equation mx = n.

There are infinitely many fractions that can solve the equation mx = n (m ̸= 0), namely n/m,
2n/2m, (−n)/(−m), etc., or if n = pk and m = pl, also k/l. Thus all these fractions are “equivalent”
in the sense that they represent the same rational number. So rational numbers are actually
equivalence classes of fractions, where two fractions n1/m1 and n2/m2 are said to be equivalent if
n1m2 = n2m1.

Rational numbers can also be ordered. If r1,r2 ∈ Q and we take representative fractions of
them r1 = n1/m1 and r2 = n1/m2 (where m1 > 0 and m2 > 0), then r1 ⩽ r2 if n1m2 ⩽ n2m1, and
r1 > r2 otherwise. As it can be seen, the order is linear.

Q is dense in itself, meaning that there is a rational number between any two distinct rational
numbers. Clearly, if r1 < r2 are two rational numbers, r = (r1 + r2)/2, also a rational number, is
between them two.

We might impose a well-ordering on Q if we wanted to, by the following procedure: start with
0, 1, −1; then append all irreducible fractions p/q such that −2 ⩽ p,q,⩽ 2; then append those
such that −3 ⩽ p,q,⩽ 3; and so on and so forth. The result is that Q can be explicitly displayed as

Q=

�
0,1,−1,2,−2,

1
2
,−1

2
,3,−3,

3
2
,−3

2
,
1
3
,−1

3
,
2
3
,−2

3
,4,−4,

4
3
,−4

3
,
1
4
,−1

4
,
3
4
,−3

4
, . . .

�
.

A very important consequence of this fact is that there are as many numbers in N as in Q (because
ordering Q as above means that a one-to-one correspondence can be established between both sets).

1.2.5 Real numbers
Despite the density of rational numbers, there are “holes” in between. For instance, the length of
the diagonal of a square of unit side is

√
2, not a rational number. One can find rational numbers

larger or smaller, and arbitrarily close to
√

2, but never a rational number that is exactly
√

2.

R The proof of this fact is an elegant example of reductio ad absurdum. Suppose
√

2 is rational
and let n/m be its irreducible fraction (n and m have no common factors that can be simplified).
Squaring the expression we obtain 2m2 = n2, so n2 is even, and therefore so is n (because if n
were odd, n2, being the product of two odd numbers, would be odd as well). Thus n = 2k.
Substituting in this expression 2m2 = 4k2, which we can simplify to m2 = 2k2. This implies
that m2 is even and therefore so is m. But that is impossible because m and n should not have
any common factor.

So, from the assumption that
√

2 is rational we arrive at a contradiction, therefore the
assumption is false and

√
2 is an irrational number.

Further insight on irrational numbers can be gained introducing the decimal representation
of rational numbers. We can represent rationals as decimal expressions which contain an integer
number, a decimal point, and a infinite sequence of digits. For example

1
2
= 0.500000 . . . ,

1
3
= 0.333333 . . . ,

7
6
= 1.166666 . . . ,

23
13

= 1.769230769230 . . .

What all these expressions have in common is that the infinite sequence of digits on the right of the
decimal point is eventually periodic. The period may be longer or shorter, but there is always a
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definite period. Irrational numbers are all sequences of aperiodic decimal expressions. For instance,

√
2 = 1.41421356237309504880168872420969807856967187537694807317 . . .

We could continue calculating decimals of this number but the sequence would never become
periodic.

We can construct the following bracketing of any irrational number by sequences of pairs of
rational numbers:

1.41 <
√

2 < 1.42
1.414 <

√
2 < 1.415

1.4142 <
√

2 < 1.4143
1.41421 <

√
2 < 1.41422

...
...

...

This procedure allows us to have a mental representation of any irrational number as that number
that would be bracketed by the two infinite sequences. This is how rational numbers can be
“completed” by filling in the holes they leave. This is how real numbers are constructed.

Real numbers inherit all properties from their rational “approximants” and thus form an ordered
field. But on top of that, the set they form, R, has a significant difference when compared to
Q: it is complete. We will later come back to this important property of real numbers, but we
want to emphasise here that the main implication of this property is that there is a one-to-one
correspondence between real numbers and points in a straight line: there is a real number (and only
one) to represent every scalar magnitude of any type. This is what makes real numbers so useful. It
is also the reason why we often refer to R as the real line.

R A remarkable observation is that R is a set much bigger than Q —which, as we kown, is
as “large” as N and no more. As a matter of fact, we will show that there are more real
numbers between 0 and 1 than there are in N. To prove it we also proceed through reductio ad
absurdum. Let us us assume that we can order all those numbers in a sequence (as we did for
Q, for instance). To avoid being too abstract, just imagine that this is the beginning of the list:

r1 = 0.01004872657892653490023 . . .

r2 = 0.98296480010826402228946 . . .

r3 = 0.61155551000102988922200 . . .

r4 = 0.11111989887811110101010 . . .
...

We have underlined the first decimal digit of the first number, the second decimal of the second
numbers, and so on. We will construct a real number between 0 and 1 as follows: take for the
first decimal a number different from the number underlined in r1; for the second decimal a
number different from the number underlined in r2; and so on. For instance, r = 0.2790 . . . .
This number is not in the list, because it is different —by construction— to every one of the
elements of the list. However, it is a real number between 0 and 1 and therefore should be in
the list!

The conclusion from this contradiction is that our assumption is false: real numbers cannot
be listed. In other words, there is not a one-to-one correspondence between R and N because
there are more real numbers than natural numbers. Real numbers cannot be counted. Clearly
this means that irrational numbers are the ones that cannot be counted, so there are many
more irrational numbers that rational numbers!
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1.3 Absolute value, bounds, and intervals
In order to quantify how big or small are real numbers we have to get rid of their sign. This leads to
introduce their absolute value or magnitude, which we denote |x|. In particular, |x− y| quantifies
the difference between x and y, and therefore their distance in the real line.

Definition 1.3.1 — Absolute value. For any x ∈ R we define its absolute value as

|x|= max{x,−x}=
(

x if x ⩾ 0,
−x if x < 0.

The absolute value has some important properties:

Proposition 1.3.1 For all x,y ∈ R,
1. |x|⩾ 0.
2. |x|= 0 if and only if x = 0.
3. |xy|= |x||y|.
4. |x+ y|⩽ |x|+ |y|.
5.

��|x|− |y|
��⩽ |x− y|.

All of them are easy to check except 5. But this one follows from 4. To prove it we observe that

|x|= |x− y+ y|⩽ |x− y|+ |y| ⇒ |x|− |y|⩽ |x− y|.

But on the other hand,

|y|= |y− x+ x|⩽ |y− x|+ |x| ⇒ |y|− |x|⩽ |y− x|= |x− y|.

If both numbers |x|− |y| and |y|− |x| = −(|x|− |y|) are not larger than |x− y|, then
��|x|− |y|

�� ⩽
|x− y|.

Definition 1.3.2 — Bounds. Let A be a nonempty subset of R, and let x ∈ R.
1. x is an upper bound of A if x ⩾ a for all a ∈ A (A is then bounded from above).
2. x is an lower bound of A if x ⩽ a for all a ∈ A (A is then bounded from below).
3. A is bounded if it is bounded from above and from below.
4. x is the supremum of A (x = supA) if it is its least upper bound (supA = ∞ if A is not

bounded from above).
5. x is the infimum of A (x = infA) if it is its greatest lower bound (infA =−∞ if A is not

bounded from below).
6. If supA ∈ A it is called maximum (maxA).
7. If infA ∈ A it is called minimum (minA).

We have not properly defined real numbers. In particular, we have not provided a rigorous
statement of the property of completeness that characterises R (R is the only complete ordered
field). There are many ways of introducing this axiom, and one in particular relies on the idea of
bracketing intervals intuitively introduced in the previous section. There is an important result that
turns out to be equivalent to the completeness axiom, and which calculus uses profusely.

Theorem 1.3.2 — Completeness theorem. Let A ⊂ R be nonempty (A ̸=∅). The following
properties hold:

(i) Supremum property: If A is bounded from above then it has a supremum.
(ii) Infimum property: If A is bounded from below then it has an infimum.

■ Example 1.5 Consider the set A = {x ∈ R : x2 < 2}. This set is the portion of the real line for
which the parabola y = x2 lies strictly below the horizontal line y = 2, as illustrated by this picture:
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−
√

2
√

2

From the figure it is clear that A = {x ∈ R : −
√

2 < x <
√

2}, because x = ±
√

2 are the two
points where y = x2 meets y = 2. So

√
2 is an upper bound, and there can be no smaller bound, so

supA =
√

2. Likewise, infA =−
√

2. (They are not maximum and minimum because they do not
belong to A.)

Notice that if we consider instead the subset of Q defined as A′ = {x ∈Q : x2 < 2}, even though
the definition looks similar to that of A, this set A′ has neither a supremum nor an infimum in Q.
Any upper bound r ∈Q of A′ must necessarily be r >

√
2, and we can always find another r′ ∈Q

such that
√

2 < r′ < r. Therefore no least upper bound can exist. ■

Definition 1.3.3 — Intervals. The following subsets of R are globally referred to as intervals:
Open interval: (a,b) = {x ∈ R : a < x < b}.
Closed interval: [a,b] = {x ∈ R : a ⩽ x ⩽ b}.
Semiopen intervals:

(a,b] = {x ∈ R : a < x ⩽ b},
[a,b) = {x ∈ R : a ⩽ x < b}.

Infinite intervals:
(−∞,b] = {x ∈ R : x ⩽ b},
(−∞,b) = {x ∈ R : x < b},
[a,∞) = {x ∈ R : a ⩽ x},
(a,∞) = {x ∈ R : a < x},
(−∞,∞) = R.

■ Example 1.6 Consider the set A = {x ∈ R : |x|⩽ 3}. Let us discuss which real numbers belong
to A. To do that we need to distinguish the cases (a) x ⩾ 0 and (b) x < 0.

(a) If x ⩾ 0 then condition |x|⩽ 3 reads x ⩽ 3. Thus the interval [0,3] is part of A.
(b) If x < 0 the condition |x| ⩽ 3 reads −x ⩽ 3, or equivalently, x ⩾ −3. Therefore [−3,0) is

also part of A.
Summarising, A = [−3,0)∪ [0,3] = [−3,3]. ■

■ Example 1.7 Consider the set B = {x ∈ R : (x− 1)(x− 2)(x− 3) < 0}. The condition that
defines B depends on the sign of the product three factors, so we need to know the sign of each of
them. These signs depend on whether (a) x < 1, (b) 1 < x < 2, (c) 2 < x < 3, or (d) 3 < x. In cases
(a) and (c) there is an odd number of negative factors, so the product is negative, whereas in cases
(b) and (d) there is an even number of them, so the product is positive. Thus B = (−∞,1)∪ (2,3). ■
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Problems
Problem 1.1 Given the real numbers 0 < a < b and c > 0, prove the inequalities

(a) a <
√

ab <
a+b

2
< b, (b)

a
b
<

a+ c
b+ c

.

Problem 1.2 Prove that |a+b|= |a|+ |b| if and only if ab ⩾ 0.

Problem 1.3 Prove that

(a) max{x,y}= x+ y+ |x− y|
2

, (b) min{x,y}= x+ y− |x− y|
2

.

Problem 1.4 Find, using the absolute value, a formula to express the function

ϕ(x) =

(
x if x ⩾ 0,
0 if x < 0.

Problem 1.5 Factor out the following expressions of n ∈ N, so that the corresponding statements
become self-evident:

(a) n2 −n is even,
(b) n3 −n is a multiple of 6,
(c) n2 −1 is a multiple of 8 when n is odd.

Problem 1.6 Prove by induction the following statements valid for all n ∈ N:

(a) an −bn = (a−b)
n

∑
k=1

an−kbk−1 for all n ∈ N,

(b) n5 −n is a multiple of 5 for all n ∈ N,

(c) (1+ x)n ⩾ 1+nx if x ⩾−1.

Problem 1.7 Prove by induction the following statements valid for all natural numbers n > 1:

(a) n! <
�

n+1
2

�n

,

(b) 2!4! · · ·(2n)! >
�
(n+1)!

�n,

(c) 1+
1√
2
+ · · ·+ 1√

n
>
√

n.

HINT: In (a) use the inequality
�

1+
1

n+1

�n+1

> 2, valid for all n ∈ N. In (b) prove first that

(2n+2)! > (n+2)n(n+2)!.

Problem 1.8
(a) Show, with an example, that the sum of two irrational numbers can be rational.
(b) Show, with an example, that the product of two irrational numbers can be rational.
(c) Is it possible to find irrational numbers x and y such that xy ∈Q?

Problem 1.9 Prove that
(a)

√
2+

√
3 /∈Q,

(b)
√

n /∈Q if n is not a perfect square (HINT: write n = k2r, where r does not contain any square
factor),

(c)
√

n−1+
√

n+1 /∈Q for all n ∈ N.

Problem 1.10 Prove the identity, valid for all x ∈ R,
�

x+ |x|
2

�2

+

�
x− |x|

2

�2

= x2.
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Problem 1.11 Identify the following sets:

(i) A = {x ∈ R : |x−3|⩽ 8},

(ii) B = {x ∈ R : 0 < |x−2|< 1/2},

(iii) C = {x ∈ R : x2 −5x+6 ⩾ 0},

(iv) D = {x ∈ R : x3(x+3)(x−5)< 0},

(v) E =

�
x ∈ R :

2x+8
x2 +8x+7

> 0
�

,

(vi) F =

�
x ∈ R :

4
x
< x

�
,

(vii) G = {x ∈ R : 4x < 2x+1 ⩽ 3x+2},

(viii) H = {x ∈ R : |x2 −2x|< 1},

(ix) I = {x ∈ R : |x−1||x+2|= 10},

(x) J = {x ∈ R : |x−1|+ |x+2|> 1}.

Problem 1.12 Given real numbers a < b we define, for each t ∈ R, the real number x(t) =
(1− t)a+ tb. Identify the following sets:

(i) A = {x(t) : t = 0,1,1/2},

(ii) B = {x(t) : t ∈ (0,1)},

(iii) C = {x(t) : t < 0},

(iv) D = {x(t) : t > 1}.

Problem 1.13 Find supremum and infimum (deciding whether they are maximum and minimum
respectively) of the following sets:

(i) A = {−1}∪ [2,3),

(ii) B = {3}∪{2}∪{−1}∪ [0,1],

(iii) C = {2+1/n : n ∈ N},

(iv) D = {(n2 +1)/n : n ∈ N},

(v) E = {x ∈ R : 3x2 −10x+3 < 0},

(vi) F = {x∈R : (x−a)(x−b)(x−c)(x−d)< 0},
with a < b < c < d given real numbers,

(vii) G = {2−p +5−q : p,q ∈ N},

(viii) H = {(−1)n +1/m : n,m ∈ N},


