
CALCULUS I - OpenCourseWare

Units 1-4 Exam.

Problem 1. [2 points] Find (if they exist) the supremum, infimum, maximum

and minimum of the set of x ∈ R that satify

|x2 − 1|
x

≥ 1 + x.

Problem 2. [2 points] Let a1, a2, . . . , an ∈ (−1, 0]. Using the induction principle,

prove:

(1 + a1)(1 + a2) . . . (1 + an) ≥ 1 + a1 + a2 + · · ·+ an.

Problem 3. [2 points] Study the convergence of the following sequence, and find

its limit if it exists: {
a1 = 1

an+1 = 3
√
2an + (an)2

Problem 4. [2 points] Find, if they exist, the limit of the following sequences:

a) [1 point]

lim
n→∞

nn+ 3
2

√
2

en(n+ 1)!

b) [1 point]

lim
n→∞

[√
n2 + 2n− n

]n2
(
1−cos 1√

n

)

Problem 5. [2 points] Study the convergence of the following series of real

numbers:
∞∑
n=1

n3 + 2
√
n√

n7 + 3



SOLUTIONS

Problem 1. [2 points] Find (if they exist) the supremum, infimum, maximum

and minimum of the set of x ∈ R that satify

|x2 − 1|
x

≥ 1 + x.

Solution. There are two possible cases:

|x| ≥ 1. Then |x2 − 1| = x2 − 1, and

x2 − 1

x
≥ 1 + x ⇐⇒ x2 − 1

x
− 1− x ≥ 0 ⇐⇒ 1 + x

x
≤ 0.

If x ≥ 1, both the numerator and the denominator are positive, and so the condition is

not fulfilled. If, however, x ≤ −1, the denominator is negative, and the numerator is never

positive. But it becomes zero when x = −1, the only number that fulfills the condition.

|x| < 1. Then |x2 − 1| = 1− x2 and

1− x2

x
≥ 1+x ⇐⇒ 1− x2

x
− 1−x ≥ 0 ⇐⇒ 1− x− 2x2

x
≥ 0 ⇐⇒ (x− 1/2)(x+ 1)

x
≤ 0.

If −1 < x < 0, both the numerator and the denominator are negative, and so no number in

this interval fulfills the condition. If x = 0, this fraction is not defined, so the inequality does

not make sense. If 0 < x ≤ 1/2, the denominator is positive and (x − 1/2)(x + 1) ≤ 0, so

the condition is fulfilled. If x > 1/2 both the numerator and the denominator are positive,

and the condition is not fulfilled.

Joining both cases, we find that the set of numbers that fulfill the original condition is {−1} ∪
(0, 1/2]. The infimum (and minimum) of this set is −1 and its supremum (and maximum) is

1/2. ■

Problem 2. [2 points] Let a1, a2, . . . , an ∈ (−1, 0]. Using the induction principle,

prove:

(1 + a1)(1 + a2) . . . (1 + an) ≥ 1 + a1 + a2 + · · ·+ an.

Solution. For n = 1 the inequality is clearly satisfied. Now, suppose it is true for a given n, and

(1 + a1) . . . (1 + an)(1 + an+1) ≥ (1 + a1 + · · ·+ an)(1 + an+1)

= 1 + a1 + · · ·+ an + an+1 + an+1a1 + an+1a2 + · · ·+ an+1an

≥ 1 + a1 + a2 + · · ·+ an + an+1,

where we have used the induction hypothesis in the first line, expanded the product in the second

and used the fact that all an ∈ (−1, 0] in the third line: this last condition implies that anam > 0

for all n,m ∈ N. ■



Problem 3. [2 points] Study the convergence of the following sequence, and find

its limit if it exists: {
a1 = 1

an+1 = 3
√
2an + (an)2

Solution. If this sequence had a limit l, it would have to satisfy the equation

l =
3
√

2l + l2.

The solutions of this equation are l = 0, 1, 2. As the first element in the sequence is a1 = 1, we

will show that the sequence is bounded by 2 above and by 1 below, using the induction principle:

an ≥ 1. This is true for n = 1. Now, assuming it is valid for an arbitrary n, we have

an+1 = 3
√
2an + (an)2 ≥ 3

√
3 ≥ 1.

an ≤ 2. This is true for n = 1. Now, assuming it is valid for an arbitrary n, we have

an+1 = 3
√
2an + (an)2 ≤ 3

√
8 ≤ 2.

Now let us check if the sequence is monotonic:

an+1

an
=

3
√
2an + (an)2

an
= 3

√
2
1

a2n
+

1

an
≥ 3

√
2

4
+

1

2
= 1,

where we have used the fact that a−2
n ≥ 1/4 and an ≥ 1/2. This result implies that an is

monotonically increasing. Because it is bounded above, it is convergent, and the only possibility

for the limit is 2. ■

Problem 4. [2 points] Find, if they exist, the limit of the following sequences:

a) [1 point]

lim
n→∞

nn+ 3
2

√
2

en(n+ 1)!

b) [1 point]

lim
n→∞

[√
n2 + 2n− n

]n2
(
1−cos 1√

n

)

Solution. a) Using Stirling’s approximation, n! ∼
√
2πnnne−n, we have

lim
n→∞

nn+ 3
2

√
2

en(n+ 1)!
= lim

n→∞

nn+ 3
2

√
2

en(n+ 1)
√
2πnnne−n

=
1√
π

lim
n→∞

n

n+ 1
=

1√
π
.

b) This is a limit of the type 1∞. First we show that the limit of the base bn is 1:

lim
n→∞

bn = lim
n→∞

√
n2 + 2n− n = lim

n→∞

2n√
n2 + 2n+ n

= lim
n→∞

2√
1 + 2/n+ 1

= 1.



Now we show that the exponent cn grows to infinity with n:

lim
n→∞

cn = lim
n→∞

n2

(
1− cos

1√
n

)
= lim

n→∞

n2

2n
=

n

2
= ∞,

where we have used the fact that cos εn − 1 ∼ ε2n/2.

Now, we know that limits of this type will be equal to ec, where

c = lim
n→∞

(bn − 1)cn = lim
n→∞

(√
n2 + 2n− n− 1

) n

2
= lim

n→∞
− n

2(
√
n2 + 2n+ n+ 1)

= −1

4
,

and therefore the limit is e−1/4.

■

Problem 5. [2 points] Study the convergence of the following series of real

numbers:
∞∑
n=1

n3 + 2
√
n√

n7 + 3

Solution. Using asymptotic approximations, we can show that

n3 + 2
√
n√

n7 + 3
∼ n3

n7/2
∼ 1√

n
,

and so the series is divergent using the limit comparison criterion. ■


