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10. Fundamental Theorem of Calculus

Integration is a device that was invented to calculate areas of figures limited by curved sides. The
idea can be traced back at least to Archimedes. He is well known —among many other things—
by calculating the area of a circle of unit diameter, A, in terms of its perimeter, π (π is the initial
of περίμετρος = perimeter), obtaining the celebrated formula A = π/4. He did that by using two
sequence of polygons, both circumscribed to and inscribed in the circumference, and then taking
the limit of the number of sides going to infinity (see Figure 10.1).

Figure 10.1: Archimedes’s construction to obtain the relation between the area and the perimeter of
a circle.

A similar idea was employed to obtain the area under more complicated curves. If we define a
signed area as in Figure 10.2(a) (i.e., it adds if f (x)> 0 and substracts if f (x)< 0), the problem is
how to calculate the total area enclosed by a curved within a given interval. Following Archimedes,
one way to estimate that area is to approximate it as a sum of rectangles, as in Figure 10.2(b). In
the limit when the width of these rectangles goes to zero we obtain the value of the seeked area.

■ Example 10.1 As an example of this procedure, let us calculate, using this method, the area
below the curve f (x) = x2 within the interval [0,a]. To do that, we divide the interval in n rectangles
of width a/n and heights (ak/n)2, with k = 1,2, . . . ,n. The areas of these rectangles will then be
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(a) (b)

Figure 10.2: (a) Area “under” a curve: above the X axis area has a positive sign and below the X
axis has a negative sign. (b) Approximations to that area as sums of thiner and thiner rectangles.

a3k2/n3. This yields the following approximation to the area:

An =
n

∑
k=1

k2

n3 =
a3

n3

n

∑
k=1

k2.

It is a know result that

12 +22 + · · ·+n2 =
n(n+1)(2n+1)

6
,

thus

An = a3 n(n+1)(2n+1)
6n3 .

Therefore

A = lim
n→∞

An = lim
n→∞

a3 n(n+1)(2n+1)
6n3 =

a3

3
is the area we are seeking. ■

10.1 Riemann’s integral
The problem with the heuristic idea exposed above is that, for that procedure to make sense, the
result should not depend on the division in rectangles that we propose. In other words, irrespective
of whether we choose all rectangles to have the same or different widths, the limit process should
yield the same area. Thus we need a more rigorous construction and limit process.

To this purpose, given an interval [a,b] we will define a partition of the interval as as the set
P = {x0,x1, . . . ,xn}, where a = x0 < x1 < x2 < · · ·< xn−1 < xn = b.

Now, for any function f bounded in [a,b], if we define

mi ≡ inf
xi−1⩽x⩽xi

f (x), Mi ≡ sup
xi−1⩽x⩽xi

f (x), (10.1)

then the (signed) area between the X axis and f (x) within the interval [xi−1,xi] —provided it can
be defined— will be bounded from below by mi(xi − xi−1) and from above by Mi(xi − xi−1) —the
areas of two rectangles (see Figure 10.3). Thus, the two numbers

L( f ,P) = ∑
i=1

mi(xi − xi−1), U( f ,P) = ∑
i=1

Mi(xi − xi−1), (10.2)
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respectively called lower sum and upper sum of f with respect to the partition P, will be an upper
and a lower bound to the (signed) area between f (x) and the X axis within the interval [a,b]. By
construction L( f ,P)⩽U( f ,P).

Figure 10.3: Definition of the upper sum and lower sum for a function f (x) with respecto to a
partition of the interval [a,b]. The (signed) area between the X axis and f (x) is bounded between
them two.

Partitions can be defined by adding more points to it. Thus, Q is a refinement of P if P ⊂ Q.
Upon refining partitions we increase the lower sum and decrease the upper sum, i.e.,

L( f ,P)⩽ L( f ,Q), U( f ,Q)⩽U( f ,P).

Accordingly, if P1 and P2 are two partitions of [a,b], then Q = P1 ∪P2 will be a refinement of both
of them and therefore

L( f ,P1)⩽ L( f ,Q)⩽U( f ,Q)⩽U( f ,P2).

In other words, L( f ,P1)⩽U( f ,P2) irrespective of the partitions P1 and P2.
This is summarised in the statement

sup
P

L( f ,P)⩽ inf
P

U( f ,P). (10.3)

This led Riemann to invent the following definition:

Definition 10.1.1 — Integral. A function f bounded in [a,b] is integrable in [a,b] if

sup
P

L( f ,P) = inf
P

U( f ,P) =
Z b

a
f . (10.4)

The number
Z b

a
f is known as the (Riemann’s) integral of f in [a,b].

R It is customary to use Leibniz’s notation for the integral and write
Z b

a
f =

Z b

a
f (x)dx.

This notation reminds the definition of the integral as a sum (hence the sign
R

) of the areas of
rectagles of with dx and height f (x), for all a ⩽ x ⩽ b.
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■ Example 10.2 Not all bounded functions can be integrated. For instance the function

f (x) =

(
1, x ∈Q,

0, x /∈Q,

does not satisfy the definition because for every partition P of the interval [a,b] we have L( f ,P) = 0
and U( f ,P) = b− a —because every subterval [xk−1,xk] contains both rational and irrational
numbers. ■

■ Example 10.3 The function

f (x) =

(
1, x = 1

2 ,

0, x ̸= 1
2 ,

can be integrated in e.g. [0,1]. Let P be any partition of that interval. Then L( f ,P) = 0 because in
every interval of P f takes the value 0. On the other hand, U( f ,P) = ∆x, where ∆x is the length of
the interval containing the point x = 1/2. Since by refining the partition ∆x can be made arbitrarily
small,

L( f ,P) = inf
P

U( f ,P) = 0 ⇒
Z b

a
f = 0.

■

An important result that justifies the heuristic construction is this:

Theorem 10.1.1 The bounded function f is integrable in [a,b] if and only if there exists a
sequence of partitions {Pn}∞

n=1 such that

lim
n→∞

L( f ,Pn) = lim
n→∞

U( f ,Pn).

In other words, to prove the existence of an integral we simply have to take a partition Pn of the
interval [a,b] into n equal segments, compute L( f ,Pn) and U( f ,Pn) and take the limits.

Exercise 10.1 Transform Example 10.1 into a rigorous proof that
Z a

0
x2 dx =

a3

3
. ■

The full characterisation of the set of functions that can be integrated according to Riemann’s
definition is out of the scope of this course. However, this set includes important classes of functions
worth mentioning:

Theorem 10.1.2 If f is continuous in [a,b] then it is integrable in [a,b].

The idea of the proof of this result is that continuous functions have the property that the
difference between their maximum and minimum values in a closed interval is smaller the smaller
the interval. This means that we can make the difference between L( f ,P) and U( f ,P) arbitrarily
small by simply refining the partition sufficiently.

Theorem 10.1.3 If f is monotonic in [a,b] then it is integrable in [a,b].

Proof. Let us assume that f is increasing (the proof is analogous for decreasing functions). The
idea of the proof is that, within the interval [xi−1,xi], the maximum of f is f (xi) and the minimum
is f (xi−1). Thus, if Pn is the partition of [a,b] into n equal size intervals,

L( f ,Pn) =
n

∑
i=1

f (xi−1)
b−a

n
, U( f ,Pn) =

n

∑
i=1

f (xi)
b−a

n
,
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and therefore

0 ⩽U( f ,Pn)−L( f ,Pn) =
b−a

n

n

∑
i=1

[ f (xi)− f (xi−1)] =
b−a

n
[ f (b)− f (a)] −−−−→

n→∞
0.

■

Notice that monotonic functions need not be continuous, so this result is not contained in the
previous one.

10.2 Properties of the integral

Theorem 10.2.1 Let f and g be two integrable functions in [a,b]. Then the following properties
hold:

(i)
Z b

a
(α f +βg) = α

Z b

a
f +β

Z b

a
g for all α,β ∈ R linearity

(ii)
Z b

a
f ⩽

Z b

a
g whenever f ⩽ g in [a,b] boundedness

(iii) | f | is integrable in [a,b] and
����
Z b

a
f
����⩽

Z b

a
| f | absolute integrability

A consequence of (ii) is that if f ⩾ 0 then
Z b

a
f ⩾ 0.

Another consequence is that if M = sup
x∈[a,b]

f (x) and m = inf
x∈[a,b]

f (x), then

m(b−a)⩽
Z b

a
f ⩽ M(b−a). (10.5)

Theorem 10.2.2 — Interval additivity. Given a < b < c, function f is integrable in [a,c] if and
only if it is integrable in [a,b] and [b,c]. Besides

Z c

a
f =

Z b

a
f +

Z c

b
f . (10.6)

Notice that this formula implies
Z b

a
f =

Z c

a
f −

Z c

b
f ,

so interval additivity will be preserved beyond the constraint a < b < c if we define

Z b

c
f =−

Z c

b
f . (10.7)

10.3 Riemann’s sums
Let f be a bounded function in [a,b]. For any partition P of this interval the expression

S( f ,P) =
n

∑
i=1

f (ci)(xi − xi−1), (10.8)

for any choice of points xi−1 ⩽ ci ⩽ xi is referred to as a Riemann’s sum.
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It is clear from the definition that Riemann’s sums satisfy L( f ,P)⩽ S( f ,P)⩽U( f ,P). There-
fore, if f is integrable in [a,b] and {Pn}∞

n=1 is a sequence of partitions such that

lim
n→∞

[U( f ,Pn)−L( f ,Pn)] = 0,

then

lim
n→∞

S( f ,Pn) =
Z b

a
f . (10.9)

This result is very useful in calculating some limits, as the examples illustrate.

■ Example 10.4 Suppose we need to calculate the limit

lim
n→∞

n

∑
k=1

1
n+ k

.

This limit does not define a series, because the terms in the sum change not only with k but also
with n.

In order to calculate this limit we need to rewrite the sum as

n

∑
k=1

1
n+ k

=
n

∑
k=1

1
1+(k/n)

· 1
n
.

The right-hand side is the expression of S( f ,Pn), where f (x) = 1/(1+ x), ck = k/n and Pn is a
partition of [0,1] in n equal-size intervals. Since f is continuous —hence integrable—, then

lim
n→∞

n

∑
k=1

1
n+ k

= lim
n→∞

S( f ,Pn) =
Z 1

0

dx
1+ x

.

■

■ Example 10.5 Let us calculate

lim
n→∞

n

∏
k=1

�
1+

k
n

�1/n

.

If we denote the limit ℓ, then

logℓ= lim
n→∞

n

∑
k=1

1
n

log
�

1+
k
n

�
= lim

n→∞
S( f ,Pn),

where Pn is a partition of [0,1] in n equal-size intervals and f (x) = log(1+ x). Thus,

logℓ=
Z 1

0
log(1+ x)dx.

■

10.4 Fundamental theorem of calculus

The basic idea of the connection between integrals and derivatives —the essence of the fundamental
theorem of calculus— is this. Let us denote A(x) the (signed) area between the X axis and the
function f within the interval [a,x]. Suppose that we increase the inverval by a very small amount
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h. In practical terms, we are enlarging the area by adding almost a rectangle of width h and height
≈ f (x). In other words,

A(x+h)≈ A(x)+ f (x)h ⇒ f (x)≈ A(x+h)−A(x)
h

.

If we now take the limit h → 0 we obtain the connection A′(x) = f (x). This is the basic result that
both Newton and Leibniz were aware of and which renders calculus such a powerful tool.

We are going to obtain this result in a more rigorous way by using our definition of (Riemann’s)
integral.

To begin with, let us first prove that integrals always define continuous functions:

Theorem 10.4.1 If f is integrable in [a,b], then F(x) =
Z x

a
f (t)dt defines a continuous function

in [a,b].

Proof. Take any point c ∈ [a,b]. Since f is integrable in [a,b] it is also bounded, so let M =
sup

x∈[a,b]
| f (x)|. Then

|F(x)−F(c)|=
����
Z x

a
f (t)dt −

Z c

a
f (t)dt

����=
����
Z x

c
f (t)dt

����⩽
����
Z x

c
| f (t)|dt

����⩽
����
Z x

c
M dt

����=M|x−c|.

By the sandwich rule,

lim
x→c

|x− c|= 0 ⇒ lim
x→c

|F(x)−F(c)|= 0 ⇒ lim
x→c

F(x) = F(c).

This proves that F is continuous at any c ∈ [a,b]. ■

Notice that this result requieres nothing from f apart from its integrability. In particular, f
needs not be a continuous function.

■ Example 10.6 Let

f (x) =

(
0, x ⩽ 1

2 ,

1, x > 1
2

be a function with a jump discointinuity at x = 1/2. Now, for any x ⩽ 1/2,

F(x) =
Z x

0
f (t)dt =

Z x

0
0dt = 0,

whereas for any x > 1/2,

F(x) =
Z x

0
f (t)dt =

Z 1/2

0
f (t)dt +

Z x

1/2
f (t)dt =

Z 1/2

0
0dt +

Z x

1/2
dt = x− 1

2
.

Thus,

F(x) =

(
0, x ⩽ 1

2 ,

x− 1
2 , x > 1

2 ,

which is continuous everywhere. ■
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Theorem 10.4.2 — First fundamental theorem of calculus. If f is continuous in [a,b] then

F(x) =
Z x

a
f (t)dt is differentiable in (a,b) and F ′(x) = f (x).

Proof. First of all

F(x+h)−F(x)
h

=
1
h

Z x+h

x
f (t)dt.

Now, in the interval [x,x+h] (or [x+h,x] if h < 0) f reaches its maximum Mh and minimum mh
values —as every continuous function in a closed interval. Then, if h > 0

mhh ⩽
Z x+h

x
f (t)dt ⩽ Mhh ⇒ mh ⩽

1
h

Z x+h

x
f (t)dt ⩽ Mh,

and if h < 0

mh(−h)⩽
Z x

x+h
f (t)dt ⩽ Mh(−h) ⇒ mh ⩽

1
(−h)

Z x

x+h
f (t)dt ⩽ Mh

⇒ mh ⩽
1
h

Z x+h

x
f (t)dt ⩽ Mh.

In any case, the number
1
h

Z x+h

x
f (t)dt is an intermediate value between mh and Mh. Any continuous

function in a closed interval reaches all intermediate values between its maximum and its minimum,
so there must be a point ch ∈ [x,x+h] (or in [x+h,x] if h < 0) such that

f (ch) =
1
h

Z x+h

x
f (t)dt.

Clearly ch → x when h → 0. Therefore

F ′(x) = lim
h→0

F(x+h)−F(x)
h

= lim
h→0

f (ch) = f (x).

■

The take-home message of this theorem is that integrals of functions are primitives of those
functions. Here is the connection between differentiation and integration. From now on, calculating
the area between the X axis and a given curve f (x) is as simple as finding the right primitive of f .
Actually, the problem is even easier: any primitive will do, because of this second version of the
fundamental theorem of calculus:

Theorem 10.4.3 — Second fundamental theorem of calculus (Barrow’s rule). If f is
continuous in [a,b] and G is any primitive of f in (a,b), then

Z b

a
f (x)dx = G(b)−G(a).

Proof. According to the first version of this theorem F(x) =
Z x

a
f (t)dt is a primitive of f in (a,b).

Therefore G(x) = F(x)+ c. Now F(a) =
Z a

a
f (t)dt = 0, hence G(a) = F(a)+ c = c. In other

words, F(x) = G(x)−G(a). Then
Z b

a
f (x)dx = F(b) = G(b)−G(a).

■
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R Often primitives are referred to as “indefinite integrals” and denoted
Z

f (x)dx, whereas

integrals of the form
Z b

a
f (x)dx are called “definite integrals”.

Corollary 10.4.4 If f is continuous in [a,b] and g1,g2 are differentiable in (a,b) then

H(x) =
Z g2(x)

g1(x)
f (t)dt (10.10)

is also differentiable in (a,b) and

H ′(x) = f
�
g2(x)

�
g′2(x)− f

�
g1(x)

�
g′1(x). (10.11)

Proof. Let F(x) be a primitive of f (x) in (a,b). Then H(x) = F
�
g2(x)

�
−F

�
g1(x)

�
. Since F,g1,g2

are all differentiable, so is H. Finally, the derivative of H will be, by the chain rule,

H ′(x) = F ′�g2(x)
�
g′2(x)−F ′�g1(x)

�
g′1(x) = f

�
g2(x)

�
g′2(x)− f

�
g1(x)

�
g′1(x)

because F ′(x) = f (x). ■

■ Example 10.7 If

F(x) =
Z x3

0
cos t dt,

then F ′(x) = 3x2 cos(x3). ■

Applying Barrow’s rule we can obtain particular versions of the integration by parts and change
of variable theorems:

Theorem 10.4.5 — Integration by parts. If f and g are two differentiable functions in (a,b),
then

Z b

a
f (x)g′(x)dx = f (x)g(x)

���
b

a
−

Z b

a
f ′(x)g(x)dx. (10.12)

The symbol in the right-hand side is a short-hand for

f (x)g(x)
���
b

a
= f (b)g(b)− f (a)g(a). (10.13)

Theorem 10.4.6 — Change of variable. If g is continuous in [a,b] and differentiable in (a,b),
and f is continuous in g

�
[a,b]

�
, then

Z g(b)

g(a)
f (u)du =

Z b

a
f
�
g(x)

�
g′(x)dx. (10.14)

Proof. On the one hand, if F is a primitive of f then

Z g(b)

g(a)
f (u)du = F

�
g(b)

�
−F

�
g(a)

�
.
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On the other hand, by the chain rule,

d
dx

F
�
g(x)

�
= F ′�g(x)

�
g′(x) = f

�
g(x)

�
g′(x),

therefore F
�
g(x)

�
is a primitive of f

�
g(x)

�
g′(x) and, according to Barrow’s rule,

Z b

a
f
�
g(x)

�
g′(x)dx = F

�
g(b)

�
−F

�
g(a)

�
.

The result follows from the fact that the right-hand side is the same for both integrals. ■

■ Example 10.8 Let us calculate the area of a circle of radius a. The equation of its circumference
is x2 + y2 = a2, from which we obtain y =±

√
a2 − x2. Clearly the area between the X axis and the

function f (x) =
√

a2 − x2 within the interval [−a,a] is half the area we want to calculate, therefore

A = 2
Z a

−a

p
a2 − x2 dx.

We can introduce the variable t = x/a, or x = at, so that
dx
dt

= a, and the limits x =−a → t =−1
and x = a → t = 1. Thus

A = 2
Z 1

−1

p
a2 −a2t2 adt = 2a2

Z 1

−1

p
1− t2 dt.

Let us now introduce a second change of variable: t = sinθ . Then
dt
dθ

= cosθ , and the limits

t =−1 → θ =−π/2 and t = 1 → θ = π/2. The integral then becomes

A = 2a2
Z π/2

−π/2
cos2 θ dθ = a2

Z π/2

−π/2
(1+ cos2θ)dθ = a2

�
π +

1
2

sin2θ
���
π/2

−π/2| {z }
=0

�
= πa2.

■

■ Example 10.9 — One last integration trick. Suppose one has to compute the integral

I =
Z b

a
f (x)dx.

A simple change of variable is given by x = a+b− t, which transforms the integral into

I =
Z b

a
f (a+b− t)dt

(because dx =−dt and t = b for x = a and t = a for x = b). Then, an alternative way of writing the
original integral is as an average of these two expressions, namely

Z b

a
f (x)dx =

1
2

Z b

a

�
f (x)+ f (a+b− x)

�
dx.

As an illustrative example, let us calculate the integral

I =
Z π/2

0

dx
1+

√
tanx

.
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A first remark about this integral is that the integrand is a bounded, continuous function in [0,π/2],
because tanx ⩾ 0 in this interval and, although it diverges when x →

�π
2

�−,

lim
x→( π

2 )
−

1
1+

√
tanx

= 0.

A second remark is that performing this integral by any other standard method poses a real challenge
(give it a try!) With this last trick though, it is a piece of cake.

According to the formula we have just derived,

I =
1
2

Z π/2

0

�
1

1+
√

tanx
+

1
1+

√
cotx

�
dx

because tan(π/2− x) = cotx. But

1
1+

√
tanx

+
1

1+
√

cotx
=

1+
√

cotx+1+
√

tanx
(1+

√
tanx)(1+

√
cotx)

=
2+

√
cotx+

√
tanx

1+
√

tanx+
√

cotx+
√

tanxcotx

=
2+

√
cotx+

√
tanx

2+
√

tanx+
√

cotx
= 1,

where we have just used the fact that tanxcotx = 1. Then

I =
1
2

Z π/2

0
dx =

π
4
.

■

Exercise 10.2 Use the method above to prove that

Z π

0

xsinx
1+ cos2 x

dx =
π2

4
.

■
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Problems

Problem 10.1 Find a continuous function f such that f (0) = 0 and

f ′(x) =





4− x2

(4+ x2)2 , x < 0,

e
√

x, x > 0.

Problem 10.2

(a) Prove that if f is odd then
Z a

−a
f (x)dx = 0.

(b) Prove that if f is even then
Z a

−a
f (x)dx = 2

Z a

0
f (x)dx.

(c) Calculate the integral
Z 10

6
sin

�
sin

�
(x−8)3��dx.

Problem 10.3 Calculate the following limits:

(i) lim
n→∞

n

∑
k=1

n
n2 + k2 ; (ii) lim

n→∞

1
n

n

∑
k=1

n
√

e2k; (iii) lim
n→∞

n−1

∑
k=0

1√
n2 − k2

.

Problem 10.4 Calculate F(x) =
Z x

−1
f (t)dt, with −1 ⩽ x ⩽ 1, for the following functions:

(i) f (x) = |x|e−|x|;
(ii) f (x) = |x−1/2|;

(iii) f (x) =

(
−1, −1 ⩽ x < 0,
1, 0 ⩽ x ⩽ 1;

(iv) f (x) =

(
x2, −1 ⩽ x < 0,
x2 −1, 0 ⩽ x ⩽ 1;

(v) f (x) =

(
1, −1 ⩽ x ⩽ 0,
x+1, 0 < x ⩽ 1;

(vi) f (x) =





1+ x, −1 ⩽ x ⩽− 1
2 ,

1
2 , − 1

2 < x < 1
2 ,

1− x, 1
2 ⩽ x ⩽ 1;

(vii) f (x) = max
�

sin(πx/2),cos(πx/2)
	

.

Problem 10.5 Calculate the following integrals:

(i)
Z log2

0

√
ex −1dx; (ii)

Z 2

1

√
x2 −1

x
dx.

Problem 10.6 Calculate the derivative of the following functions:

(i) F(x) =
Z x3

x2

et

t
dt;

(ii) F(x) =
Z x3

−x3

dt
1+ sin2 t

;

(iii) F(x) =
Z R x

1 sin3 t dt

3

dt
1+ sin6 t + t2

;

(iv) F(x) =
Z exp

nR x2
1 tan

√
t dt

o

2

ds
logs

;

(v) F(x) =
Z x

0
x2 f (t)dt, with f continuous in R;

(vi) F(x) = sin
�Z x

0
sin

�Z y

0
sin3 t dt

�
dy
�

.

Problem 10.7 Find the absolute maximum and minimum in the interval [1,∞) of the function

f (x) =
Z x−1

0

�
e−t2 − e−2t

�
dt.

HINT: lim
x→∞

R x
0 e−t2

dt =
√

π/2.
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Problem 10.8 Prove that the equation
Z x

0
et2

dt = 1

has a unique solution in R and that it can be found in the interval (0,1).

Problem 10.9 Let f (x) be a continuous function such that f (x)> 0 for all 0 ⩽ x ⩽ 1, and consider
the function

F(x) = 2
Z x

0
f (t)dt −

Z 1

x
f (t)dt.

Determine how many solutions the equation F(x) = 0 has in [0,1].

Problem 10.10 Find and classify the local extrema within (0,∞) of the function

G(x) =
Z x2

0
sin tesin t dt.

Problem 10.11 Write the equation of the straight tangent to the curve

y =
Z √

π/2

x2
tan(t2)dt

at the point x = 4
p

π/4.

Problem 10.12 Given the function

f (x) =





ex −1− x
x2 , x < 0,

a+b
Z x

0
e−t4

dt, x ⩾ 0,

calculate a and b so that it is continuous and differentiable.

Problem 10.13 Calculate the following limits:

(i) lim
x→0

1
x3

�Z x

0
et2

dt − x
�

; (ii) lim
x→0

cosx
x4

Z x

0
sin(t3)dt.

Problem 10.14 Calculate the two one-sided limits at x = 0 of the function

f (x) =
1

2x3

Z x2

0
tan

√
t dt.

Problem 10.15 Consider the function f (x) =
Z x2

0

sin t
t

dt.

(a) Using the Taylor series of sin t in powers of t, find that of f in powers of x.

(b) Calculate lim
x→0

f (x)
1− cosx

.

(c) Discuss the convergence of the series
∞

∑
n=1

f (1/n).

Problem 10.16 Let f (x) =
Z x

−1/x

dt
a2 + t2 . Determine, without computing the integral, for which

values of a the function f is constant.

Problem 10.17 Consider the functions f (x) = ex2 − x2 −1 and g(x) =
Z x

0
f (t)dt.
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(a) Write the Taylor series of g in powers of x.
(b) Determine if g has a maximum, a minimum, or an inflection point at x = 0.

Problem 10.18
(a) Use the change of variable t = sin2 θ to calculate the integral

Z 1

0
arcsin

√
t dt.

(b) Consider the function

f (x) =
Z sin2 x

0
arcsin

√
t dt +

Z cos2 x

0
arccos

√
t dt.

Prove that f (x) = c, a constant, in the interval [0,π/2].
(c) Determine the value of the constant c.

Problem 10.19 The equation
Z g(x)

0

�
et2

+ e−t2
�

dt = x3 +3arctanx

defines an injective, differentiable function g in R. Calculate:
(a) g(0), g′(0), and

�
g−1

�′
(0).

(b) lim
x→0

g−1(x)
g(x)

.

Problem 10.20 Let f : [−1,1] 7→ R be any integrable function.
(a) Prove that

Z π

0
x f (sinx)dx =

π
2

Z π

0
f (sinx)dx.

HINT: Do the change of variables y = π − x.
(b) Calculate the integral

Z π

0

xsinx
1+ cos2 x

dx.

Problem 10.21 Let f be a differentiable function such that
Z x

0
f (t)dt =

Z 1

x
t2 f (t)dt +

x16

8
+

x18

9
+ c.

Find f (x) and the constant c.

Problem 10.22 Prove that
Z x

0
et2

dt ∼ ex2

2x
(x → ∞).

Problem 10.23 Let f be a function n+ 1 times differentiable in an interval I, and let a,x ∈ I.
Assume that the integral defining the function

Rn(x) =
1
n!

Z x

a
(x− t)n f (n+1)(t)dt, n = 0,1, . . .

exists.
(a) Calculate R0(x).
(b) Integrating by parts, find a recurrence formula for Rn(x).
(c) Solve the recurrence and interpret the result.


