Problem 1. [2 points] Find (if they exist) the supremum, infimum, maximum and minimum of the set of $x \in \mathbb{R}$ that satify

$$
\frac{\left|x^{2}-1\right|}{x} \geq 1+x
$$

Problem 2. [2 points] Let $a_{1}, a_{2}, \ldots, a_{n} \in(-1,0]$. Using the induction principle, prove:

$$
\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{n}\right) \geq 1+a_{1}+a_{2}+\cdots+a_{n} .
$$

Problem 3. [2 points] Study the convergence of the following sequence, and find its limit if it exists:

$$
\begin{cases}a_{1} & =1 \\ a_{n+1} & =\sqrt[3]{2 a_{n}+\left(a_{n}\right)^{2}}\end{cases}
$$

Problem 4. [2 points] Find, if they exist, the limit of the following sequences:
a) $[1$ point $]$

$$
\lim _{n \rightarrow \infty} \frac{n^{n+\frac{3}{2}} \sqrt{2}}{e^{n}(n+1)!}
$$

b) [1 point]

$$
\lim _{n \rightarrow \infty}\left[\sqrt{n^{2}+2 n}-n\right]^{n^{2}\left(1-\cos \frac{1}{\sqrt{n}}\right)}
$$

Problem 5. [2 points] Study the convergence of the following series of real numbers:

$$
\sum_{n=1}^{\infty} \frac{n^{3}+2 \sqrt{n}}{\sqrt{n^{7}+3}}
$$

SOLUTIONS

Problem 1. [2 points] Find (if they exist) the supremum, infimum, maximum and minimum of the set of $x \in \mathbb{R}$ that satify

$$
\frac{\left|x^{2}-1\right|}{x} \geq 1+x .
$$

Solution. There are two possible cases:
$|\mathbf{x}| \geq \mathbf{1}$. Then $\left|x^{2}-1\right|=x^{2}-1$, and

$$
\frac{x^{2}-1}{x} \geq 1+x \Longleftrightarrow \frac{x^{2}-1}{x}-1-x \geq 0 \Longleftrightarrow \frac{1+x}{x} \leq 0
$$

If $x \geq 1$, both the numerator and the denominator are positive, and so the condition is not fulfilled. If, however, $x \leq-1$, the denominator is negative, and the numerator is never positive. But it becomes zero when $x=-1$, the only number that fulfills the condition.
$|\mathbf{x}|<\mathbf{1}$. Then $\left|x^{2}-1\right|=1-x^{2}$ and

$$
\frac{1-x^{2}}{x} \geq 1+x \Longleftrightarrow \frac{1-x^{2}}{x}-1-x \geq 0 \Longleftrightarrow \frac{1-x-2 x^{2}}{x} \geq 0 \Longleftrightarrow \frac{(x-1 / 2)(x+1)}{x} \leq 0
$$

If $-1<x<0$, both the numerator and the denominator are negative, and so no number in this interval fulfills the condition. If $x=0$, this fraction is not defined, so the inequality does not make sense. If $0<x \leq 1 / 2$, the denominator is positive and $(x-1 / 2)(x+1) \leq 0$, so the condition is fulfilled. If $x>1 / 2$ both the numerator and the denominator are positive, and the condition is not fulfilled.

Joining both cases, we find that the set of numbers that fulfill the original condition is $\{-1\} \cup$ $(0,1 / 2$]. The infimum (and minimum) of this set is -1 and its supremum (and maximum) is $1 / 2$.

Problem 2. [2 points] Let $a_{1}, a_{2}, \ldots, a_{n} \in(-1,0]$. Using the induction principle, prove:

$$
\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots\left(1+a_{n}\right) \geq 1+a_{1}+a_{2}+\cdots+a_{n} .
$$

Solution. For $n=1$ the inequality is clearly satisfied. Now, suppose it is true for a given n, and

$$
\begin{aligned}
\left(1+a_{1}\right) \ldots\left(1+a_{n}\right)\left(1+a_{n+1}\right) & \geq\left(1+a_{1}+\cdots+a_{n}\right)\left(1+a_{n+1}\right) \\
& =1+a_{1}+\cdots+a_{n}+a_{n+1}+a_{n+1} a_{1}+a_{n+1} a_{2}+\cdots+a_{n+1} a_{n} \\
& \geq 1+a_{1}+a_{2}+\cdots+a_{n}+a_{n+1},
\end{aligned}
$$

where we have used the induction hypothesis in the first line, expanded the product in the second and used the fact that all $a_{n} \in(-1,0]$ in the third line: this last condition implies that $a_{n} a_{m}>0$ for all $n, m \in \mathbb{N}$.

Problem 3. [2 points] Study the convergence of the following sequence, and find its limit if it exists:

$$
\begin{cases}a_{1} & =1 \\ a_{n+1} & =\sqrt[3]{2 a_{n}+\left(a_{n}\right)^{2}}\end{cases}
$$

Solution. If this sequence had a limit l, it would have to satisfy the equation

$$
l=\sqrt[3]{2 l+l^{2}} .
$$

The solutions of this equation are $l=0,1,2$. As the first element in the sequence is $a_{1}=1$, we will show that the sequence is bounded by 2 above and by 1 below, using the induction principle: $a_{n} \geq 1$. This is true for $n=1$. Now, assuming it is valid for an arbitrary n, we have

$$
a_{n+1}=\sqrt[3]{2 a_{n}+\left(a_{n}\right)^{2}} \geq \sqrt[3]{3} \geq 1 .
$$

$a_{n} \leq 2$. This is true for $n=1$. Now, assuming it is valid for an arbitrary n, we have

$$
a_{n+1}=\sqrt[3]{2 a_{n}+\left(a_{n}\right)^{2}} \leq \sqrt[3]{8} \leq 2 .
$$

Now let us check if the sequence is monotonic:

$$
\frac{a_{n+1}}{a_{n}}=\frac{\sqrt[3]{2 a_{n}+\left(a_{n}\right)^{2}}}{a_{n}}=\sqrt[3]{2 \frac{1}{a_{n}^{2}}+\frac{1}{a_{n}}} \geq \sqrt[3]{\frac{2}{4}+\frac{1}{2}}=1
$$

where we have used the fact that $a_{n}^{-2} \geq 1 / 4$ and $a_{n} \geq 1 / 2$. This result implies that a_{n} is monotonically increasing. Because it is bounded above, it is convergent, and the only possibility for the limit is 2 .

Problem 4. [2 points] Find, if they exist, the limit of the following sequences:
a) $[1$ point $]$

$$
\lim _{n \rightarrow \infty} \frac{n^{n+\frac{3}{2}} \sqrt{2}}{e^{n}(n+1)!}
$$

b) [1 point]

$$
\lim _{n \rightarrow \infty}\left[\sqrt{n^{2}+2 n}-n\right]^{n^{2}\left(1-\cos \frac{1}{\sqrt{n}}\right)}
$$

Solution. a) Using Stirling's approximation, $n!\sim \sqrt{2 \pi n} n^{n} e^{-n}$, we have

$$
\lim _{n \rightarrow \infty} \frac{n^{n+\frac{3}{2}} \sqrt{2}}{e^{n}(n+1)!}=\lim _{n \rightarrow \infty} \frac{n^{n+\frac{3}{2}} \sqrt{2}}{e^{n}(n+1) \sqrt{2 \pi n} n^{n} e^{-n}}=\frac{1}{\sqrt{\pi}} \lim _{n \rightarrow \infty} \frac{n}{n+1}=\frac{1}{\sqrt{\pi}} .
$$

b) This is a limit of the type 1^{∞}. First we show that the limit of the base b_{n} is 1 :

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} \sqrt{n^{2}+2 n}-n=\lim _{n \rightarrow \infty} \frac{2 n}{\sqrt{n^{2}+2 n}+n}=\lim _{n \rightarrow \infty} \frac{2}{\sqrt{1+2 / n}+1}=1 .
$$

Now we show that the exponent c_{n} grows to infinity with n :

$$
\lim _{n \rightarrow \infty} c_{n}=\lim _{n \rightarrow \infty} n^{2}\left(1-\cos \frac{1}{\sqrt{n}}\right)=\lim _{n \rightarrow \infty} \frac{n^{2}}{2 n}=\frac{n}{2}=\infty
$$

where we have used the fact that $\cos \varepsilon_{n}-1 \sim \varepsilon_{n}^{2} / 2$.
Now, we know that limits of this type will be equal to e^{c}, where

$$
c=\lim _{n \rightarrow \infty}\left(b_{n}-1\right) c_{n}=\lim _{n \rightarrow \infty}\left(\sqrt{n^{2}+2 n}-n-1\right) \frac{n}{2}=\lim _{n \rightarrow \infty}-\frac{n}{2\left(\sqrt{n^{2}+2 n}+n+1\right)}=-\frac{1}{4},
$$

and therefore the limit is $e^{-1 / 4}$.

Problem 5. [2 points] Study the convergence of the following series of real numbers:

$$
\sum_{n=1}^{\infty} \frac{n^{3}+2 \sqrt{n}}{\sqrt{n^{7}+3}}
$$

Solution. Using asymptotic approximations, we can show that

$$
\frac{n^{3}+2 \sqrt{n}}{\sqrt{n^{7}+3}} \sim \frac{n^{3}}{n^{7 / 2}} \sim \frac{1}{\sqrt{n}}
$$

and so the series is divergent using the limit comparison criterion.

