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9. Primitives

Differentiating is an operation that transforms an appropriate function f into another function f ′,
which we refer to as its derivative. It makes sense to wonder about the inverse operation, i.e., given
the function f ′ to determine f .

Definition 9.0.1 — Primitive. A function F is called a primitive of f if F ′ = f . We denote this
operation

Z
f (x)dx = F(x). (9.1)

(Function f is called integrand.)

The first question we can ask is whether the primitive, if it exists, is unique. According to
Corollary 7.3.4 the answer is no —but almost so. The reason is that if F and G are such that
F ′ = G′ = f (i.e., F and G are two primitives of f ), then F(x) = G(x)+ c for some constant c.
Thus, primitives are unique up to an additive constant.

Some properties of primitives are inherited from those of derivatives. For instance, primitives
are linear, i.e., given functions f and g and constants a,b ∈ R,

Z
[a f (x)+bg(x)]dx = a

Z
f (x)dx+b

Z
g(x)dx. (9.2)

We can obtain a few elementary primitives by reversing the derivatives Table 7.1. The list is
shown in Table 9.1.

Some primitives have the pattern

Z
f ′

g(x)

�
g′(x)dx = f


g(x)

�
+ c. (9.3)

We call this primitives immediate.
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f (x) F(x) f (x) F(x) f (x) F(x)

xα (α ̸=−1)
xα+1

α +1
sinx −cosx

1
1+ x2 arctanx

x−1 log |x| cosx sinx
1√

1− x2
arcsinx

ex ex sinhx coshx
1

cos2 x
tanx

ax ax

loga
coshx sinhx

1
cosh2 x

tanhx

Table 9.1: Primitives F(x) of some elementary functions f (x) (up to the additive constant) as
obtained by reversing Table 7.1. Here α ∈ R, a > 0.

Here are some important special cases:

Z g′(x)
g(x)

dx = log |g(x)|+ c,
Z

g′(x)[g(x)]α dx =
g(x)α+1

α +1
, α ̸=−1, (9.4)

Z g′(x)
1+g(x)2 dx = arctang(x)+ c,

Z g′(x)p
1−g(x)2

dx = arcsing(x)+ c. (9.5)

■ Example 9.1 The primitive
Z

tanxdx =
Z sinx

cosx
dx

has nearly the form

Z g′(x)
g(x)

dx

because (cosx)′ =−sinx. Then

Z sinx
cosx

dx =−
Z −sinx

cosx
dx =−

Z
(cosx)′

cosx
dx.

Therefore

Z
tanxdx =− log |cosx|+ c. (9.6)

By a similar argument

Z
cotxdx = log |sinx|+ c. (9.7)

■

■ Example 9.2 Here is a more involved example:
Z

secxdx =
Z dx

cosx
.
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In order to find this primitive, let us first compute

(secx)′ =
sinx

cos2 x
= secx tanx, (tanx)′ = sec2 x.

Adding up these two equations we get

(secx+ tanx)′ = secx tanx+ sec2 x = secx(tanx+ secx).

Therefore

(secx+ tanx)′

secx+ tanx
= secx

and from this we conclude

Z
secxdx = log |secx+ tanx|+ c = log

����
1+ sinx

cosx

����+ c. (9.8)

Similarly we obtain

Z
cscxdx =− log |cscx+ cotx|+ c = log

����
sinx

1+ cosx

����+ c. (9.9)

Notice that
�

1+ sinx
cosx

�2

=
(1+ sinx)2

1− sin2 x
=

1+ sinx
1− sinx

=
cos2 x

2 + sin2 x
2 +2sin x

2 cos x
2

cos2 x
2 + sin2 x

2 −2sin x
2 cos x

2

=

�
cos x

2 + sin x
2

cos x
2 − sin x

2

�2

=

�
1+ tan x

2
1− tan x

2

�2

= tan2
� x

2
+

π
4

�
,

�
sinx

1+ cosx

�2

=
1− cos2 x
(1+ cosx)2 =

1− cosx
1+ cosx

=
2sin2 x

2
2cos2 x

2
= tan2 x

2
,

therefore, we have the alternative expressions

log
����
1+ sinx

cosx

����=
1
2

log
�

1+ sinx
1− sinx

�
= log

�
1+ tan x

2
1− tan x

2

�
= log

���tan
� x

2
+

π
4

���� ,

log
����

sinx
1+ cosx

����=
1
2

log
�

1− cosx
1+ cosx

�
= log

���tan
x
2

���

■

9.1 Integration by parts

Theorem 9.1.1 If f and g are two differentiable functions, then
Z

f (x)g′(x)dx = f (x)g(x)−
Z

f ′(x)g(x)dx. (9.10)

Proof. Since f (x)g(x) is the primitive of
�

f (x)g(x)
�′, we have

f (x)g(x) =
Z �

f (x)g(x)
�′ dx =

Z �
f ′(x)g(x)+ f (x)g′(x)

�
dx =

Z
f ′(x)g(x)dx+

Z
f (x)g′(x)dx.

From here equation (9.10) follows straight away. ■
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This is one of the most useful integration techniques, as a few examples will reveal.

■ Example 9.3 A classic example is the integral
Z

xex dx.

Since ex = (ex)′ it is easy to recognise the left-hand side of (9.10). Therefore
Z

xex dx = xex −
Z

1 · ex dx = xex − ex + c = (x−1)ex + c.

■

This example can be generalised whenever we have a function g′(x) easy to integrate several
times (e.g., an exponential, a power, a trigonometric function. . . ) multiplied by a polynomial. The
polynomial plays the role of function f (x), and we have to apply integration by parts as many times
as the degree of the polynomial. (The example above is one of those cases, in which the polynomial
has degree 1.)

Exercise 9.1 Calculate
Z
(x2 +1)sin(2x−1)dx.

■

■ Example 9.4 Often we cannot see g′(x) explicitly because g′(x) = 1. For example, in the integral
Z

logxdx.

If g′(x) = 1 then g(x) = x, therefore
Z

logxdx = x logx−
Z

x · 1
x

dx = x logx−
Z

dx = x logx− x+ c.

Thus, we can add the primitive of yet another elementary function to our list:

Z
logxdx = x logx− x+ c. (9.11)

■

We can generalise this example to obtain the primitive of an inverse f−1 if we know that F(x)
is a primitive of f (x):

Z
f−1(x)dx = x f−1(x)−

Z
x


f−1�′ (x)dx.

But x = f


f−1(x)
�
, therefore

Z
x( f−1)′(x)dx =

Z
f


f−1(x)
�

f−1�′ (x)dx = F


f−1(x)
�

because the last integral matches the pattern of an immediate integral. Thus, we can con-
clude:
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Theorem 9.1.2 If function f has an inverse f−1 and F ′(x) = f (x), then
Z

f−1(x)dx = x f−1(x)−F


f−1(x)
�
. (9.12)

■ Example 9.5 We know that
Z

tanxdx =− log |cosx|≡ F(x)

is a primitive of f (x) = tanx. Therefore
Z

arctanxdx = xarctanx+ log |cos(arctanx)|+ c.

We can simplify this expression if we rewrite the cosine in terms of the tangent. Since

cos2 x =
1

1+ tan2 x
⇒ cosx = (1+ tan2 x)−1/2,

then

log |cos(arctanx)|= log |(1+ x2)−1/2|=−1
2

log(1+ x2).

Thus

Z
arctanxdx = xarctanx− 1

2
log(1+ x2)+ c. (9.13)

■

Exercise 9.2 Prove that
Z

arcsinxdx = xarcsinx+
p

1− x2 + c. (9.14)

■

■ Example 9.6 Another typical use of the integration by parts is to recover the same integral after
applying the formula. Such is the case of

Z logx
x

dx.

since 1/x = (logx)′,
Z logx

x
dx = (logx)2 −

Z
logx

dx
x
.

From this we conclude that

2
Z logx

x
dx = (logx)2

thus
Z logx

x
dx =

1
2
(logx)2 + c.

■
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■ Example 9.7 The integrals
Z

ex sinxdx,
Z

ex cosxdx,

are another example of the same technique, where we have to integrate by parts more than once. In
the first integration we identify g′(x) = sinx and get

Z
ex sinxdx = ex(−cosx)−

Z
(−cosx)ex dx =−ex cosx+

Z
cosxex dx.

In the second integration we identify g′(x) = cosx, so
Z

cosxex dx = ex sinx−
Z

sinxex dx.

Therefore, if we denote

S ≡
Z

ex sinxdx, C ≡
Z

ex cosxdx,

what we have obtained are the equations

S =−ex cosx+C, C = ex sinx−S.

Solving this system we obtain

S =
ex

2
(sinx− cosx)+ c, C =

ex

2
(sinx+ cosx)+ c.

■

■ Example 9.8 Another technique associated to the integration by parts is the construction of
recurrence formulas. This is illustrated by the example

In(x) =
Z dx

(1+ x2)n ,

whose case n = 1 is straightforward: I1(x) = arctanx. In order to find the recurrence we proceed as
follows:

In+1(x) =
Z dx

(1+ x2)n+1 =
Z 1+ x2

(1+ x2)n+1 dx−
Z x2

(1+ x2)n+1 dx= In(x)−
1
2

Z
x

2x
(1+ x2)n+1 dx.

We now integrate by parts
Z

x
2x

(1+ x2)n+1 dx =− x
n

1
(1+ x2)n +

1
n

Z dx
(1+ x2)n =

In(x)
n

− x
n(1+ x2)n .

Thus

In+1(x) = In(x)
�

1− 1
2n

�
+

x
2n(1+ x2)n =

2n−1
2n

In(x)+
1

2n
x

(1+ x2)n .

For instance,

I2(x) =
1
2

arctanx+
1
2

x
(1+ x2)

,

I3(x) =
3
4

I2(x)+
1
4

x
(1+ x2)2 =

3
8

arctanx+
3
8

x
(1+ x2)

+
1
4

x
(1+ x2)2 ,

etc. ■
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9.2 Primitives of rational functions
Rational functions can be integrated thanks to a partial fractions decomposition. First of all, we can
focus on rational functions

R(x) =
P(x)
Q(x)

, (9.15)

where the degree of P(x) is smaller than the degree of Q(x), and Q(x) is a monic polynomial. The
reason is that if this is not true, then we can divide P(x) by Q(x), obtain a quotient polynomial C(x)
and a remainder M(x), so that we can write

R(x) =
P(x)
Q(x)

=C(x)+
M(x)
Q(x)

.

In the last rational fraction the degree of M(x) is smaller than the degree of Q(x), and the polynomial
C(x) can be readily integrated.

Any monic polynomial Q(x) can be factored out into a series of elementary factors, i.e.,

Q(x) = (x−a1)
n1 · · ·(x−ar)

nr

x2 + p1x+q1

�m1 · · ·

x2 + psx+qs

�ms
. (9.16)

Numbers a1,a2, . . . ,ar are real roots of the polynomial and n1,n2, . . . ,nr their respective multiplic-
ities. The quadratic factors


x2 + p jx+q j

�m j are irreducible (i.e., p2
j < 4q j) and correspond to

complex roots of the polynomial. Numbers m j are their respective multiplicities.
It turns out that the rational function (9.15) with denominator (9.16) can be expanded as

R(x) =
r

∑
i=1

�
Ai1

x−ai
+ · · ·+ Aini

(x−ai)ni

�
+

s

∑
j=1

�
B j1x+Cj1

x2 + p jx+q j
+ · · ·+ B jm j x+Cjm j

(x2 + p jx+q j)m j

�
(9.17)

These partial fractions are easier to integrate. A few examples will illustrate the method.

■ Example 9.9 Calculate
Z 2x2 −4x+6

(x−1)3 dx.

According to the partial fractions decomposition (9.17),

2x2 −4x+6
(x−1)3 =

A
(x−1)3 +

B
(x−1)2 +

C
x−1

.

There are several ways to find A, B, and C. For instance, we can multiply the equation above by
(x−1)3 and get

2x2 −4x+6 = A+B(x−1)+C(x−1)2.

Then setting x = 1 we obtain A = 4. Substituting this value of A in the previous equation and
simplifying yields

2x2 −4x+2 = B(x−1)+C(x−1)2 ⇒ 2(x−1)2 = B(x−1)+C(x−1)2,

hence B = 0 and C = 2.
An alternative is to obtain the Taylor polynomial for 2x2 − 4x+ 6 in powers of x− 1. It is

4+2(x−1)2. Then

2x2 −4x+6
(x−1)3 =

4+(x−1)2

(x−1)3 =
4

(x−1)3 +
2

x−1
.
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Finally

Z 2x2 −4x+6
(x−1)3 dx =

Z 4
(x−1)3 dx+

Z 2
x−1

dx =− 2
(x−1)2 +2log |x−1|+ c.

■

■ Example 9.10 Calculate
Z x+2

x(x−1)(x−2)
dx.

The partial fraction decomposition yields

x+2
x(x−1)(x−2)

=
A
x
+

B
x−1

+
C

x−2
.

Multiplying by x(x−1)(x−2) leads to

x+2 = A(x−1)(x−2)+Bx(x−2)+Cx(x−1).

Setting x = 0 we get 2 = 2A, i.e., A = 1. Setting x = 1 we get 3 =−B, i.e., B =−3. Finally, setting
x = 2 we get 4 = 2C, i.e., C = 2. Thus

Z x+2
x(x−1)(x−2)

dx =
Z dx

x
−3

Z dx
x−1

+2
Z dx

x−2
= log |x|−3log |x−1|+2log |x−2|+ c.

■

■ Example 9.11 Calculate
Z x2 +1

x2(x−1)(x+1)
dx.

The partial fraction decomposition yields

x2 +1
x2(x−1)(x+1)

=
A
x
+

B
x2 +

C
x−1

+
D

x+1
.

Multiplying by x2(x−1)(x+1) leads to

x2 +1 = Ax(x−1)(x+1)+B(x−1)(x+1)+Cx2(x+1)+Dx2(x−1).

Setting x = 0 leads to 1 = −B, i.e., B = −1. Setting x = 1 leads to 2 = 2C, i.e., C = 1. Setting
x =−1 leads to 2 =−2D, i.e., D =−1. Now, substituting these constants

x2 +1 = Ax(x−1)(x+1)− (x−1)(x+1)+ x2(x+1)− x2(x−1)

= Ax(x−1)(x+1)− x2 +1+ x3 + x2 − x3 + x2 = Ax(x−1)(x+1)+ x2 +1,

so A = 0.
Now,

Z x2 +1
x2(x−1)(x+1)

dx =−
Z dx

x2 +
Z dx

x−1
−

Z dx
x+1

=
1
x
+ log |x−1|− log |x+1|+ c.

■
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■ Example 9.12 Calculate
Z 5x2 − x+3

x(x2 +1)
dx.

The partial fraction decomposition yields

5x2 − x+3
x(x2 +1)

=
A
x
+

Bx+C
x2 +1

.

Multiplying by x(x2 +1)leads to

5x2 − x+3 = A(x2 +1)+(Bx+C)x.

Setting x = 0 leads to A = 3. Substituting this value

5x2 − x+3 = 3(x2 +1)+(Bx+C)x ⇒ 2x2 − x = (Bx+C)x ⇒
2x−1 = Bx+C,

so B = 2 and C =−1.
Then
Z 5x2 − x+3

x(x2 +1)
dx = 3

Z dx
x
+

Z 2x
x2 +1

dx−
Z dx

x2 +1
= 3log |x|+ log(x2 +1)−arctanx+c.

■

■ Example 9.13 Calculate
Z 2x+4

x2 +2x+2
dx.

In order to perform a partial fraction decomposition we need to find the roots of the denominator.
However these roots are −1± i, so x2 +2x+2 is an irreducible square factor. The way to proceed
in these cases is to take the first two terms and complete the square. In other words, we write
x2 +2x = (x+1)2 −1. Thus,

Z 2x+4
x2 +2x+2

dx =
Z 2(x+2)

(x+1)2 +1
dx =

Z 2(x+1)
(x+1)2 +1

dx+2
Z dx

(x+1)2 +1

= log
�
(x+1)2 +1

�
+2arctan(x+1)+ c

= log(x2 +2x+2)+2arctan(x+1)+ c.

■

■ Example 9.14 Calculate
Z 2x+4

(x2 +2x+2)2 dx.

Using the same transformation as in the previous example
Z 2x+4

(x2 +2x+2)2 dx =
Z 2(x+1)

[(x+1)2 +1]2
dx+2

Z dx

[(x+1)2 +1]2
.

The first integral is immediate,
Z 2(x+1)

[(x+1)2 +1]2
dx =− 1

(x+1)2 +1
=− 1

x2 +2x+2
.
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The second integral can be done using the recurrence derived in Example 9.8,

2
Z dx

[(x+1)2 +1]2
= arctan(x+1)+

x+1
x2 +2x+2

.

Thus,
Z 2x+4

(x2 +2x+2)2 dx = arctan(x+1)+
x

x2 +2x+2
+ c.

■

9.3 Change of variable

Let F(x) be one primitive of f (x), and let x = g(t) be a change from variable x to the new variable
t. By the chain rule

d
dt

F

g(t)

�
= f


g(t)

�
g′(t),

thus, integrating this equation,

F

g(t)

�
=

Z
f

g(t)

�
g′(t)dt.

But using the change x = g(t) and the fact that F(x) =
Z

f (x)dx, we can rewrite this identity
as

Z
f (x)dx =

Z
f

g(t)

�
g′(t)dt. (9.18)

This is the equation ruling a change of variable in the calculation of a primitive.

R A simple way to remember this rule is to rewrite dx according to

dx =
dx
dt

dt = g′(t)dt.

■ Example 9.15 Calculate
Z ex

e2x +1
dx.

Here the obvious change of variable is ex = t or x = log t. Then dx = dt/t and

Z ex

e2x +1
dx =

Z t
t2 +1

dt
t
=

Z dt
t2 +1

= arctan t + c = arctan(ex)+ c.

■

■ Example 9.16 Calculate

Z dx
3
p
(1−2x)2 −

√
1−2x

.
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Here the change of variable is tm = 1−2x, choosing m so that all roots disappear. The simplest
choice is the least common multiple of 2 and 3 in this case, i.e., m = 6. So x = (1− t6)/2 and
therefore dx =−3t5 dt. Then,

Z dx
3
p
(1−2x)2 −

√
1−2x

=
Z −3t5

t4 − t3 dt =−3
Z t2

t −1
dt =−3

Z �
t +1+

1
t −1

�
dt

=−3
2
(t +1)2 −3log |t −1|+ c

=−3
2

�
1+ 6

√
1−2x

�2
−3log

���1− 6
√

1−2x
���+ c

■

■ Example 9.17 Calculate
Z dx

x
√

1− x2
.

Whenever we have an expression like
√

1− x2 one possible change of variable is x = sin t, for then√
1− x2 = cos t and dx = cos t dt. In this case this leads to

Z dx

x
√

1− x2
=

Z cos t
sin t cos t

dt =
Z dt

sin t
= log

����
sin t

1+ cos t

����+ c = log
� |x|

1+
√

1− x2

�
+ c.

■

Suggested changes of variables:

(I) If there appear
√

1+ x2 then x = tan t transforms

p
1+ x2 =

1
cos t

, dx =
dt

cos2 t
,

or x = sinh t transforms
p

1+ x2 = cosh t, dx = cosh t dt.

(II) If there appear
√

x2 −1 then x = sec t transforms
p

x2 −1 = tan t, dx = sec t tan t dt,

or x = cosh t transforms
p

x2 −1 = sinh t, dx = sinh t dt.

(III) As a last resource, in rational functions of sines and cosines we can use t = tan(x/2), which
transforms

sinx =
2t

1+ t2 , cosx =
1− t2

1+ t2 , dx =
2dt

1+ t2 .
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Problems
Problem 9.1 Obtain the following immediate (or nearly so) primitives:

(i)
Z dx

cos2 x
;

(ii)
Z sinx− cosx

sinx+ cosx
dx;

(iii)
Z x

(x2 +1)5/2 dx;

(iv)
Z 1+ sinx

1+ cosx
dx;

(v)
Z dx

1− sinx
dx;

(vi)
Z x√

1+ x2
dx;

(vii)
Z 1+

p
1−√

x√
x

dx;

(viii)
Z cos3 x

sin4 x
dx;

(ix)
Z

x3
p

1− x2 dx.

HINTS: (iv) multiply and divide by 1− cosx and expand; (v) idem with 1+ sinx; (vii) alternatively t =
p

1−√
x; (viii)

cos3 x = (1− sin2 x)cosx and expand; (ix) write x3 = x(x2 −1)+ x and expand.

Problem 9.2 Obtain the primitives of the following rational functions:

(i)
Z x2

(x−1)3 dx;

(ii)
Z dx

(x−1)2(x2 + x+1)
;

(iii)
Z 2x2 +3

x2(x−1)
dx;

(iv)
Z 2

x2 −2x+2
dx;

(v)
Z 4x4 − x3 −46x2 −20x+153

x3 −2x2 −9x+18
dx;

(vi)
Z x5 −2x3

x4 −2x2 +1
dx.

HINTS: (ii) x2 + x + 1 = (x + 1/2)2 + 3/4; (v) x3 − 2x2 − 9x + 18 = (x − 2)(x − 3)(x + 3); (vi) x4 − 2x2 + 1 =

(x−1)2(x+1)2.

Problem 9.3 Obtain the following primitives doing an appropriate change of variable:

(i)
Z

x2√x−1dx;

(ii)
Z

x2 sin
√

x3 dx;

(iii)
Z

cos(logx)dx;

(iv)
Z

sin(logx)dx;

(v)
Z

cos2(logx)dx;

(vi)
Z √

x+1
x+3

dx;

(vii)
Z

(x+1)3
p

1− (x+1)2
dx;

(viii)
Z x3

(1+ x2)3 dx;

(ix)
Z dx

(2+ x)
√

1+ x
;

(x)
Z dx

1+ 3
√

1− x
;

(xi)
Z e4x

e2x +2ex +2
dx;

(xii)
Z dx√

e2x −1
dx;

(xiii)
Z √

ex −1dx;

(xiv)
Z sin2 xcos5 x

tan3 x
dx;

(xv)
Z dx

3+
√

2x+5
;

(xvi)
Z r

x−1
x+1

dx;

(xvii)
Z q√

x+1dx;

(xviii)
Z √

x+2
1+

√
x+2

dx;

(xix)
Z √

2+ ex dx;

(xx)
Z sinx+3cosx

sinx+2cosx
dx;

(xxi)
Z sinx+3cosx

sinxcosx+2sinx
dx;

(xxii)
Z p

1+ 3
√

x
3
√

x
dx;

(xxiii)
Z dx

(x+1) 3
√

x+2
;

(xxiv)
Z dx

ex −4e−x dx.

HINTS: (i) t =
√

x−1 (or int. by parts twice); (ii) t2 = x3; (iii)–(v) t = logx; (vi) t =
√

x; (vii) t =
p

1− (x+1)2;

(viii) t = 1+ x2; (ix) t2 = 1+ x; (x) t3 = 1− x; (xi) t = ex; (xii) t2 = e2x − 1; (xiii) t2 = ex − 1; (xiv) t = cosx; (xv)

t = 3+
√

2x+5; (xvi) t =
p

(x−1)/(x+1); (xvii) t =
p√

x+1; (xviii) t =
√

x+2; (xix) t =
√

2+ ex; (xx) t = tanx;

(xxi) t = tan(x/2); (xxii) t =
p

1+ x1/3; (xxiii) t3 = x+2; (xxiv) t = ex.

Problem 9.4 Obtain the following primitives with the help of some trigonometric identity:
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(i)
Z

sin2 xdx;

(ii)
Z

cos2 xdx;

(iii)
Z

sin4 xdx;

(iv)
Z

cos4 xdx;

(v)
Z

cos6 xdx;

(vi)
Z

sin2 xcos2 xdx;

(vii)
Z

tan2 xdx;

(viii)
Z

tan4 xdx;

(ix)
Z dx

cos4 x
;

(x)
Z

sin5 xdx;

(xi)
Z

cos3 xsin2 xdx;

(xii)
Z

sec6 xdx;

(xiii)
Z

sin3 xcos2 xdx;

(xiv)
Z

tan3 xdx;

(xv)
Z

tan3 xsec4 xdx.

HINTS: Identities to use: 2cos2 x = 1+ cos2x; 2sin2 x = 1− cos2x; cos2 x+ sin2 x = 1; sec2 x = 1+ tan2 x.

Problem 9.5 Integrate by parts to obtain the following primitives:

(i)
Z

x tan2(2x)dx;

(ii)
Z

ex sinπxdx;

(iii)
Z

ex cos2xdx;

(iv)
Z

sec3 xdx;

(v)
Z

tan2(3x)sec3(3x)dx;

(vi)
Z

esinx cos3 xdx;

(vii)
Z

x2 logxdx;

(viii)
Z

xm logxdx;

(ix)
Z
(logx)3 dx;

(x)
Z

x(logx)2 dx;

(xi)
Z x logx

(1+ x2)2 dx;

(xii)
Z

arctan 3
√

xdx.

Problem 9.6 Obtain the following primitives by performing a trigonometric substitution:

(i)
Z x2 +1√

x2 −1
dx;

(ii)
Z x2

(x2 +1)5/2 dx;

(iii)
Z x2

(1− x2)3/2 dx;

(iv)
Z dx

x2
√

1− x2
;

(v)
Z dx

x2
√

9− x2
.

Problem 9.7 Find recurrence formulas for the following integrals:

(i) Im =
Z

sinm xdx −→ Im =− 1
m

sinm−1 xcosx+
m−1

m
Im−2;

(ii) Im =
Z
(logx)m dx −→ Im = x(logx)m −mIm−1;

(iii) Im =
Z

xme−x dx −→ Im =−xme−x +mIm−1;

(iv) Im =
Z

tanm xdx −→ Im =
1

m−1
tanm−1 x− Im−2;

(v) Im =
Z

secm xdx −→ Im =
1

m−1
tanxsecm−2 x+

m−2
m−1

Im−2;

(vi) Im =
Z

xmex2
dx −→ Im =

1
2

xm−1ex2 − m−1
2

Im−2;

(vii) Im,n =
Z

sinm xcosn xdx −→ Im,n =− 1
m+n

sinm−1 xcosn+1 x+
m−1
m+n

Im−2,n.

Problem 9.8 Without calculating the integral, prove that
Z acosx+bsinx

ccosx+d sinx
dx = Ax+B log |ccosx+d sinx|+ const.

by determining the constants A and B as functions of a, b, c, and d.


