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D.10 Fundamental Theorem of Calculus

Problem 10.1 For x < 0,

4− x2

(4+ x2)2 =
4+ x2 −2x2

(4+ x2)2 =
1

4+ x2 −
2x2

(4+ x2)2 .

Now,
Z dx

4+ x2 =
1
2

arctan
x
2

and
Z 2x2

(4+ x2)2 dx =
Z

x
2x

(4+ x2)2 dx =− x
4+ x2 +

Z dx
4+ x2 =− x

4+ x2 +
1
2

arctan
x
2
.

Thus,

f (x) =
x

4+ x2 +a.

For x > 0, with the change t =
√

x (dx = 2t dt),

f (x) =
Z

e
√

x dx = 2
Z

tet dt = 2(t −1)et +b = 2
�√

x−1
�

e
√

x +b.

Continuity and f (0) = 0 requires f (0−) = a = 0 and f (0+) =−2+b = 0, thus

f (x) =





x
4+ x2 , x < 0,

2(
√

x−1)e
√

x +2, x ⩾ 0.

Problem 10.2
(a) Changing x =−t,

I =
Z a

−a
f (x)dx =

Z a

−a
f (−t)dt =−

Z a

−a
f (t)dt =−I ⇒ 2I = 0 ⇒ I = 0.

(b) Using the same change,

Z a

−a
f (x)dx =

Z a

0
f (x)dx+

Z 0

−a
f (x)dx =

Z a

0
f (x)dx+

Z a

0
f (−t)| {z }
= f (t)

dt = 2
Z a

0
f (x)dx.

(c) Changing t = x−8,

Z 10

6
sin

�
sin

�
(x−8)3��dx =

Z 2

−2
sin

�
sin

�
t3��dt = 0

because the integrand is an odd function.

Problem 10.3 These are all Riemann’s sums:
(i)

lim
n→∞

n

∑
k=1

n
n2 + k2 = lim

n→∞

n

∑
k=1

1
n
· 1

1+(k/n)2 =
Z 1

0

dx
1+ x2 = arctan1 =

π
4
.
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(ii)

lim
n→∞

1
n

n

∑
k=1

n
√

e2k = lim
n→∞

n

∑
k=1

1
n
· e2k/n =

Z 1

0
e2x dx =

e2 −1
2

.

(iii)

lim
n→∞

n−1

∑
k=1

1√
n2 − k2

= lim
n→∞

n−1

∑
k=1

1
n
· 1p

1− (k/n)2
=

Z 1

0

dx√
1− x2

= arcsin1 =
π
2
.

Problem 10.4
(i) For x < 0,

F(x) =
Z x

−1
(−t)et dt = (1− x)ex − 2

e
.

For x ⩾ 0,

F(x) =
Z 0

−1
(−t)et dt +

Z x

0
te−t dt = 1− 2

e
+1− (1+ x)e−x = 2− 2

e
− (1+ x)e−x.

(ii) For x < 1/2,

F(x) =
Z x

−1

�
1
2
− t

�
dt =

2+ x− x2

2
=

(2− x)(1+ x)
2

For x ⩾ 1/2,

F(x) =
Z 1/2

−1

�
1
2
− t

�
dt +

Z x

1/2

�
t − 1

2

�
dt =

9
4
+

(x−2)(1+ x)
2

.

(iii) For x < 0,

F(x) =
Z x

−1
(−1)dt =−1− x.

For x ⩾ 0,

F(x) =
Z 0

−1
(−1)dt +

Z x

0
dt =−1+ x.

Thus, F(x) = |x|−1.

(iv) For x < 0,

F(x) =
Z x

−1
t2 dt =

x3 +1
3

.

For x ⩾ 0,

F(x) =
Z 0

−1
t2 dt +

Z x

0
(t2 −1)dt =

Z x

−1
t2 dt −

Z x

0
dt =

x3 +1
3

− x =
x3 −3x+1

3
.

(v) For x ⩽ 0,

F(x) =
Z x

−1
dt = x+1.

For x > 0,

F(x) =
Z 0

−1
dt +

Z x

0
(t +1)dt =

Z x

−1
dt +

Z x

0
t dt =

x2

2
+ x+1.
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(vi) For x ⩽−1/2,

F(x) =
Z x

−1
(1+ t)dt =

(1+ x)2

2
.

For −1/2 < x < 1/2,

F(x) =
Z −1/2

−1
(1+ t)dt +

1
2

Z x

−1/2
dt =

1
8
+

2x+1
4

=
4x+3

8
.

For x ⩾ 1/2,

F(x) =
Z −1/2

−1
(1+ t)dt +

1
2

Z 1/2

−1/2
dt +

Z x

1/2
(1− t)dt =

3
4
− (1− x)2

2
.

(vii) For −1 ⩽ x < 1/2 we have cos(πx/2)> sin(πx/2), hence

F(x) =
Z x

−1
cos(πt/2)dt =

2
π
�
1+ sin(πx/2)

�
.

For 1/2 < x ⩽ 1 we have sin(πx/2)> cos(πx/2), hence

F(x) =
Z 1/2

−1
cos(πt/2)dt +

Z x

1/2
sin(πt/2)dt =

2
π

h
1+

√
2− cos(πx/2)

i
.

Problem 10.5
(i) With the change t =

√
ex −1, i.e., x = log

�
1+ t2

�
(hence dx = 2t dt/(1+ t2)), we get

Z log2

0

√
ex −1dx =

Z 1

0

2t2

1+ t2 dt = 2−2arctan1 =
4−π

2
.

(ii) With the change x = sec t (hence x2 −1 = tan2 t and dx = sec t tan t dt) we obtain

Z 2

1

√
x2 −1

x
dx =

Z π/3

0
tan2 t dt = (tan t − t)

���
π/3

0
− π

3
=
√

3− π
3
.

Problem 10.6

(i) F ′(x) =
3ex3 −2ex2

x
.

(ii) F ′(x) =
6x2

1+ sin2 (x3)
.

(iii) F ′(x) =
sin3 x

1+ sin6 �R x
1 sin3 t dt

�
+
�R x

1 sin3 t dt
�2 .

(iv) F ′(x) =
2x tanx

Z x2

1
tan

√
t dt

exp

(Z x2

1
tan

√
t dt

)
.

(v) F ′(x) = 2x
Z x

0
f (t)dt + x2 f (x).

(vi) F ′(x) = cos
�Z x

0
sin

�Z y

0
sin3 t dt

�
dy
�

sin
�Z x

0
sin3 t dt

�
.
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Problem 10.7 f ′(x) = e−(x−1)2 −e−2(x−1), so f ′(x) = 0 when (x−1)2 = 2(x−1), i.e., when x = 1
or x = 3. Between those two values (x−1)2 < 2(x−1), and for x > 3 the opposite holds. Therefore
f ′(x)> 0 for 1 < x < 3 and f ′(x)< 0 for x > 3. Thus there is a local maximum at x = 3 —which
is the absolute maximum. To obtain the absolute minimum we need to obtain

lim
x→∞

f (x) = lim
x→∞

�Z x−1

0
e−t2

dt −
Z x−1

0
e−2t dt

�
=

√
π

2
− lim

x→∞

1
2

�
1− e−2(x−1)

�
=

√
π −1
2

> 0.

Since f (1) = 0, the absolute minimum is reached at x = 1.

Problem 10.8 Function f (x) =
Z x

0
et2

dt − 1 is an increasing function because f ′(x) = ex2
> 0.

Further f (0) =−1. On the other hand, et2
> 1 for all t > 0, so

f (1) =
Z 1

0
et2

dt −1 >
Z 1

0
dt −1 = 0.

Therefore f (x) = 0 has a unique solution in (0,1).

Problem 10.9 F(x) is a continuous function (is the difference of two integrals) in [0,1]. On the
other hand,

F(0) = 2
�����
Z 0

0
f (t)dt −

Z 1

0
f (t)dt =−

Z 1

0
f (t)dt < 0

(it is negative because f (x)> 0 in [0,1], therefore the integral is positive), and

F(1) = 2
Z 1

0
f (t)dt −

�����
Z 1

1
f (t)dt = 2

Z 1

0
f (t)dt > 0

(it is positive for the same reason). Since F(x) has opposite signs at the extremes of the interval it
must be zero somewhere in between. Thus, the equation F(x) = 0 has at least one solution. To see
that there are no more solutions we differentiate

F ′(x) = 2 f (x)− f (x)(−1) = 3 f (x)> 0.

Therefore F(x) increases monotonically in [0,1], hence can be zero only once in the interval.

Problem 10.10 If x > 0 the equation G′(x) = 2xsin
�
x2
�

esin(x2) = 0 has solutions x =
√

nπ , with
n ∈ N. Since the exponential is always positive, the sign of G′(x) is determined by sin

�
x2
�
. So

it starts being positive and alternates sign every other solution. So
p
(2k−1)π are maxima and√

2kπ are minima (k ∈ N).

Problem 10.11 For x = 4
p

π/4 we get y = 0. On the other hand, since y′ =−2x tan
�
x4
�
, the slope

at x = 4
p

π/4 will be −2 4
p

π/4 =− 4
√

4π . This yields for the tangent straight line the equation

y =− 4
√

4π
�

x− 4
p

π/4
�
=
√

π − 4
√

4πx.

Problem 10.12 If the function must be continuous at 0 then lim
x→0−

f (x) = lim
x→0+

f (x). But

lim
x→0−

f (x) = lim
x→0

ex −1− x
x2 = lim

x→0

1+ x+ x2/2+o(x2)−1− x
x2 = lim

x→0

x2/2+o(x2)

x2

= lim
x→0

�
1
2
+o(1)

�
=

1
2
,

lim
x→0+

f (x) = lim
x→0

�
a+b

Z x

0
e−t4

dt
�
= a+b

Z 0

0
e−t4

dt = a.
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Hence a = 1/2. Now, for the function to be differentiable at x = 0 it must hold

lim
x→0−

f (x)− f (0)
x

= lim
x→0+

f (x)− f (0)
x

.

Since f (0) = 1/2,

lim
x→0−

f (x)− f (0)
x

= lim
x→0

ex −1− x
x2 − 1

2
x

= lim
x→0

ex −1− x− x2/2
x3

= lim
x→0

1+ x+ x2/2+ x3/6+o(x3)−1− x− x2/2
x3 = lim

x→0

x3/6+o(x3)

x3

= lim
x→0

�
1
6
+o(1)

�
=

1
6
,

lim
x→0+

f (x)− f (0)
x

= lim
x→0

1
2
+b

Z x

0
e−t4

dt − 1
2

x
= lim

x→0

b
x

Z x

0
e−t4

dt = b
d
dx

�Z x

0
e−t4

dt
�����

x=0

= be−x4
���
x=0

= b.

Therefore b = 1/6.
Here is a shorter alternative. We can Taylor expand both functions up to first order. On the one

hand

ex = 1+ x+
x2

2
+

x3

6
+0(x3),

therefore

ex −1− x
x2 =

1
2
+

x
6
+o(x).

On the other hand if

g(x) =
Z x

0
e−t4

dt

then g(0) = 0, g′(x) = e−x4
and g′(0) = 1, so

g(x) = x+o(x),

therefore

a+b
Z x

0
e−t4

dt = a+bx+o(x).

If f (x) has to be continuous and differentiable at x = 0 both expansions must coincide up to first
order, hence we obtain the same values for a and b.

Problem 10.13
(i) Using l’Hôpital’s rule once we get

lim
x→0

ex2 −1
3x2 =

1
3
.
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(ii) Since lim
x→0

cosx = 1,

lim
x→0

cosx
x4

Z x

0
sin

�
t3� dt = lim

x→0

1
x4

Z x

0
sin

�
t3� dt.

Applying l’Hôpital’s rule once we get

lim
x→0

sin
�
x3
�

4x3 =
1
4
.

Problem 10.14 Using l’Hôpital’s rule once we get

lim
x→0±

2x tan |x|
6x2 = lim

x→0±

tan |x|
3x

=±1
3
.

Problem 10.15
(a) Since

sin t
t

=
∞

∑
n=0

(−1)n t2n

(2n+1)!
,

Z x2

0
t2n dt =

x4n+2

2n+1
,

we obtain

f (x) =
∞

∑
n=0

(−1)n

(2n+1)!
x2n+2

2n+1
.

(b) 1− cosx =
x2

2
+o

�
x2� (x → 0) and f (x) = x2 +o

�
x2
�

(x → 0), so

lim
x→0

f (x)
1− cosx

= 2.

(c) The series converges because

f (1/n) =
1
n2 +o

�
1
n2

�
and

∞

∑
n=1

1
n2 < ∞.

Problem 10.16

f ′(x) =
1

a2 + x2 −
1
x2

1
a2 +1/x2 =

1
a2 + x2 −

1
a2x2 +1

,

so in order to have f ′(x) = 0 for any x we need a =±1.

Problem 10.17

(a) f (x) =
∞

∑
n=0

x2n

n!
− x2 −1 =

∞

∑
n=2

x2n

n!
. Then

g(x) =
∞

∑
n=2

x2n+1

n!(2n+1)
.

(b) Since g(x) = x5/10+o
�
x5
�

(x → 0) —i.e., the first nonzero derivative at x = 0 is the fifth—,
the point x = 0 is an inflection point.

Problem 10.18
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(a) dt = 2sinθ cosθ dθ = sin2θ dθ , therefore

I =
Z 1

0
arcsin

√
t dt =

Z π/2

0
arcsin(sinθ) sin2θ dθ =

Z π/2

0
θ sin2θ dθ .

We can now integrate by parts, where u = θ and v′ = sin2θ , and then

I =−θ
2

cos2θ
����
π/2

0
+

1
2

Z π/2

0
cos2θ dθ =

π
4
+

1
4

sin2θ
���
π/2

0
=

π
4
+0.

Thus
Z 1

0
arcsin

√
t dt =

π
4
.

(b) Differentiating,

f ′(x) = 2sinxcosxarcsin(sinx)−2cosxsinxarccos(cosx) = xsin2x− xsin2x = 0.

Therefore f (x) is constant.

(c) We can calculate c by substituting any value of x, for instance x = π/2. Then

c = f (π/2) =
Z 1

0
arcsin

√
t dt +

Z 0

0
arccos

√
t dt =

Z 1

0
arcsin

√
t dt.

But this is precisely the integral we have obtained in (a), so c = π/4.

Problem 10.19
(a) Setting x = 0 in the equation

Z g(0)

0

�
et2

+ e−t2
�

dt = 0.

Since the integrand is a strictly positive function, the only possibility for this equation to hold
is that g(0) = 0.

Differentiating,

g′(x)
�

eg(x)2
+ e−g(x)2

�
= 3x2 +

3
1+ x2 ,

thus, using g(0) = 0, we obtain g′(0) = 3/2.

Finally, we know that g(0) = 0 so g−1(0) = 0. Then

�
g−1�′ (0) = 1

g′ (g−1(0))
=

1
g′(0)

=
2
3
.

(b) Since it is an indeterminacy 0
0 we can use l’Hôpital’s rule and calculate

lim
x→0

�
g−1

�′
(x)

g′(x)
=

�
g−1

�′
(0)

g′(0)
=

2/3
3/2

=
4
9
.

Problem 10.20
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(a) With this change of variables the limits remain the same, so

I =
Z π

0
x f (sinx)dx =

Z π

0
(π − y) f (sin

�
π − y)

�
dy.

But since sin(π − y) = siny, we have

I =
Z π

0
(π − y) f (siny)dy = π

Z π

0
f (siny)dy− I.

Thus

I =
π
2

Z π

0
f (sinx)dx.

(b) Since

sinx
1+ cos2 x

=
sinx

2− sin2 x
= f (sinx),

we are in the situation described in the previous item. Hence

I =
Z π

0

xsinx
1+ cos2 x

dx =
π
2

Z π

0

sinx
1+ cos2 x

dx =−π
2

Z π

0

(cosx)′

1+ cos2 x
dx

=−π
2

arctan(cosx)
���
π

0
=−π

2
(−2arctan1) =

π2

4
.

Problem 10.21 Differentiating the equation,

f (x) =−x2 f (x)+2x15 +2x17 ⇒ (1+ x2) f (x) = 2x15(1+ x2) ⇒ f (x) = 2x15.

Now substituting back into the equation and setting x = 1,

Z 1

0
f (t)dt =

1
8
+

1
9
+ c ⇒ t16

8

����
1

0
=

1
8
+

1
9
+ c ⇒ 1

8
=

1
8
+

1
9
+ c ⇒ c =−1

9
.

Problem 10.22 By definition f (x)∼ g(x) (x → a) if

lim
x→a

f (x)
g(x)

= 1.

In our case we have to calculate the limit

ℓ= lim
x→∞

R x
0 et2

dt
ex2

/2x
.

Since this is a ∞
∞ indeterminacy, we can apply l’Hôpital and obtain

ℓ= lim
x→∞

ex2

(4x2ex2 −2ex2
)/4x2

= lim
x→∞

4x2

4x2 −2
= 1.

This proves the equivalence.

Problem 10.23
(a) R0(x) =

Z x

a
f ′(t)dt = f (x)− f (a).

(b) Rn(x) =
1
n!

�
(x− t)n f (n)(t)

���
x

a
+n

Z x

a
(x− t)n−1 f (n)(t)dt

�
=− f (n)(a)

n!
(x−a)n +Rn−1(x).
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(c) Using the recurrence iteratively we obtain

R0(x) = f (x)− f (a),

R1(x) = f (x)− f (a)− f ′(a)(x−a),

R2(x) = f (x)− f (a)− f ′(a)(x−a)− f ′′(a)
2

(x−a)2,

...

Rn(x) = f (x)− f (a)− f ′(a)(x−a)− · · ·− f (n)(a)
n!

(x−a)n.

In other words, Rn(x) = f (x)−Pn,a(x), where Pn,a(x) is Taylor’s polynomial of f (x) at the
point a. Function Rn(x) is therefore the remainder of order n of Taylor’s approximation.


