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1. The Real Line

In a loose sense, Calculus can be defined as the “algebra of real numbers”. Real numbers are
therefore its most basic ingredient. At present, we are all familiar with real numbers, but constructing
them was a long process that took us more than two-thousand years. For the most intuitive numbers,
those that are a human universal and that we use to count, are what mathematicians call natural
numbers. Any other set of numbers is a construction deliberately introduced to solve a problem.

What we require of a number set so that it can be algebraically manipulated is that it satisfies
a set of properties that we globally refer to as an ordered field. So let us start by setting up those
properties and exploring what they allow us to do.

1.1 Ordered Fields

An ordered field is a set of elements —that we call numbers— with two binary operations: addition
(denoted with “+”) and multiplication (denoted with “·”), which satisfy two set of properties: field
axioms and order axioms.

Definition 1.1.1 — Field. For all x, y, and z the following properties hold:
I. Addition axioms:

1. x+ y = y+ x commutativity
2. x+(y+ z) = (x+ y)+ z associativity
3. There is a number 0 such that x+0 = x zero
4. For each x there is a number, denoted −x, such that x+(−x) = 0 inverse

II. Multiplication axioms:
5. x · y = y · x commutativity
6. x · (y · z) = (x · y) · z associativity
7. There is a number 1 such that x ·1 = x unity
8. For each x ̸= 0 there is a number, denoted x−1, such that x · x−1 = 1 reciprocal
9. x · (y+ z) = x · y+ x · z distributive law

10. 1 ̸= 0 nontriviality
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R Another way of representing the multiplicative reciprocal is using a division bar: xy−1 =

x/y =
x
y

.

Any set with two binary opeartions satisfying these axioms is called a field. But to be an
ordered field there must be also a relation, denoted “⩽” (and read “smaller than or equal to”), with
the following properties:

Definition 1.1.2 For all x, y, and z the following properties hold:
III. Order axioms:

11. x ⩽ x reflexivity
12. If x ⩽ y and y ⩽ x then x = y antisymmetry
13. If x ⩽ y and y ⩽ z then x ⩽ z transitivity
14. Either x ⩽ y or y ⩽ x linear ordering
15. If x ⩽ y then x+ z ⩽ y+ z compatibility with addition
16. If 0 ⩽ x and 0 ⩽ y then 0 ⩽ x · y compatibility with multiplication

Properties 11–13 define an ordering (sometimes call partial ordering). Property 14 defines a
linear or total ordering, meaning that any two elements can be compared and decided which one
is on the left and which one on the right (alternatively, it means that we can place the elements
on a straight line in such a way that x < y means that x is ‘to the left of’ y). An ordered field is a
field satisfying all properties 11–16. The last two properties are important in order to manipulate
inequalities.

We will also introduce some other order symbols: “⩾”, read “greater than or equal to”, so that
x ⩾ y is equivalent to y ⩽ x; “<”, read “smaller than”, so that x < y is equivalent to x ⩽ y but x ̸= y;
“>”, read “greater than”, so that x > y is equivalent to x ⩾ y but x ̸= y.

We can use properties 11, 12, and 14 to proof the following:

Proposition 1.1.1 — Law of trichotomy. For every pair of elements x and y of an ordered field,
one and only one of the following relations hold: x < y, x = y, or x > y.

The next proposition list a set of properties that can be proven to follow from the axioms of
an ordered field. You will recognise them as the standard algebraic operations we perform when
manipulating equations. It is important to make clear that they strongly depend on the axioms
above, hence the importance to have sets of numbers that are ordered fields in order to do algebra.

R Notice that in general we will omit the symbol “·” in multiplications, unless it is necessary to
avoid ambiguitiy.

Proposition 1.1.2 The following properties hold in any ordered field:
i. Unique neutrals If a+ x = a for all a, then x = 0. If ax = a for all a, then x = 1.

ii. Unique inverses If a+ x = 0, then x =−a. If ax = 1, then x = a−1.
iii. No divisors of zero If xy = 0, then x = 0 or y = 0 (or both).
iv. Cancellation laws for addition If a+ x = b+ x, then a = b. If a+ x ⩽ b+ x, then a ⩽ b.
v. Cancellation laws for multiplication If ax = bx and x ̸= 0, then a = b. If ax ⩾ bx, then

a ⩾ b if x > 0 and a ⩽ b if x < 0.
vi. 0x = 0 for all x.

vii. −(−x) = x for all x.
viii. −x = (−1)x for all x.

ix. If x ̸= 0, the x−1 ̸= 0 and (x−1)−1 = x.
x. If x ̸= 0 and y ̸= 0, then xy ̸= 0 and (xy)−1 = x−1y−1.

xi. If x ⩽ y and 0 ⩽ z, then xz ⩽ yz. If x ⩽ y and z ⩽ 0, then xz ⩾ yz.
xii. If x ⩽ 0 and y ⩽ 0, then xy ⩾ 0. If x ⩽ 0 and y ⩾ 0, then xy ⩽ 0.
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xiii. 0 < 1.
xiv. x2 ⩾ 0 for all x.

■ Example 1.1 Using property xiv above it follows that (a−b)2 ⩾ 0 for any two numbers a and b.
Using twice the distributive law, (a−b)2 = a2 −2ab+b2 ⩾ 0. Thus, adding 2ab to both terms of
the inequality we get a2 +b2 ⩾ 2ab. Dividing by 2(> 0) and using property v,

ab ⩽
a2 +b2

2
.

■

■ Example 1.2 Applying twice the distributive law we get, for any pair of numbers a and b,

(a−b)(a+b) = a2 −b2.

(This identity is more useful applied right to left.) ■

■ Example 1.3 If 0 ⩽ a < b, then it follows that a2 < b2. To see that, applying property xi above
we obtain a2 ⩽ ab (multiplying by a ⩾ 0) and also ab ⩽ b2 (multiplying by b ⩾ 0). So a2 ⩽ b2. But
we can exclude that a2 = b2, for if that were true, then b2 −a2 = (b−a)(b+a) = 0. But b+a > 0,
so the only possibility we are left with is b = a, which is not true. Therefore we must conclude that
a2 < b2. ■

1.2 Number Systems

Let us have a look at the different number systems that have been constructed, the kind of problems
that they are meant to solve and their peculiarities, up to the appearance of real numbers. There is
a further set of numbers, complex numbers, which to a certain extent close the need for different
number systems —at least from an algebraic point of view. In a way they “complete” real numbers
and are necessary in linear algebra and in advanced applications of analysis. They will not be
covered in this course though, so we will just mention them briefly.

1.2.1 Natural Numbers
This is the most basic set of numbers. Their meaning is intuitive and its main use is counting. All
human cultures have a name for at least the first few natural numbers, and most have a way to give
a name to natural numbers of arbitrary (or al least very large) size. Most cultures can add natural
numbers, and many can multiply them.

In mathematics, they are introduced as the set N= {1,2,3, . . .}. In more abstract terms, natural
numbers are constructed with two axioms:

1. There is one (and only one) first element 1 ∈ N.
2. Every element n ∈ N has a successor n+1.

Notice that 1, n, or n+1 are just arbitrary numbers. We commonly use the arabic numerals with
positional notation to name them, but their names change in different languages. Often we even
denote them with roman numerals (I, II, III, IV, etc.). As a matter of fact, this is the reason why
sometimes 0 is considered the first element of N, instead of 1.

Natural numbers can be added and multiplied (multiplication is the abbreviation of a repeated
addition). However, addition is conmutative and associative (and may even have a neutral element
if we start in 0 rather than 1), but there is no inverse of a number. In other words, the equation
n+ x = 0 cannot be solved in N (there is no x ∈ N that satisfies the equation). This means that we
cannot define a substraction operation that works for all pairs of natural numbers.
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Multiplication is also problematic. It is conmutative, associative, there is a neutral element (1),
and it is distributive. But there is not inverse either (equation nx = 1, in general, has no solution in
N). This means that we cannot define a division in N (this is another way of saying that divisions in
N have, in general, a nonzero remainder).

Natural numbers do satisfy all axioms of order, so N is a totally ordered set. Not just that: since
every subset of N contains a first element, we say that the order is perfect (or that N is well-ordered).

1.2.2 Induction principle
The recursive construction of natural numbers leads to an important type of mathematical proof:
proofs by induction. The idea is that we have a proposition, p(n), which is supposed to be valid
for all n ∈ N, and we want to prove it. Then all we need to do is to prove these two alternative
propositions:

1. Proposition p(1) is true.
2. If proposition p(n) is true then necessarily proposition p(n+1) is also true.

■ Example 1.4 We will prove by induction this famous formula (first obtained by Gauss):

1+2+ · · ·+n =
n(n+1)

2
, n ∈ N. (1.1)

This is a proposition that is supposed to hold for all natural numbers.
So let us have a look at p(1):

1 =
1(1+1)

2
,

which is evindently true. This proves the first induction step. As for the second, let us assume that
(1.1) holds for a given n ∈ N and let us add n+1 to both sides of the equation:

1+2+ · · ·+n+(n+1) =
n(n+1)

2
+(n+1) = (n+1)

(n
2
+1
)
=

(n+1)(n+2)
2

.

This is equation (1.1) with n replaced by n+1. Thus we have derived proposition p(n+1) out of
proposition p(n), and therefore, if p(n) is true so must be p(n+1).

The formula is proven for all n ∈ N. ■

R It is important to realise the difference between the proposition
p(n) is true for all n ∈ N,

and the proposition
p(n) is true.

The former is what we want to prove. The latter is valid for that particular n and no other,
and is what we are assuming as the second induction step in order to actually prove p(n+1).

Exercise 1.1 Prove by induction the formulas

12 +22 + · · ·+n2 =
n(n+1)(2n+1)

6
,

13 +23 + · · ·+n3 =
n2(n+1)2

4
.

■
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1.2.3 Integer numbers
The set of integer numbers is introduced to satisfy all the addition axioms of the definition of field.
Without being rigorous, the set of integers numbers is Z= {. . . ,−3,−2,−1,0,1,2,3, . . .}. In other
words, we complete the set N with 0 and with another copy of N, which we label with a minus sign
(−N) and call negative numbers. Thus, Z= N∪{0}∪ (−N).

Addition can be defined casewise:
1. Natural numbers follow the standard addition rule.
2. To add two negative numbers we add the numbers without sign and put a minus sign to the

result.
3. To add x ∈ N and y ∈ −N we ignore signs, substract the smallest from the largest, and put

the original sign of the largest to the result (with the caveat that 0 has no sign).
If you find these rules bizarre and lacking common sense, think of an alternative, more practical

definition. Assume that Z is an infinite storey building, 0 being the ground floor, 1 the first floor,
2 the second floor, etc, and likewise −1 is the first basement (underneath the ground floor), −2
the second basement (underneath the first basement), etc. Now think of addition as the result of
moving through floors in a lift. The first number of the addition will be the floor we start off from;
the second number is the number of floors that the lift will move up (if sign is positive) or down
(if sign is negative). Thus 3+(−2) = 1 because going down two floors from the 3rd floor we end
up in the 1st one. Similarly, 2+(−3) =−1 because going down three floors from the 2nd one we
end up in the 1st basement. And (−1)+(−2) =−3 means that starting from the 1st basement and
going down two floors we end up in the 3rd basement.

Multiplication of integers follows the rule of multiplication of natural numbers, ignoring signs,
and then the sign of the result follows the sign rules

Again it is not difficult to understand why we have to adopt these rules. We do not need to
justify the + ·+=+ rule, because that is the standard multiplication in N. As for −·+=− (or
+ ·−=−), consider the product (−1) ·3. The standard way to interpret this multiplication is ‘add
−1 three times’, and if we do that we obtain

(−1) ·3 = (−1)+(−1)+(−1) =−3.

Now think of this sequence of operations:

(−1) ·3 =−3,

(−1) ·2 =−2,

(−1) ·1 =−1,

(−1) ·0 = 0,

(−1) · (−1) =?

What number should we put in place of the question mark? Well, if we continue the sequence we
observe on the right-hand sides of these equations, logically it would be 1. Thus (−1) · (−1) = 1,
and this justifies the rule −·−=+.

It is not difficult to prove that all addition axioms are satified by Z, so substraction is well
defined. However, we have not added any new axiom to the multiplication, for zx = 1 is still an
equation without solution for most z ∈ Z.
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Z is also a totally ordered set, although it has lost the perfect order of N because it lacks a first
element.

1.2.4 Rational numbers
Rational numbers are the response to the search for a solution of the equation ax = 1 for any number
a, and the first ordered field. They are defined as Q= {n/m : n,m ∈ Z, m ̸= 0}= Z× (Z−{0}).
The fraction n/m is the solution of the equation mx = n.

There are infinitely many fractions that can solve the equation mx = n (m ̸= 0), namely n/m,
2n/2m, (−n)/(−m), etc., or if n = pk and m = pl, also k/l. Thus all these fractions are “equivalent”
in the sense that they represent the same rational number. So rational numbers are actually
equivalence classes of fractions, where two fractions n1/m1 and n2/m2 are said to be equivalent if
n1m2 = n2m1.

Rational numbers can also be ordered. If r1,r2 ∈ Q and we take representative fractions of
them r1 = n1/m1 and r2 = n1/m2 (where m1 > 0 and m2 > 0), then r1 ⩽ r2 if n1m2 ⩽ n2m1, and
r1 > r2 otherwise. As it can be seen, the order is linear.

Q is dense in itself, meaning that there is a rational number between any two distinct rational
numbers. Clearly, if r1 < r2 are two rational numbers, r = (r1 + r2)/2, also a rational number, is
between them two.

We might impose a well-ordering on Q if we wanted to, by the following procedure: start with
0, 1, −1; then append all irreducible fractions p/q such that −2 ⩽ p,q,⩽ 2; then append those
such that −3 ⩽ p,q,⩽ 3; and so on and so forth. The result is that Q can be explicitly displayed as

Q=

{
0,1,−1,2,−2,

1
2
,−1

2
,3,−3,

3
2
,−3

2
,
1
3
,−1

3
,
2
3
,−2

3
,4,−4,

4
3
,−4

3
,
1
4
,−1

4
,
3
4
,−3

4
, . . .

}
.

A very important consequence of this fact is that there are as many numbers in N as in Q (because
ordering Q as above means that a one-to-one correspondence can be established between both sets).

1.2.5 Real numbers
Despite the density of rational numbers, there are “holes” in between. For instance, the length of
the diagonal of a square of unit side is

√
2, not a rational number. One can find rational numbers

larger or smaller, and arbitrarily close to
√

2, but never a rational number that is exactly
√

2.

R The proof of this fact is an elegant example of reductio ad absurdum. Suppose
√

2 is rational
and let n/m be its irreducible fraction (n and m have no common factors that can be simplified).
Squaring the expression we obtain 2m2 = n2, so n2 is even, and therefore so is n (because if n
were odd, n2, being the product of two odd numbers, would be odd as well). Thus n = 2k.
Substituting in this expression 2m2 = 4k2, which we can simplify to m2 = 2k2. This implies
that m2 is even and therefore so is m. But that is impossible because m and n should not have
any common factor.

So, from the assumption that
√

2 is rational we arrive at a contradiction, therefore the
assumption is false and

√
2 is an irrational number.

Further insight on irrational numbers can be gained introducing the decimal representation
of rational numbers. We can represent rationals as decimal expressions which contain an integer
number, a decimal point, and a infinite sequence of digits. For example

1
2
= 0.500000 . . . ,

1
3
= 0.333333 . . . ,

7
6
= 1.166666 . . . ,

23
13

= 1.769230769230 . . .

What all these expressions have in common is that the infinite sequence of digits on the right of the
decimal point is eventually periodic. The period may be longer or shorter, but there is always a
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definite period. Irrational numbers are all sequences of aperiodic decimal expressions. For instance,

√
2 = 1.41421356237309504880168872420969807856967187537694807317 . . .

We could continue calculating decimals of this number but the sequence would never become
periodic.

We can construct the following bracketing of any irrational number by sequences of pairs of
rational numbers:

1.41 <
√

2 < 1.42
1.414 <

√
2 < 1.415

1.4142 <
√

2 < 1.4143
1.41421 <

√
2 < 1.41422

...
...

...

This procedure allows us to have a mental representation of any irrational number as that number
that would be bracketed by the two infinite sequences. This is how rational numbers can be
“completed” by filling in the holes they leave. This is how real numbers are constructed.

Real numbers inherit all properties from their rational “approximants” and thus form an ordered
field. But on top of that, the set they form, R, has a significant difference when compared to
Q: it is complete. We will later come back to this important property of real numbers, but we
want to emphasise here that the main implication of this property is that there is a one-to-one
correspondence between real numbers and points in a straight line: there is a real number (and only
one) to represent every scalar magnitude of any type. This is what makes real numbers so useful. It
is also the reason why we often refer to R as the real line.

R A remarkable observation is that R is a set much bigger than Q —which, as we kown, is
as “large” as N and no more. As a matter of fact, we will show that there are more real
numbers between 0 and 1 than there are in N. To prove it we also proceed through reductio ad
absurdum. Let us us assume that we can order all those numbers in a sequence (as we did for
Q, for instance). To avoid being too abstract, just imagine that this is the beginning of the list:

r1 = 0.01004872657892653490023 . . .

r2 = 0.98296480010826402228946 . . .

r3 = 0.61155551000102988922200 . . .

r4 = 0.11111989887811110101010 . . .
...

We have underlined the first decimal digit of the first number, the second decimal of the second
numbers, and so on. We will construct a real number between 0 and 1 as follows: take for the
first decimal a number different from the number underlined in r1; for the second decimal a
number different from the number underlined in r2; and so on. For instance, r = 0.2790 . . . .
This number is not in the list, because it is different —by construction— to every one of the
elements of the list. However, it is a real number between 0 and 1 and therefore should be in
the list!

The conclusion from this contradiction is that our assumption is false: real numbers cannot
be listed. In other words, there is not a one-to-one correspondence between R and N because
there are more real numbers than natural numbers. Real numbers cannot be counted. Clearly
this means that irrational numbers are the ones that cannot be counted, so there are many
more irrational numbers that rational numbers!
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1.3 Absolute value, bounds, and intervals
In order to quantify how big or small are real numbers we have to get rid of their sign. This leads to
introduce their absolute value or magnitude, which we denote |x|. In particular, |x− y| quantifies
the difference between x and y, and therefore their distance in the real line.

Definition 1.3.1 — Absolute value. For any x ∈ R we define its absolute value as

|x|= max{x,−x}=

{
x if x ⩾ 0,
−x if x < 0.

The absolute value has some important properties:

Proposition 1.3.1 For all x,y ∈ R,
1. |x|⩾ 0.
2. |x|= 0 if and only if x = 0.
3. |xy|= |x||y|.
4. |x+ y|⩽ |x|+ |y|.
5.
∣∣|x|− |y|

∣∣⩽ |x− y|.
All of them are easy to check except 5. But this one follows from 4. To prove it we observe that

|x|= |x− y+ y|⩽ |x− y|+ |y| ⇒ |x|− |y|⩽ |x− y|.

But on the other hand,

|y|= |y− x+ x|⩽ |y− x|+ |x| ⇒ |y|− |x|⩽ |y− x|= |x− y|.

If both numbers |x|− |y| and |y|− |x| = −(|x|− |y|) are not larger than |x− y|, then
∣∣|x|− |y|

∣∣ ⩽
|x− y|.

Definition 1.3.2 — Bounds. Let A be a nonempty subset of R, and let x ∈ R.
1. x is an upper bound of A if x ⩾ a for all a ∈ A (A is then bounded from above).
2. x is an lower bound of A if x ⩽ a for all a ∈ A (A is then bounded from below).
3. A is bounded if it is bounded from above and from below.
4. x is the supremum of A (x = supA) if it is its least upper bound (supA = ∞ if A is not

bounded from above).
5. x is the infimum of A (x = infA) if it is its greatest lower bound (infA =−∞ if A is not

bounded from below).
6. If supA ∈ A it is called maximum (maxA).
7. If infA ∈ A it is called minimum (minA).

We have not properly defined real numbers. In particular, we have not provided a rigorous
statement of the property of completeness that characterises R (R is the only complete ordered
field). There are many ways of introducing this axiom, and one in particular relies on the idea of
bracketing intervals intuitively introduced in the previous section. There is an important result that
turns out to be equivalent to the completeness axiom, and which calculus uses profusely.

Theorem 1.3.2 — Completeness theorem. Let A ⊂ R be nonempty (A ̸=∅). The following
properties hold:

(i) Supremum property: If A is bounded from above then it has a supremum.
(ii) Infimum property: If A is bounded from below then it has an infimum.

■ Example 1.5 Consider the set A = {x ∈ R : x2 < 2}. This set is the portion of the real line for
which the parabola y = x2 lies strictly below the horizontal line y = 2, as illustrated by this picture:
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−
√

2
√

2

From the figure it is clear that A = {x ∈ R : −
√

2 < x <
√

2}, because x = ±
√

2 are the two
points where y = x2 meets y = 2. So

√
2 is an upper bound, and there can be no smaller bound, so

supA =
√

2. Likewise, infA =−
√

2. (They are not maximum and minimum because they do not
belong to A.)

Notice that if we consider instead the subset of Q defined as A′ = {x ∈Q : x2 < 2}, even though
the definition looks similar to that of A, this set A′ has neither a supremum nor an infimum in Q.
Any upper bound r ∈Q of A′ must necessarily be r >

√
2, and we can always find another r′ ∈Q

such that
√

2 < r′ < r. Therefore no least upper bound can exist. ■

Definition 1.3.3 — Intervals. The following subsets of R are globally referred to as intervals:
Open interval: (a,b) = {x ∈ R : a < x < b}.
Closed interval: [a,b] = {x ∈ R : a ⩽ x ⩽ b}.
Semiopen intervals:

(a,b] = {x ∈ R : a < x ⩽ b},
[a,b) = {x ∈ R : a ⩽ x < b}.

Infinite intervals:
(−∞,b] = {x ∈ R : x ⩽ b},
(−∞,b) = {x ∈ R : x < b},
[a,∞) = {x ∈ R : a ⩽ x},
(a,∞) = {x ∈ R : a < x},
(−∞,∞) = R.

■ Example 1.6 Consider the set A = {x ∈ R : |x|⩽ 3}. Let us discuss which real numbers belong
to A. To do that we need to distinguish the cases (a) x ⩾ 0 and (b) x < 0.

(a) If x ⩾ 0 then condition |x|⩽ 3 reads x ⩽ 3. Thus the interval [0,3] is part of A.
(b) If x < 0 the condition |x| ⩽ 3 reads −x ⩽ 3, or equivalently, x ⩾ −3. Therefore [−3,0) is

also part of A.
Summarising, A = [−3,0)∪ [0,3] = [−3,3]. ■

■ Example 1.7 Consider the set B = {x ∈ R : (x− 1)(x− 2)(x− 3) < 0}. The condition that
defines B depends on the sign of the product three factors, so we need to know the sign of each of
them. These signs depend on whether (a) x < 1, (b) 1 < x < 2, (c) 2 < x < 3, or (d) 3 < x. In cases
(a) and (c) there is an odd number of negative factors, so the product is negative, whereas in cases
(b) and (d) there is an even number of them, so the product is positive. Thus B = (−∞,1)∪ (2,3). ■
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Problems
Problem 1.1 Given the real numbers 0 < a < b and c > 0, prove the inequalities

(a) a <
√

ab <
a+b

2
< b, (b)

a
b
<

a+ c
b+ c

.

Problem 1.2 Prove that |a+b|= |a|+ |b| if and only if ab ⩾ 0.

Problem 1.3 Prove that

(a) max{x,y}= x+ y+ |x− y|
2

, (b) min{x,y}= x+ y−|x− y|
2

.

Problem 1.4 Find, using the absolute value, a formula to express the function

ϕ(x) =

{
x if x ⩾ 0,
0 if x < 0.

Problem 1.5 Factor out the following expressions of n ∈ N, so that the corresponding statements
become self-evident:

(a) n2 −n is even,
(b) n3 −n is a multiple of 6,
(c) n2 −1 is a multiple of 8 when n is odd.

Problem 1.6 Prove by induction the following statements valid for all n ∈ N:

(a) an −bn = (a−b)
n

∑
k=1

an−kbk−1 for all n ∈ N,

(b) n5 −n is a multiple of 5 for all n ∈ N,

(c) (1+ x)n ⩾ 1+nx if x ⩾−1.

Problem 1.7 Prove by induction the following statements valid for all natural numbers n > 1:

(a) n! <
(

n+1
2

)n

,

(b) 2!4! · · ·(2n)! >
[
(n+1)!

]n,

(c) 1+
1√
2
+ · · ·+ 1√

n
>
√

n.

HINT: In (a) use the inequality
(

1+
1

n+1

)n+1

> 2, valid for all n ∈ N. In (b) prove first that

(2n+2)! > (n+2)n(n+2)!.

Problem 1.8
(a) Show, with an example, that the sum of two irrational numbers can be rational.
(b) Show, with an example, that the product of two irrational numbers can be rational.
(c) Is it possible to find irrational numbers x and y such that xy ∈Q?

Problem 1.9 Prove that
(a)

√
2+

√
3 /∈Q,

(b)
√

n /∈Q if n is not a perfect square (HINT: write n = k2r, where r does not contain any square
factor),

(c)
√

n−1+
√

n+1 /∈Q for all n ∈ N.

Problem 1.10 Prove the identity, valid for all x ∈ R,(
x+ |x|

2

)2

+

(
x−|x|

2

)2

= x2.
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Problem 1.11 Identify the following sets:

(i) A = {x ∈ R : |x−3|⩽ 8},

(ii) B = {x ∈ R : 0 < |x−2|< 1/2},

(iii) C = {x ∈ R : x2 −5x+6 ⩾ 0},

(iv) D = {x ∈ R : x3(x+3)(x−5)< 0},

(v) E =

{
x ∈ R :

2x+8
x2 +8x+7

> 0
}

,

(vi) F =

{
x ∈ R :

4
x
< x
}

,

(vii) G = {x ∈ R : 4x < 2x+1 ⩽ 3x+2},

(viii) H = {x ∈ R : |x2 −2x|< 1},

(ix) I = {x ∈ R : |x−1||x+2|= 10},

(x) J = {x ∈ R : |x−1|+ |x+2|> 1}.

Problem 1.12 Given real numbers a < b we define, for each t ∈ R, the real number x(t) =
(1− t)a+ tb. Identify the following sets:

(i) A = {x(t) : t = 0,1,1/2},

(ii) B = {x(t) : t ∈ (0,1)},

(iii) C = {x(t) : t < 0},

(iv) D = {x(t) : t > 1}.

Problem 1.13 Find supremum and infimum (deciding whether they are maximum and minimum
respectively) of the following sets:

(i) A = {−1}∪ [2,3),

(ii) B = {3}∪{2}∪{−1}∪ [0,1],

(iii) C = {2+1/n : n ∈ N},

(iv) D = {(n2 +1)/n : n ∈ N},

(v) E = {x ∈ R : 3x2 −10x+3 < 0},

(vi) F = {x∈R : (x−a)(x−b)(x−c)(x−d)< 0},
with a < b < c < d given real numbers,

(vii) G = {2−p +5−q : p,q ∈ N},

(viii) H = {(−1)n +1/m : n,m ∈ N},





2. Real Functions

2.1 Definition and basic concepts
Formally, a real function is a map from a set A ⊂ R to R. In practical terms, it is a “rule” that
“assigns” one —and only one!— real number to each element x ∈ A. A basic notation for a function
is

f : A −→ R
x −→ y = f (x)

(2.1)

Functions are also referred to as maps or mappings. They are usually denoted y = f (x), where f
represents the rule that assigns y to x.

■ Example 2.1
(a) y = x2 represents the rule f (x) = x2 that maps each number x to its square.
(b) y = |x| represents the rule f (x) = |x| that maps each number x to its absolute value.
(c) The function

f (x) =

{
x2 x ⩽ 2,
x3 −3 x > 2,

maps all real numbers smaller than or equal to 2 to their square, and those larger than 2 to
their cube minus 3.

(d) The function

f (x) =

{
1 x ∈Q,

0 x /∈Q,

maps all rational numbers to 1 and all irrational numbers to 0.
■

The domain of a function is the set A. This domain is maximal if the function cannot be defined
for numbers x /∈ A.
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The image or range of a function is the set f (A)≡ { f (x) : x ∈ A}.
Likewise, we call image of the set C ⊂ A to the set f (C)≡ { f (x) : x ∈C}.
We call inverse image of a set B ⊂ R to the set f−1(B) ≡ {x ∈ A : f (x) ∈ B}. Note that

f−1(B)⊂ A.
The graph of a function f (x) is the subset of R2 defined by the points

{(
x, f (x)

)
: x ∈ A

}
.

Plotting this set is how we represent functions.
A function is injective, or one-to-one, if for every pair of number x1 ̸= x2 we have f (x1) ̸= f (x2).

If a function is injective, the equation y = f (x) has either no solution or a unique solution.
A function is surjective, or onto, if f (A) = R. If a function is surjective, the equation y = f (x)

always has at least one solution.
A function is bijective if it is both injective and surjective. If a function is bijective, the equation

y = f (x) always has one, and only one, solution for each y ∈ R.
A function is periodic if there exists c > 0 such that f (x+ c) = f (x). The smallest such c is

referred to as the period of the function.
A function is even if f (−x) = f (x), and odd if f (−x) =− f (x).
A function is bounded if there exists M > 0 such that | f (x)|⩽ M for all x in its domain.
A function is monotonically increasing if for every x,y in its domain such that x < y it

satisfies f (x) ⩽ f (y), and is monotonically decreasing if f (x) ⩾ f (y). We say it is monotonic
strictly increasing/decreasing if inequalities are strict. (Note that a constant is both monotonically
increasing and decreasing, but not strictly.)

■ Example 2.2
(a) The domain of f (x) = x2 is R and its image is f (R) = [0,∞). This function is not injective

because x and −x have the same square. It is not surjective either because f (R) ̸= R. The
inverse image of the interval [4,9] is f−1([4,9]) = [−3,−2]∪ [2,3].

(b) The domain of f (x) = logx is (0,∞) and its image is R. It is injective because two different
numbers have different logarithms. It is also surjective because any number y is always the
logarithm of a number, namely ey. So it is bijective.

(c) F(x) = ex − e−x is an odd function because f (−x) = e−x − ex =− f (x).
(d) f (x) = cosx is even because cos(−x) = cosx.
(e) f (x) = sin2 x is periodic of period π because sin2(x+π) = sin2 x.

■

2.2 Elementary functions
There is a wide range of elementary functions that we will work with. They include polynomials,
rational functions, trigonometric functions, the exponential and the logarithm.

2.2.1 Polynomials
These are functions of the form

Pn(x) = anxn +an−1xn−1 + · · ·+a1x+a0, (2.2)

where ak ∈ R for all k = 0,1, . . . ,n. The largest power, n, is called the degree of the polynomial.
Constants are polynomials of degree 0. Given the operations that define them, the domain of any
polynomial is R.

2.2.2 Rational functions
They are defined as quotients of two polynomials, namely

f (x) =
Pn(x)
Qm(x)

. (2.3)
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The domain of both polynomials is R, but Qm(x) may be zero at some points, where the quotient
will thus not be defined. Hence the domain of f (x) is {x ∈ R : Qm(x) ̸= 0}.

2.2.3 Trigonometric functions
The two basic trigonometric functions are the sine (sinx) and the cosine (cosx). In terms of them
we can define also the tangent and cotangent:

tanx =
sinx
cosx

, cotx =
cosx
sinx

=
1

tanx
. (2.4)

The geometric definition of these functions, based on the unit circle, is described in Figure 2.1.

Figure 2.1: Geometric definition of sinx, cosx, tanx, and cotx.

There are two more trigonometric functions, although less common than the previous one,
namely the secant (secx) and the cosecant (cscx):

secx =
1

cosx
, cscx =

1
sinx

. (2.5)

The graphs of sinx and cosx are plotted in Figure 2.2. Those of tanx and cotx in Figure 2.3.

Trigonometric identities

cos2 x+ sin2 x = 1 1+ cot2 x = csc2 x

cos(x± y) = cosxcosy∓ sinxsiny tan(x± y) =
tanx± tany

1∓ tanx tany

sin(x± y) = sinxcosy± cosxsiny tan2x =
2tanx

1− tan2 x

cos2x = cos2 x− sin2 x cosxcosy = 1
2 [cos(x− y)+ cos(x+ y)]

sin2x = 2sinxcosx sinxsiny = 1
2 [cos(x− y)− cos(x+ y)]

1+ tan2 x = sec2 x sinxcosy = 1
2 [sin(x− y)+ sin(x+ y)]

Table 2.1: Some important trigonometric identities.

Given their geometric definitions, all these functions are related by geometric identities. The
main one are listed in Table 2.1.
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Figure 2.2: Plot of sinx and cosx.

Figure 2.3: Plot of tanx and cotx.

2.2.4 Exponential

This is the function defined as f (x) = ex. The constant e appearing in this definition is the irrational
number introduced by Euler

e = 2.718281828459045235360287471352662497757247093699959574966 . . .

We will see a proper definition of this constant later on. Apart from that, the definition of the
exponential involves raising a real number to a real power. This requires some clarifications.

Integer powers of real numbers are easily defined through the concept of repeated product.
Thus e3 = e · e · e. With this definition, for any n,m ∈ N it is straightforward that

en+m = enem, (2.6)

from which it follows

(em)n = em · em · · ·em︸ ︷︷ ︸
n times

= em+m+···+m = enm. (2.7)
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Figure 2.4: Plot of ex and logx.

We will take these formulas as a basic definition. Extending them will provide meaning to powers
other than natural numbers. For instance, applying (2.6),

en−mem = en−m+m = en ⇒ en−m =
en

em .

But extending (2.6) means assuming en−m = ene−m. Cancelling a factor en in both sides leads to

e−m =
1

em ,

which provides a meaning to negative powers. And from this definition it follows

e0 = en−n =
en

en = 1.

As for fractional powers, equation (2.7) implies

(e1/n)n = en/n = e ⇒ e1/n = n
√

e.

Thus, em/n = n
√

em. This extension of the basic multiplicative rule provides a definition of the
exponential valid for all rational powers. It only remains to define it for irrational powers. But
irrational numbers can be approximated as much as we like by rational numbers. If fact, as we have
seen, irrational numbers can be bracketed by sequences of rational approximants; i.e., if x is an
irrational number, we can find two sequences of rational numbers such that

p1 < p2 < p3 < · · ·< pn < · · ·< x < · · ·< qn < · · ·< q3 < q2 < q1.

Thus we can define ex as the number bracketed by

ep1 < ep2 < ep3 < · · ·< epn < · · ·< ex < · · ·< eqn < · · ·< ep3 < ep2 < ep1 .

Using this definition we can summarise the properties of the exponential as follows:
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1. Its domain is R.
2. ex > 0 for all x ∈ R.
3. It is monotonic strictly increasing —hence injective.
4. e0 = 1.
5. (ex)a = eax for any a ∈ R.
6. ex+y = exey.
7. e−x = 1/ex.
A plot of the exponential function is shown in Figure 2.4.
Some important functions defined in terms of exponentials define what is known as the hyper-

bolic trigonometry. The main one are the hyperbolic cosine (coshx) and sine (sinhx), defined as

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
. (2.8)

Their plots are shown in Figure 2.5. It can be seen that coshx is even whereas sinhx is odd.

Figure 2.5: Plot of coshx and sinhx.

Hyperbolic tangent (tanhx) and cotangent (cothx) can also be defined (see Figure 2.6 for their
plots):

tanhx =
sinhx
coshx

=
ex − e−x

ex + e−x , cothx =
coshx
sinhx

=
ex + e−x

ex − e−x =
1

tanhx
, (2.9)

and similarly sechx = 1/coshx and cschx = 1/sinhx.
There is a list of identities relating these functions similar to that of the ordinary trigonometry,

as illustrated in Table 2.2.

2.2.5 Logarithm
This is the inverse of the exponential. If y = logx it means that x = ey. Its plot can be seen in
Figure 2.4 to mirror that of the exponential with respect to the line y = x.

R Along these notes, whenever we write x = logy we mean that x is the solution of the equation
ex = y, in other words, log of a number is the exponent to which we need to rise e in order to
obtain that number. In particular log1 = 0 and loge = 1.

The main properties of the logarithm (derived from those of the exponential) are the following:
1. Its domain is (0,∞).
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Figure 2.6: Plot of tanhx and cothx.

Hyperbolic trigonometric identities

cosh2 x− sinh2 x = 1 coth2 x−1 = csch2 x

cosh(x± y) = coshxcoshy± sinhxsinhy tanh(x± y) =
tanhx± tanhy

1± tanhx tanhy

sinh(x± y) = sinhxcoshy± coshxsinhy tanh2x =
2tanhx

1+ tanh2 x

cosh2x = cosh2 x+ sinh2 x coshxcoshy = 1
2 [cosh(x+ y)+ cosh(x− y)]

sinh2x = 2sinhxcoshx sinhxsinhy = 1
2 [cosh(x+ y)− cosh(x− y)]

1− tanh2 x = sech2 x sinhxcoshy = 1
2 [sinh(x+ y)+ sinh(x− y)]

Table 2.2: Some important trigonometric identities.

2. Its image is R —hence it is surjective.
3. It is monotonic strictly increasing —hence injective.
4. log1 = 0.
5. log(xa) = a logx.
6. log(xy) = logx+ logy.
7. log(x/y) = logx− logy.

2.3 Operations with functions

2.3.1 Algebraic operations
Let A,B ⊂ R and consider the two real functions

f : A −→ R
x −→ y = f (x)

g : B −→ R
x −→ y = g(x)

(2.10)

With these two functions we can perform the following algebraic operations:
(i) Addition: If C = A∩B —where both functions are defined—,

f +g : C −→ R
x −→ y = f (x)+g(x)

(2.11)
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(ii) Product: If C = A∩B,

f g : C −→ R
x −→ y = f (x)g(x)

(2.12)

(iii) Quotient: If C = A∩B′, where B′ ≡ {x ∈ B : g(x) ̸= 0},

f/g : C −→ R
x −→ y = f (x)/g(x)

(2.13)

For example, a polynomial is actually a sum of monomials, each a different function; or a
rational function is the quotient of two polynomials.

2.3.2 Compositions
A more involved operation is the composition of two functions. It is defined as

f ◦g : C −→ R
x −→ y = f

(
g(x)

) (2.14)

The problem is to find the domain of this function, given the domains A and B of the composed
functions. For f ◦g to be defined x must belong to B, for g(x) to be well defined, so C ⊂ B. But in
order to evaluate f

(
g(x)

)
, the number g(x) ∈ A. Therefore

C = {x ∈ B : g(x) ∈ A}. (2.15)

Even if A and B are simple sets, C may be much more involved.

■ Example 2.3 Consider the functions f (x) = 1/(x−1) and g(x) = sinx. Clearly A = R−{1}
and B = R, two very simple sets. However, the domain of their composition f ◦g is the domain of
the function

( f ◦g)(x) =
1

sinx−1
,

i.e., R excluding those values for which sinx = 1 (because the denominator vanishes). This set is

C = R−
{(

2n+
1
2

)
π : n ∈ Z

}
.

■

Composition is a noncommutative operation, i.e., f ◦ g ̸= g ◦ f . In the example above, ( f ◦
g)(x) = 1/(sinx−1) is very different from (g◦ f )(x) = sin

( 1
x−1

)
.

It is, however, associative, i.e., f ◦(g◦h) = ( f ◦g)◦h. We can thus define multiple compositions,
like f ◦g◦h◦w = f (g(h(w(x)))), without ambiguity.

2.3.3 Inverses
We can introduce the identity function Id(x) = x. Given a function f : A −→ R, its inverse would
be a function f−1 : f (A)−→ R such that f ◦ f−1 = f−1 ◦ f = Id. The idea is that if f maps x to y,
its inverse f−1 maps y back to x.

Not all functions have an inverse that is defined all over their image f (A). For an inverse to
exist the equation x = f (y), for a given x ∈ f (A), must have a unique solution;1 in other words, f

1It already has at least one solution because x ∈ f (A).



2.3 Operations with functions 29

must be injective. Monotonic strictly increasing or decreasing functions are injective. This is why
the exponential has an inverse —the logarithm.

For those functions that are not injective in their domain A, we might be able to define several
inverses by constraining the domain to any subset where they are made injective. Thus, noninjective
functions may have several inverses.

■ Example 2.4 Let f (x) = x2. Its domain is R, but this function is not injective in its domain.
However, we can constraint the domain to be [0,∞). In that case f (x) is injective and we can obtain
the inverse function by finding the unique solution of the equation x = f (y) = y2, where 0 ⩽ y.
Clearly this solution is y =

√
x, therefore, within [0,∞), the inverse of f is f−1(x) =

√
x.

Note that we might alternatively chosen the domain to be (−∞,0], where the function f is again
injective. However now the solution of x = y2 with y ⩽ 0 is y =−

√
x. So another inverse of f is

f−1(x) =−
√

x. ■

■ Example 2.5 Periodic functions are clearly not injective. Take sinx, for instance. An interval
where it is injective is [−π/2,π/2]. The inverse of this function within this interval is usually called
the arc sine: sin−1 x = arcsinx. But we might have taken the interval [π/2,3π/2], for instance. In
that case the inverse would be different: sin−1 x = π − arcsinx. Or in the interval [3π/2,5π/2] the
inverse would be sin−1 x = 2π + arcsinx.

Similarly, arccosx = cos−1 x when the domain of cosx is taken to be [0,π], and arctanx =
tan−1 x when the domain of tanx is taken to be (−π/2,π/2).

Note that arccosx (or arccotx for that matter) is redundant, because

arccosx =
π

2
− arcsinx, arccotx =

π

2
− arctanx.

■

The graph of f−1(x) can be obtained from that of f (x) as the mirror image with respect to the
line y = x (see Figure 2.4).

R BEWARE!! Never confuse f−1(x) with f (x)−1 = 1/ f (x). In the case f (x) = sinx, is inverse
sin−1 x = arcsinx, whereas (sinx)−1 = cscx.

Exercise 2.1 Argue that sinhx has a unique inverse over R and that it can be obtained as

sinh−1 x = log
(

x+
√

x2 +1
)
. (2.16)

The function coshx has two inverses (why?) that can be obtained as

cosh−1 x =± log
(

x+
√

x2 −1
)
. (2.17)

HINT: For sinhx, solve 2x = ey − e−y by transforming it into e2y −2xey −1 = 0 and reading it
as a quadratic equation in ey. Use a similar procedure for coshx.

Find an expression for tanh−1 x. ■
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Problems
Problem 2.1 Determine the domain of the following functions:

(i) f (x) =
1

x2 −5x+6
;

(ii) f (x) =
√

1− x2 +
√

x2 −1;

(iii) f (x) =
1

x−
√

1− x2
;

(iv) f (x) =
√

1−
√

4− x2;

(v) f (x) =
1

1− logx
;

(vi) f (x) = log(x− x2);

(vii) f (x) =
√

5− x
logx

;

(viii) f (x) = arcsin(logx).

Problem 2.2
(a) If f and g are both odd functions, what are f +g, f g, and f ◦g?
(b) And what are the same functions if now f is even and g is odd?

Problem 2.3 Check whether the following functions are even or odd:

(i) f (x) =
x

x2 +1
;

(ii) f (x) =
x2 − x
x2 +1

;

(iii) f (x) =
sinx

x
;

(iv) f (x) = cos(x3)sin(x2)e−x4
;

(v) f (x) =
1√

x2 +1− x
;

(vi) f (x) = log
(√

x2 +1− x
)

.

Problem 2.4 For which numbers a,b,c,d ∈ R the function f (x) =
ax+b
cx+d

is its own inverse (i.e.,

f ◦ f = Id) in the domain of f ?

Problem 2.5 Check that the function f (x) =
x+3
1+2x

is bijective and maps its domain R−{−1/2}
to R−{1/2}.

Problem 2.6
(a) Determine which of these functions are injective. For those that are obtain their inverse. For

those that are not, find two points with the same image.

(i) f (x) = 7x−4;

(ii) f (x) = sin(7x−4);

(iii) f (x) = (x+1)3 +2;

(iv) f (x) =
x+2
x+1

;

(v) f (x) = x2 −3x+2;

(vi) f (x) =
x

x2 +1
;

(vii) f (x) = e−x;

(viii) f (x) = log(x+1).

(b) Prove that f (x) = x2 −3x+2 is injective in (3/2,∞).
(c) Prove that f (x) =

x
x2 +1

is injective in (1,∞) and find f−1(
√

2/3).

(d) Determine if those same functions are surjective and bijective in their domains.

Problem 2.7 Calculate:

(i) arctan 1
2 + arctan 1

3 ; (ii) arctan2+ arctan3; (iii) arctan 1
2 + arctan 1

5 + arctan 1
8 .

HINT: Calculate the tangent of those expressions using the formula for the tangent of the sum and
paying attention to the signs.

Problem 2.8 Simplify the following expressions:
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(i) f (x) = sin(arccosx);
(ii) f (x) = sin(2arcsinx);

(iii) f (x) = tan(arccosx);

(iv) f (x) = sin(2arctanx);
(v) f (x) = cos(2arctanx);

(vi) f (x) = e4logx.

Problem 2.9 Solve, for x,y > 0, the system of equations{
xy = yx,

y = 3x.

Problem 2.10
(a) Describe the function g in terms of f in the following cases (c ∈ R is a constant):

(i) g(x) = f (x)+ c;
(ii) g(x) = f (x+ c);

(iii) g(x) = f (cx);
(iv) g(x) = f (1/x);

(v) g(x) = f (|x|);
(vi) g(x) = | f (x)|;

(vii) g(x) = 1/ f (x);
(viii) g(x) = [ f (x)]+ ≡ max{ f (x),0}.

(b) Plot the functions when f (x) = x2.
(c) Plot the functions when f (x) = sinx.

Problem 2.11 Sketch, using the fewest possible calculations, the graph of the following functions:

(i) f (x) = (x+2)2 −1;
(ii) f (x) =

√
4− x;

(iii) f (x) = x2 +
1
x

;

(iv) f (x) =
1

1+ x2 ;

(v) f (x) = min{x,x2};
(vi) f (x) = |ex −1|;

(vii) f (x) =
√
|x|− x;

(viii) f (x) =
1

⌊1/x⌋
;

(ix) f (x) = |x2 −1|;
(x) f (x) = 1− e−x;

(xi) f (x) = log(x2 −1);
(xii) f (x) = xsin(1/x).

HINT: In (viii) ⌊x⌋ denotes the integer part of x, i.e., the largest integer n ⩽ x.

Problem 2.12
(a) Prove that coshx is even and sinhx is odd.
(b) Prove the identities cosh2 x− sinh2 x = 1 and sinh(2x) = 2sinhxcoshx.
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3. Sequences

3.1 Sequences of real numbers
A sequence is simply an infinite ordered list of real numbers

{a1, a2, a3, . . . , an, . . .}.

(We normally use the convention of delimiting sequences by curly brackets.) Often the first terms
of the sequence self-explain the rest of the sequence. This is the case of sequences such as

{1,2,3,4, . . .}, {1,1,1,1, . . .}, {1,0,1,0,1,0, . . .}.

In most cases though, they are given by a formula as a function of n, e.g.,

an = n, bn = (−1)n, cn =
1
n
, dn =

(
1+

1
n

)n

.

Another possibility is to obtain a sequence through a recurrence. A recurrence is a formula that
obtains the nth term in the sequence given the previous k terms (most often just one or two). For
instance,

an =
√

an−1 +1, a1 = 1.

Sometimes the solution of a recurrence is given by a formula, but most of the times it is not possible
to find such a formula. Anyway, the recurrence provides a constructive way of describing the full
sequence.

R We usually represent a sequence with the symbol {an}∞
n=1, where an is referred to as the

general term, regardless of whether there is an explicit formula that provides an as a function
of n or not.

In more rigorous terms we have the following definition of sequence:
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Definition 3.1.1 A sequence is a map f : N→ R.

As a matter of fact, this is what the symbol an denotes: to each n ∈ N there correspond a real
number an.

R Sequences can begin at n = 0 instead of n = 1, or in general at any index n = k, with
k = 0,1,2, . . . Note that {an}∞

n=k = {an+k−1}∞
n=1, so that any sequence can be rewritten as a

true map f : N→ R.

■ Example 3.1 — Fibonacci sequence. Leonardo di Pisa (c. 1170 – c. 1250), known as
Fibonacci (son of Bonacci), was an Italian mathematician, considered to be “the most talented
Western mathematician of the Middle Ages”. Fibonacci popularized the Hindu-Arabic numeral
system to the Western World mainly through his book, Liber Abaci (Book of Calculation), published
in 1202.

An example of Liber Abaci is the well-known sequence of Fibonacci numbers. Fibonacci
proposed the sequence as the solution to a problem of how a population of idealised rabbits grows
generation after generation. His assumptions were:

1. Begin with one male-female couple of rabbits that have just been born.
2. Rabbits reach sexual maturity after one month.
3. The gestation period of a rabbit is one month.
4. After reaching sexual maturity, female rabbits give birth every month.
5. A female rabbit gives birth to one male rabbit and one female rabbit.
6. Rabbits do not die.
If Fn is the number of rabbit couples at month n, then F0 = 1 (the initial couple has just been

born), F1 = 1 (rabbits need a month to reach sexual maturity) and then

Fn+1 = Fn +Fn−1, n > 0, (3.1)

in other words, the number of couples next month (Fn+1) is the number of couples the current
month (Fn) plus all new couples. There is a new couple for every sexually mature couple, and the
sexually mature couples are those couples that existed last month (Fn−1), because it takes a month
to reach sexual maturity.

Iterating equation (3.1) we get the Fibonacci sequence

{1,1,2,3,5,8,13,21,34,55, . . .}.

■

Definition 3.1.2 Let {an}∞
n=1 be a sequence of real numbers. We say that this sequence

(a) increases monotonically if an ⩽ an+1 for all n ∈ N;
(b) decreases monotonically if an ⩾ an+1 for all n ∈ N;
(c) is alternating if (an+1 − an)(an − an−1) < 0 for all n ∈ N (i.e., it goes up and down

alternatively);
(d) is bounded from above if there exists c ∈ R such that an ⩽ c for all n ∈ N;
(e) is bounded from below if there exists c ∈ R such that an ⩾ c for all n ∈ N.

■ Example 3.2 Let us consider the sequence an =
n

n+1
. It is easy to see that it is bounded from

above by 1, because the denominator is always larger than the numerator. Another way to see it is
by looking for a c such that an < c, i.e.,

n
n+1

< c ⇔ n < cn+ c.
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Clearly this second inequality holds if we take c = 1.
Let us now prove that {an}∞

n=1 increases monotonically. To check for monotonicity it is
normally easier to check for the sign of an −an+1 or whether an/an+1 is larger or smaller than 1.
Let us try the former:

an−an+1 =
n

n+1
− n+1

n+2
=

n(n+2)− (n+1)2

(n+1)(n+2)
=

n2 +2n−n2 −2n−1
(n+1)(n+2)

=
−1

(n+1)(n+2)
< 0,

therefore an < an+1 and so the sequence increases monotonically. ■

Definition 3.1.3 — Subsequence. A subsequence of a sequence {an}∞
n=1 is any choice

{ank}∞
k=1 of infinitely many elements of the sequence. (nk is the rule that tells what is the kth

element of the subsequence.)

■ Example 3.3 The sequence
{ 1

2k−1

}∞

k=1
is a subsequence of the sequence

{1
n

}∞

n=1. The rule
nk = 2k−1 tells that we are selecting only the odd terms of the sequence. ■

■ Example 3.4 The sequence
{ 1

2k−1

}∞

k=1 is a subsequence of the sequence
{1

n

}∞

n=1. The rule
nk = 2k−1 tells that we are selecting only the terms of the sequence whose index is a power of 2. ■

Proposition 3.1.1 Every sequence has at least one monotonic subsequence (either increasing or
decreasing).

3.2 Limit of a sequence

Consider the sequence an =
n

n+1
. Let us explicitly display some of its terms:{

1
2
,
2
3
,
3
4
,
4
5
. . . ,

1000
1001

, . . .

}
= {0.5000, 0.6667, 0.7500, 0.8000, . . . , 0.9990, . . .}

where we have calculated the numbers to an accuracy of four decimal places. These numbers as
well as Figure 3.2 both illustrate the fact that the more we increase n the closer is an to the value 1.
Sequences exhibiting this behavior are said to have a limit. In this case, the limit of an is 1.

Figure 3.1: Plot of the first ten terms of the sequence an =
n

n+1
.

We need a more precise definition of limit that captures this idea in all its flavour. To this
purpose we have the following definition:
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Definition 3.2.1 — Limit of a sequence. The real number a is said to be the limit of the
sequence {an} if for any real number ε > 0 —no matter how small— there exits an index N
—which may depend on ε— such that for every n > N the sequence satisfies the inequality

|an −a|< ε. (3.2)

The sequence is then said to be convergent.

■ Example 3.5 Let us apply the definition to actually prove that the limit of an =
n

n+1
is 1. Let

ε > 0 be a given arbitrary number. We need to find for which indices n the inequality∣∣∣∣ n
n+1

−1
∣∣∣∣< ε (3.3)

holds. Clearly,

n
n+1

−1 =
n− (n+1)

n+1
=

−1
n+1

⇒
∣∣∣∣ n
n+1

−1
∣∣∣∣= 1

n+1
.

Thus inequality (3.3) is equivalent to

1
n+1

< ε ⇔ n+1 >
1
ε

⇔ n >
1
ε
−1.

We have the proof we wanted. Suppose ε = 0.1. Then

1
ε
−1 =

1
0.1

−1 = 10−1 = 9,

so we can take N = 9 and the definition applies. Suppose ε = 0.01. Then

1
ε
−1 =

1
0.01

−1 = 100−1 = 99,

so we can take N = 99 and again the definition applies.
It is clear that we can take ε smaller and smaller, and that will imply that N is larger and larger,

but nevertheless, no matter how small ε is taken, there always exists N satisfying the definition. ■

We can also characterise sequences like an = n, which not only do not have a limit, but they
grow without bound as n increases.

Definition 3.2.2 — Divergent sequence. The sequence {an} is said to be divergent to +∞ if
for any real number C > 0 —no matter how large— there exits an index N —which may depend
on C— such that for every n > N the sequence satisfies the inequality

an >C. (3.4)

Likewise, it is said to be divergent to −∞ if for any real number C < 0 there exits an index N
such that for every n > N the sequence satisfies the inequality

an <C. (3.5)

R We denote the limit of a sequence with the symbol lim
n→∞

an = a if it converges, or lim
n→∞

an =±∞

if it diverges to +∞ or −∞.
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■ Example 3.6 The sequence an = np diverges to +∞ if p > 0, and converges if p ⩽ 0. We will
prove it by applying the definition.

Let p > 0 and C > 0 and consider the inequality

an = np >C ⇔ n >C1/p.

In other words, if N >C1/p, then for every n > N we will have an >C.
Let now p = 0. Then an = 1 for all n ∈ N, and therefore

lim
n→∞

an = 1.

Finally, let p =−q < 0 and ε > 0. Then,

|an −0|=
∣∣∣∣ 1
nq −0

∣∣∣∣= 1
nq < ε ⇔ nq >

1
ε

⇔ n >

(
1
ε

)1/q

.

So if we take N > (1/ε)1/q then for every n > N we will have |an −0|< ε . Therefore

lim
n→∞

an = 0.

■

Aside from convergent and divergent sequences there are sequences that neither converge nor
diverge. This are simply said to be nonconvergent sequences.

■ Example 3.7 The sequence an = (−1)nn is nonconvergent, because |an|= n is divergent, but an

alternates sign. ■

Proposition 3.2.1 If the limit of {an}∞
n=1 exists, it is unique.

Proof. Suppose that a and b (a < b) are two limits of the same sequence. Then, according to the
definition, for every ε > 0

|an −a|< ε, |an −b|< ε.

In other words,

an < a+ ε, b− ε < an.

But if ε is such that a+ ε < b− ε this two inequalities cannot hold at the same time. And this can
be accomplished by any ε < (b−a)/2. Hence b and a cannot be two different numbers. ■

Proposition 3.2.2 Every subsequence of a convergent sequence has the same limit as the sequence.

Applying the definition to prove that a sequence has a limit may be a daunting task. For that
reason we normally apply some properties that all convergent sequences satisfy in order to simplify
the problem. These are some algebraic properties of the limits:

Proposition 3.2.3 Let {an}∞
n=1 and {bn}∞

n=1 be two convergent sequences with limits a and b
respectively. Then the following properties hold:

1. lim
n→∞

(an ±bn) = a±b;
2. lim

n→∞
anbn = ab;

3. if bn ̸= 0 for all n ∈ N and b ̸= 0, then lim
n→∞

an

bn
=

a
b

;

4. lim
n→∞

abn
n = ab;

5. lim
n→∞

logan = loga.

Two further theorems turn out to be very practical for calculating limits.
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Theorem 3.2.4 — Sandwich rule. If lim
n→∞

an = lim
n→∞

cn = l, and for all n > N, for some N ∈ N,
we have an ⩽ bn ⩽ cn, then also lim

n→∞
bn = l.

In particular this implies that if lim
n→∞

|an|= 0 then lim
n→∞

an = 0 too because −|an|⩽ an ⩽ |an|.

Theorem 3.2.5 Every monotonically increasing (respectively decreasing) sequence bounded
from above (respectively below) converges to some limit.

Proof. Suppose {an}∞
n=1 increases monotonically and is bounded above. The supremum property

(Theorem 1.3.2(i)) guarantees that {an}∞
n=1 has a supremum a. So an ⩽ a for all n ∈ N and no

other real number c < a is an upper bound. Let us take ε > 0 and set c = a− ε . This is not an
upper bound, therefore there must be some N ∈ N such that aN > a− ε . But since the sequence is
increasing we then have

a− ε < aN ⩽ aN+1 ⩽ aN+2 ⩽ · · ·⩽ a < a+ ε.

In other words, |an −a|< ε for all n > N. ■

As the proof shows, this theorem is a consequence of the completeness of real numbers.
Intuitively it makes perfect sense, for if a sequence keeps on increasing but cannot trespass a certain
bound, it must converge to something. And as a matter of fact, the proof shows that this “something”
is precisely the supremum of the sequence, if it increases, or its infimum, if it decreases.

■ Example 3.8 Consider the sequence

an =
sinn

n
.

In principle an is the quotient of two sequences, namely bn = sinn and cn = n. However, none of
them has a limit: cn diverges to +∞ and bn exhibits a random behavior, as illustrated by Figure 3.3.

Figure 3.2: Plot of sinn at three different scales: (a) for 1 ⩽ n ⩽ 100, (b) for 1 ⩽ n ⩽ 1000, and (c)
for 1 ⩽ n ⩽ 10000.

However, it is always true that, irrespective of n, −1 ⩽ sinn ⩽ 1, so

−1
n
⩽ an ⩽

1
n
.

Since lim
n→∞

1
n
= 0, applying the sandwich rule we conclude that lim

n→∞
an = 0. ■

■ Example 3.9 Consider the sequence {an}∞
n=1 defined by the recurrence

an+1 =
1
2
(an +6), a1 = 2.
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The first few terms look like{
2,4,5,

11
2
,
23
4
,
47
8
,
95
16

, . . .

}
= {2, 4, 5, 5.5, 5.75, 5.875, 5.9375, . . .},

so it seems that it does converge toward 6 and is monotonically increasing.
Let us first show, by induction, that {an}∞

n=1 is bounded above by 6. To begin with, a1 = 2 < 6.
Now suppose an < 6. Then

an+1 =
1
2
(an +6)<

1
2
(6+6) = 6,

so if an < 6 then also an+1 < 6.
Finally let us show that the sequence is monotonically increasing. For that, let us calculate

an+1 −an =
1
2
(an +6)−an =

1
2
(6−an)> 0

because we have shown that an < 6. Therefore an+1 > an, and because of the theorem, we have
proven that the sequence converges to some number a. To actually determine a we must take the
limit in the recurrence as

lim
n→∞

an+1 =
1
2

(
lim
n→∞

an +6
)

⇔ a =
1
2
(a+6) ⇔ 2a = a+6 ⇔ a = 6.

■

■ Example 3.10 Let us consider the sequence

an =
3n2 +2n−1
5n4 −2n+7

.

Calculating its limit through the definition is very difficult. However we can play the following
trick: we will factor out the largest power both in the numerator and in the denominator,

an =

n2
(

3+
2
n
− 1

n2

)
n4
(

5− 2
n3 +

7
n4

) =
n2

n4 ·
3+

2
n
− 1

n2

5− 2
n3 +

7
n4

=
1
n2 ·

3+
2
n
− 1

n2

5− 2
n3 +

7
n4

,

and now we can apply the algebraic rules for the limits. Since for any p > 0

lim
n→∞

1
np = 0,

then

lim
n→∞

(
3+

2
n
− 1

n2

)
= 3, lim

n→∞

(
5− 2

n3 +
7
n4

)
= 5,

and therefore

lim
n→∞

an = 0 · 3
5
= 0.

■

From the example above we can infer the following proposition:
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Proposition 3.2.6 Let

an =
αpnp +αp−1np−1 + · · ·+α1n+α0

βqnq +βq−1nq−1 + · · ·+β1n+β0
.

Then
(a) if q = p, lim

n→∞
an =

αp

βq
;

(b) if q > p, lim
n→∞

an = 0;

(c) if q < p, lim
n→∞

an =+∞ if αpβq > 0 and lim
n→∞

an =−∞ if αpβq < 0.

Proof. (a) and (b) are proven as in the example. For (c) we can prove equivalently that lim
n→∞

1
an

= 0

because it reduces to (b). The sign is the sign of the quotient αp/βq —which is the same as that of
the product αpβq. ■

Here is a list of some important limits that often occur in calculations:

1. lim
n→∞

n
√

a = 1 for all a > 0.

2. lim
n→∞

n
√

np = 1 for all p ∈ R.

3. lim
n→∞

an = 0 for all |a|< 1 and lim
n→∞

an =+∞ for all a > 1.

4. lim
n→∞

nr

an = 0 for all |a|> 1 and r ∈ R.

Finally, there is a very important result that at this point will be very easy to prove:

Theorem 3.2.7 — Bolzano-Weierstrass theorem. Every bounded sequence has at least one
convergent subsequence.

Proof. The proof is very simple. From Proposition 3.1.1 we know that every sequence has at least
one monotonic subsequence. This subsequence will be bounded because the whole sequence is
bounded. Therefore this subsequence must converge to some limit by virtue of Theorem 3.2.5. ■

R Note that this result holds even for sequences without limit.

■ Example 3.11 The sequence {(−1)n}∞
n=1 does not converge; however it is bounded, and the

subsquence {1}∞
n=1 containing only the even terms clearly converges to 1. ■

3.3 Number e

There is a special convergent sequence whose limit defines an irrational number of great importance
in mathematics. It is the following:

Definition 3.3.1

e ≡ lim
n→∞

(
1+

1
n

)n

= 2.7182818284590452353602874713526624977572 . . . (3.6)

The sequence is monotonically increasing and bounded above, but converges very slowly to its limit,
as Table 3.1 shows. Both the prove of the convergence of this sequence and that of the irrationality
of its limit appear in Apppendix C.
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n
(
1+ 1

n

)n

1 2
2 2.25
5 2.48832

10 2.59374246
100 2.704813829

1000 2.716923932
10000 2.718145927

100000 2.718268237

Table 3.1: Some values of the sequence
(
1+ 1

n

)n. Note that n must increase by an order of
magnitude in order to obtain a new decimal figure of e.

Number e is not only an irrational number, but a transcendental one. This means that there is
no algebraic equation whose solution is e (in particular, e cannot be expressed in terms of radicals).

Many limits involve e. Here are a few examples:

■ Example 3.12 Calculate

lim
n→∞

(
1+

1
n

)n+1

.

Since we can factor out(
1+

1
n

)n+1

=

(
1+

1
n

)n(
1+

1
n

)
,

then

lim
n→∞

(
1+

1
n

)n+1

= lim
n→∞

(
1+

1
n

)n(
1+ lim

n→∞

1
n︸ ︷︷ ︸

=0

)
= e.

■

■ Example 3.13 Calculate

lim
n→∞

(
1+

1
n2 +1

)n2+1

.

The sequence(
1+

1
k2 +1

)k2+1

, k ∈ N,

is a subsequence of(
1+

1
n

)n

(that corresponding to those n such that n = k2 +1). Any subsequence of a convergent sequence
has the same limit as the original sequence, therefore

lim
n→∞

(
1+

1
n2 +1

)n2+1

= e.

■
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■ Example 3.14 Calculate

lim
n→∞

(
1+

1
3n2 +1

)2n2−3

.

We can rewrite

(
1+

1
3n2 +1

)2n2−3

=

[(
1+

1
3n2 +1

)3n2+1
] 2n2−3

3n2+1

,

so that

lim
n→∞

(
1+

1
3n2 +1

)2n2−3

=

[
lim
n→∞

(
1+

1
3n2 +1

)3n2+1
] lim

n→∞

2n2−3
3n2+1

.

Now, since

lim
n→∞

(
1+

1
3n2 +1

)3n2+1

= e, lim
n→∞

2n2 −3
3n2 +1

=
2
3
,

we finally have

lim
n→∞

(
1+

1
3n2 +1

)2n2−3

= e2/3.

■

It is easy to generalise this example and show that any limit of the form

lim
n→∞

(1+bn)
cn ,

where

lim
n→∞

bn = 0, lim
n→∞

cn = ∞,

can be calculated as

lim
n→∞

(1+bn)
cn = e

(
lim
n→∞

bncn

)
.

■ Example 3.15 Calculate

lim
n→∞

(
1− 1

n

)n

.

We can rewrite(
1− 1

n

)n

=

(
n−1

n

)n

=

(
n−1

1+(n−1)

)n

=
1(

1+(n−1)
n−1

)n =
1(

1+
1

n−1

)n .

Therefore

lim
n→∞

(
1− 1

n

)n

=
1

e
(

lim
n→∞

n
n−1

) =
1
e
= e−1.

Incidentally, this example shows that the above argument is valid regardless of the sign of bn. ■
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As a matter of fact, number e is involved in any limit corresponding to what is referred to as an
indeterminacy of type 1∞. This is a short way to refer to the limit of a sequence of the form acn

n ,
where lim

n→∞
an = 1 and lim

n→∞
cn = ∞. Here is an example:

■ Example 3.16 Calculate

lim
n→∞

(
3n2 +1

(3n+2)(n−3)

)2n+1

.

First we check that

lim
n→∞

3n2 +1
(3n+2)(n−3)

= lim
n→∞

3n2 +1
3n2 −7n−6

= 1, lim
n→∞

(2n+1) = ∞,

so we are dealing with a 1∞ indeterminacy. The way to proceed is always the same. We rewrite

3n2 +1
(3n+2)(n−3)

=
3n2 +1

3n2 −7n−6
= 1+

(
3n2 +1

3n2 −7n−6
−1
)
= 1+

7n+7
3n2 −7n−6

,

so that we can transform the original limit into

lim
n→∞

(
3n2 +1

(3n+2)(n−3)

)2n+1

= lim
n→∞

(
1+

7n+7
3n2 −7n−6

)2n+1

.

Now

lim
n→∞

7n+7
3n2 −7n−6

= 0,

therefore

lim
n→∞

(
3n2 +1

(3n+2)(n−3)

)2n+1

= ec,

where

c = lim
n→∞

(7n+7)(2n+1)
3n2 −7n−6

= lim
n→∞

14n2 +21n+7
3n2 −7n−6

=
14
3
.

■

3.4 Indeterminacies
Apart from the 1∞ indeterminacy we have just encountered and which is related to the number e,
there are other indeterminacies that often appear when we calculate limits. They are basically these:

0
0
,

∞

∞
, 0 ·∞, 00, ∞

0, ∞−∞.

Their meaning is similar to that of the 1∞ indeterminacy. For instance, 0 ·∞ just denotes the case
where we find a limit such as lim

n→∞
anbn, where lim

n→∞
an = 0, and lim

n→∞
bn = ∞ (and similarly for the

other cases).

R Note that the following expressions are not indeterminacies, but well defined limits:

∞
∞ = ∞, 0∞ = 0, ∞+∞ = ∞,

0
∞

= 0,
∞

0
=±∞.
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Indeterminacies are related to one another. For instance, if lim
n→∞

an = ∞, and lim
n→∞

bn = ∞, then

lim
n→∞

an

bn︸ ︷︷ ︸
∞

∞

= lim
n→∞

anb−1
n︸ ︷︷ ︸

∞·0

= lim
n→∞

b−1
n

a−1
n︸ ︷︷ ︸

0
0

.

Indeterminacies must be solved case by case —there is no general rule to apply. We have
already found the ∞

∞
indeterminacy in the case of rational sequences, and as Proposition 3.2.6 shows,

the solution depens on the specific sequence whose limit we want to calculate.
Other cases of this indeterminacy as well as the 0

0 indeterminacy require the following re-
sult:

Theorem 3.4.1 — Stolz theorem. Let {an}∞
n=1 and {bn}∞

n=1 be two sequences of real numbers.
Suppose that {bn}∞

n=1 is strictly monotonic (increasing or decreasing) and either:
(a) lim

n→∞
bn =±∞, or

(b) lim
n→∞

an = lim
n→∞

bn = 0.
Then

lim
n→∞

an −an−1

bn −bn−1
= ℓ ⇒ lim

n→∞

an

bn
= ℓ. (3.7)

From this theorem we can derive three important corollaries:

Corollary 3.4.2

lim
n→∞

cn = c ⇒ lim
n→∞

1
n
(c1 + c2 + · · ·+ cn) = c.

Proof. Take the sequences an = c1 +c2 + · · ·+ cn and bn = n, and note that bn is strictly increasing
and diverges. Then

lim
n→∞

an −an−1

bn −bn−1
= lim

n→∞

(c1 + c2 + · · ·+ cn−1 + cn)− (c1 + c2 + · · ·+ cn−1)

n− (n−1)
= lim

n→∞
cn = c,

therefore

lim
n→∞

an

bn
= c.

■

Corollary 3.4.3

lim
n→∞

cn = c ⇒ lim
n→∞

n
√

c1c2 · · ·cn = c.

Proof. Taking logarithms

log n
√

c1c2 · · ·cn =
1
n
(logc1 + logc2 + · · ·+ logcn).

Since lim
n→∞

logcn = logc, applying the previous corollary we obtain

lim
n→∞

log n
√

c1c2 · · ·cn = lim
n→∞

1
n
(logc1 + logc2 + · · ·+ logcn) = logc,
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and therefore

lim
n→∞

n
√

c1c2 · · ·cn = c.

■

Corollary 3.4.4

lim
n→∞

an

an−1
= a ⇒ lim

n→∞

n
√

an = a.

Proof. We can write

an =
an

an−1

an−1

an−2
· · · a2

a1
a1,

so if we define cn ≡ an/an−1 for n > 1 and c1 = a1 we have

an = c1c2 · · ·cn.

But lim
n→∞

cn = a, therefore the previous corollary implies

lim
n→∞

n
√

c1c2 · · ·cn = lim
n→∞

n
√

an = a.

■

■ Example 3.17 We can easily show that lim
n→∞

n
√

a = 1, for all a > 0, as an application of the last
corollary, because

lim
n→∞

n
√

a = lim
n→∞

a
a
= 1.

Similarly we can prove that lim
n→∞

n
√

np = 1, for all p ∈ R, because

lim
n→∞

n
√

np = lim
n→∞

np

(n−1)p =

(
lim
n→∞

n
n−1

)p

= 1p = 1.

■

■ Example 3.18 We can calculate1

lim
n→∞

n

√(
2n
n

)
using the third corollary as

lim
n→∞

(2n
n

)(2n−2
n−1

) = lim
n→∞

(2n)!
n!n!

(n−1)!(n−1)!
(2n−2)!

= lim
n→∞

2n(2n−1)
n2 = lim

n→∞

4n−2
n

= 4,

where we have used the fact that (2n)! = 2n(2n−1) · (2n−2)! and n! = n · (n−1)!. ■

Stolz theorem is particularly useful when one of the sequences involved is a sum of n terms, as
in this example:

1The symbols
(n

k
)

represent combinatorial coefficients. Their definition and properties can be found in Appendix B.
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■ Example 3.19 Calculate

lim
n→∞

1+
1
2
+

1
3
+ · · ·+ 1

n
logn

.

An application of the theorem transforms this limit into

lim
n→∞

1
n

logn− log(n−1)
= lim

n→∞

1

n log
(

n
n−1

) = lim
n→∞

1

log
(
(n−1)+1

n−1

)n = lim
n→∞

1

log
(

1+
1

n−1

)n .

But we know that

lim
n→∞

(
1+

1
n−1

)n

= e,

and that loge = 1, therefore

lim
n→∞

1+
1
2
+

1
3
+ · · ·+ 1

n
logn

= 1.

■

The indeterminacy ∞−∞ is a particularly difficult one, but often can be solved by an algebraic
manipulation of the expressions.

■ Example 3.20 Calculate

lim
n→∞

(√
n2 +2n−1−

√
n2 −3

)
.

Both terms in this expression are divergent sequences, so this is an ∞−∞ indeterminacy. The trick
to calculate this limit is to make use of the identity

x2 − y2 = (x− y)(x+ y) ⇒ x− y =
x2 − y2

x+ y
.

In this case√
n2 +2n−1−

√
n2 −3 =

n2 +2n−1− (n2 −3)√
n2 +2n−1+

√
n2 −3

=
2n+2

n
√

1+ 2
n −

1
n2 +n

√
1− 3

n2

=
2+ 2

n√
1+ 2

n −
1
n2 +

√
1− 3

n2

−−−−→
n→∞

2
1+1

= 1.

In the case that there are higher order roots involved, in may be useful to apply the generalised
identity

xp+1 − yp+1 = (x− y)(xp + xp−1y+ xp−2y2 + · · ·+ xyp−1 + yp)

that leads to

x− y =
xp+1 − yp+1

xp + xp−1y+ xp−2y2 + · · ·+ xyp−1 + yp .

■
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3.5 Asymptotic comparison of sequences
In order to solve indeterminacies it is handy to compare sequences for large values of n. If they
behave similarly they can often be replaced by each other. If one is negligible with respect to the
other, it is the second one that decides the trend. Let us formalise this notion:

Definition 3.5.1 — Asymptotic comparison. Let {an}∞
n=1 and {bn}∞

n=1 two sequences which
either both diverge or both converge to 0. We say that

(a) an and bn are equivalent (we denote it an ∼ bn) if

lim
n→∞

an

bn
= 1;

(b) an is negligible compared to bn (we denote it an ≪ bn) if

lim
n→∞

an

bn
= 0.

■ Example 3.21 Example 3.19 proves that

1+
1
2
+

1
3
+ · · ·+ 1

n
∼ logn, (3.8)

(which incidentally proves that

lim
n→∞

(
1+

1
2
+

1
3
+ · · ·+ 1

n

)
= ∞, (3.9)

a fact that will be of utmost relevance in the next chapter). ■

■ Example 3.22 Suppose that {εn}∞
n=1 is a sequence that converges to 0. We have seen that

lim
n→∞

(1+ εn)
1/εn = e.

Taking logarithms

lim
n→∞

log(1+ εn)

εn
= 1;

in other words, log(1+ εn)∼ εn.
We can now define the new sequence δn ≡ log(1+ εn), whose limit is 0. Then εn = eδn −1, so

we transform the previous limit into

1 = lim
n→∞

log(1+ εn)

εn
= lim

n→∞

δn

eδn −1
.

Therefore eδn −1 ∼ δn. ■

We can infer further equivalences from geometric arguments. Figure 3.4 shows that2 |sinx|⩽
|x|⩽ | tanx| for all −π/2⩽ x⩽ π/2 (we take absolute values because all quantities become negative
for negative x, but the relation between the lengths remains true). From the first inequality we
conclude that, within this interval,∣∣∣∣sinx

x

∣∣∣∣⩽ 1.

2The first inequality, |sinx|⩽ |x|, is obvious from the figure. The second one, |x|⩽ | tanx| follows because the area of
the sector is obviously smaller than that of the big triangle. Now, the former is 1

2 |x| whereas the latter is 1
2 | tanx|, hence

the inequality.
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Figure 3.3: Comparison of sinx, x, and tanx for small 0 ⩽ x ⩽ π/2.

But
sinx

x
⩾ 0 for all −π/2 ⩽ x ⩽ π/2 (because both sinx and x have the same sign), so

0 ⩽
sinx

x
⩽ 1.

From the second inequality,

|x|⩽ |sinx|
|cosx|

⇔ |cosx|⩽
∣∣∣∣sinx

x

∣∣∣∣ .
But since

sinx
x

⩾ 0 and cosx ⩾ 0 for all −π/2 ⩽ x ⩽ π/2,

cosx ⩽
sinx

x
⩽ 1.

Let {εn}∞
n=1 be a sequence that converges to 0. From the inequality |sinεn| ⩽ |εn| (which is

equivalent to −|εn|⩽ sinεn ⩽ |εn|) and the sandwich rule we conclude that

lim
n→∞

sinεn = 0. (3.10)

On the other hand, cosεn =
√

1− sin2
εn, so

lim
n→∞

cosεn = 1. (3.11)

Since we have

cosεn ⩽
sinεn

εn
⩽ 1,

again using the sandwich rule we conclude that

lim
n→∞

sinεn

εn
= 1, (3.12)

or equivalently that sinεn ∼ εn.
Also,

lim
n→∞

tanεn

εn
= lim

n→∞

sinεn

εn cosεn
= 1,

therefore tanεn ∼ εn.
In summary, all these sequences are equivalent:
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log(1+ εn)∼ (eεn −1)∼ sinεn ∼ tanεn ∼ εn. (3.13)

Exercise 3.1 Using the identities

cos2 x+ sin2 x = 1, cos2 x− sin2 x = cos2x,

prove that

1− cosεn ∼
ε2

n

2
. (3.14)

■

A very important equivalence is given in the following theorem:

Theorem 3.5.1 — Stirling formula.

n! ∼
√

2πnnne−n. (3.15)

The correct use of equivalences is as follows. Suppose an ∼ cn and bn ∼ dn. Then

lim
n→∞

anbn = lim
n→∞

an

cn

bn

dn
cndn = lim

n→∞

an

cn︸ ︷︷ ︸
=1

lim
n→∞

bn

dn︸ ︷︷ ︸
=1

lim
n→∞

cndn = lim
n→∞

cndn.

So sequences can be replaced by equivalent sequences in products (and it can easily be shown that
also in quotients).

Exercise 3.2 Calculate

lim
n→∞

sin 1
n

log
(n+1

n

) .
■

However, using equivalences in differences can lead to incorrect results. This example is illustrative
of the sort of problems one can meet.

■ Example 3.23 We want to calculate

lim
n→∞

(√
n4 +n2 −n2 −1

)
.

Proceeding as in Example 3.20,√
n4 +n2 −n2 −1 =

n4 +n2 − (n2 +1)2
√

n4 +n2 +n2 +1
=

n4 +n2 −n4 −2n2 −1

n2
√

1+ 1
n2 +n2

(
1+ 1

n2

) = −1− 1
n2√

1+ 1
n2 +1+ 1

n2

therefore

lim
n→∞

(√
n4 +n2 −n2 −1

)
=−1

2
.

However,
√

n4 +n2 ∼ n2 because
√

n4 +n2

n2 =

√
1+

1
n2 −−−−→

n→∞
1,
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so we might be tempted to reason as follows:√
n4 +n2 −n2 −1 ∼ n2 −n2 −1 =−1,

in which case we would conclude incorrectly that

lim
n→∞

(√
n4 +n2 −n2 −1

)
=−1.

■

The problem that this example illustrates is that in replacing a sequence by an equivalent one
we are ignoring smaller terms, which may become relevant if the dominant terms cancel out —as it
usually happens in ∞−∞ indeterminacies.

Negligible sequences, on the contrary, are relevant in sums and differences. For suppose
bn ≪ an and we want to calculate

lim
n→∞

cn

an +bn
= lim

n→∞

cn

an

(
1+ bn

an

) = lim
n→∞

cn

an
,

because

lim
n→∞

bn

an
= 0.

In other words, in an expression like an +bn we can simply eliminate the negligible sequence.

■ Example 3.24 Let us show that

log(3n6 −5n2 +2)∼ 6logn.

Note that 2 ≪ 5n2 ≪ 3n6, therefore

log(3n6 −5n2 +2)∼ log(3n6) = log3+6logn.

But log3 ≪ 6logn, hence the equivalence. ■

There is a hierarchy of negligible sequences which turns out to be very useful in calcula-
tions:

For any a,b > 0, and c > 1, it holds

(logn)a ≪ nb ≪ cn ≪ n! ≪ nn. (3.16)
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Problems

Problem 3.1
(a) Let {xn}∞

n=1 be a convergent sequence and let {yn}∞
n=1 be a divergent sequence. What can be

said of the produt sequence {xnyn}∞
n=1.

(b) If a sequence of integer numbers is convergent, what is this sequence like?
(c) Prove that every convergent sequence is bounded.

Problem 3.2 Given the following recurrent sequences, find the general term and compute their
limit:

(i) an+1 =
an +1

2
, with a0 = 0; (ii) bn+1 =

√
2bn, with b0 = 1.

Problem 3.3 Calculate the following limits:

(i) lim
n→∞

n
√

an +bn, with a,b > 0;

(ii) lim
n→∞

(
n
√

a+ n
√

b
2

)n

, with a,b > 0;

(iii) lim
n→∞

n
(√

n2 +1−n
)

;

(iv) lim
n→∞

√
n
(

4
√

n2 +1−
√

n+1
)

;

(v) lim
n→∞

2n+1 +3n+1

2n +3n ;

(vi) lim
n→∞

(
n2 +1
n2 −3n

) n2−1
2n

.

Problem 3.4 Calculate the following limits:

(i) lim
n→∞

n
π

sinnπ;

(ii) lim
n→∞

n
(
e1/n − esin(1/n)

)
1−nsin(1/n)

;

(iii) lim
n→∞

n
n
√

n!
;

(iv) lim
n→∞

n−3/n;

(v) lim
n→∞

2n

n!
;

(vi) lim
n→∞

n2

2n ;

(vii) lim
n→∞

nn−1

(n−1)n ;

(viii) lim
n→∞

1+2
√

2+3 3
√

3+ · · ·+n n
√

n
n2 .

Problem 3.5 If a > 0 and lim
n→∞

un = 0, calculate the following limits:

(i) lim
n→∞

(
cos

b
n
+asin

b
n

)n

; (ii) lim
n→∞

un

√
a−bun

a+bun
.

Problem 3.6 Calculate the following limits:

(i) lim
n→∞

n
∑

k=1
sin(π/k)

logn
;

(ii) lim
n→∞

n

∏
k=1

(2k−1)1/n2
; (iii) lim

n→∞

n

∑
k=1

k2

n2 sin
1
k

.

Problem 3.7 Given that lim
n→∞

an = a, calculate

lim
n→∞

a1 +
a2

2
+ · · ·+ an

n
log(n+1)

.
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Problem 3.8 Calculate the limit

lim
n→∞

3n

∑
k=1

1√
n2 + k

using the sandwich rule.
HINT: Use the largest and smallest terms in the sum to bound the sum from above and from below,
respectively.

Problem 3.9 Let {an}∞
n=1 be a sequence of positive terms such that lim

n→∞
(an −n) = ℓ.

(a) Prove that lim
n→∞

an

n
= 1.

(b) Prove that lim
n→∞

n log(an/n) = ℓ.

Problem 3.10 Let {an}∞
n=1 be a sequence of positive terms such that lim

n→∞
(an+1/an) = ℓ. Apply

Stolz theorem to calculate the limit

lim
n→∞

n2

√
an

n

a1a2 · · ·an

Problem 3.11 Prove that the following sequences are monotonic, determine whether they are
bounded, and find the limit in case they are:

(i)
√

2,
√

2
√

2,
√

2
√

2
√

2, . . . ;

(ii)
√

2,
√

2+
√

2,
√

2+
√

2+
√

2, . . . ;

(iii) un+1 = 3+
un

2
, with u0 = 0;

(iv) un+1 = 3+2un, with u0 = 0;

(v) un+1 =
u3

n +6
7

, with (a) u0 = 1/2, (b) u0 = 3/2,
and (c) u0 = 3.

Problem 3.12 Consider the sequence defined by an+1 =
√

1+3an −1, with a0 = 1/2.
(a) Prove that the sequence has a limit and find it.

(b) Compute lim
n→∞

an+1 −1
an −1

.

Problem 3.13 Consider the sequence defined by bn+1 = 1−bn/2, with b0 = 0.
(a) Prove that the sequence is alternating, i.e., (bn+1 −bn)(bn −bn−1)< 0.

(b) Assuming that it has a limit ℓ, find it.

(c) Prove that |bn+1 − ℓ|= 1
2 |bn − ℓ|.

(d) Prove that the sequence has indeed a limit.

Problem 3.14 Consider the sequence defined by

xn+1 =
xn(1+ xn)

1+2xn
, x1 = 1.

(a) Prove that xn > 0 for all n ∈ N.

(b) Prove that the sequence is monotonically decreasing.

(c) Calculate its limit.



4. Series

4.1 Series of real numbers
Series are a special kind of sequences —those made of sums of terms of other sequences. As
sequences, they share all properties of sequences of real numbers studied in the previous chapter.
However, studying the convergence of a series is normally a difficult task —not to mention to
actually calculate its limit when it exists. That is why they are studied separately, and special
techniques to address their convergence have to be developed.

Suppose we have a sequence of real numbers {an}∞
n=1. With this sequence we can construct

another sequence, that we will denote {Sk}∞
k=1, whose general term is the sum of all terms of the

original sequence up to the nth, namely

Sk = a1 +a2 + · · ·+ak =
k

∑
n=1

an. (4.1)

(In what follows we will make common use of symbolic sums, whose properties can be found in
Appendix A.) The general term Sk of this new sequence is often referred to as the kth partial sum
of the original sequence.

The limit of the sequence of partial sums has a special notation:

lim
k→∞

Sk =
∞

∑
n=1

an. (4.2)

This “infinite sum” (actually a limit) is what we normally refer to as a series.

■ Example 4.1 As a first illustrative example we will introduce the geometric series
∞

∑
n=0

xn, x ∈ R, (4.3)

in other words, out of the sequence {xn}∞
n=0 we construct the sequence of partial sums

Sk =
k

∑
n=0

xn = 1+ x+ x2 + · · ·+ xk.
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The geometric series is the limit of this sequence.
The geometric series is one of the very few cases in which not only its convergence can be fully

characterised, but also the sum can be explicitly computed when it converges. The reason is that an
alternative expression for Sn can be obtained.

This is achieved by realising that if we multiply Sn by x we almost recover Sn again:

xSk = x+ x2 + · · ·+ xk︸ ︷︷ ︸
=Sk−1

+xk+1 = Sk −1+ xk+1 ⇒ (x−1)Sk = xk+1 −1.

So if x ̸= 1, we obtain

Sk =
xk+1 −1

x−1
=

1− xk+1

1− x
,

and if x = 1 clearly Sk = k+1. In summary,

Sk =


1− xk+1

1− x
, x ̸= 1,

k+1 x = 1.
(4.4)

In terms of x we can distinguish these cases:
(a) If x = 1 then Sk = k+1 diverges to +∞.
(b) If |x|< 1 then lim

k→∞

xk+1 = 0

lim
k→∞

Sk =
1

1− x
.

(c) If x > 1 then lim
k→∞

xk+1 =+∞ and Sk diverges to +∞.

(d) If x <−1 then xk is an alternating sequence with no limit.
All this information is usually summarised in the formula

∞

∑
n=0

xn =
1

1− x
, |x|< 1. (4.5)

■

This example also illustrate the three cases we can meet when we address the convergence of a
series:

(a) Sn converges; then we say that
∞

∑
n=1

an is convergent.

(b) Sn diverges to ±∞; then we say that
∞

∑
n=1

an is divergent.

(c) Sn has no limit (e.g., is alternating); then we say that
∞

∑
n=1

an is not convergent.

R The convergence of a series is not affected by altering (adding, removing, changing. . . ) a
finite number of its terms. However, if it converges, the sum does change.

■ Example 4.2 The convergence of the series

∞

∑
n=r

xn
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in terms of x is exactly the same as that of the geometric series. The removal of the first r terms in
the latter does not affect its character. In this case it is particularly evident because

∞

∑
n=r

xn =
∞

∑
n=0

xr+n = xr
∞

∑
n=0

xn,

so both series are proportional to each other. In particular this implies
∞

∑
n=r

xn =
xr

1− x
, |x|< 1, (4.6)

so the sum is different. ■

■ Example 4.3 A small variation of the geometric series is the arithmetic-geometric series. It is
defined as

∞

∑
n=1

nxn.

(Starting at n = 1 or n = 0 is irrelevant because for n = 0 the corresponding term nxn = 0.) We
proceed through a similar argument. Let

Sk =
k

∑
n=1

nxn = x+2x2 +3x3 + · · ·+(k−1)xk−1 + kxk.

To begin with, if x = 1 then

Sk = 1+2+3+ · · ·+(k−1)+ k =
k(k+1)

2
.

In this case lim
k→∞

Sk = ∞.

Suppose now that x ̸= 1 and multiply Sk by x. Then

xSk = x2 +2x3 +3x4 + · · ·+(k−1)xk + kxk+1.

Then, substracting

Sk − xSk =
(

x+2x2 +3x3 + · · ·+ kxk
)
−
(

x2 +2x3 + · · ·+(k−1)xk + kxk+1
)

= x+ x2 + x3 + · · ·+ xk − kxk+1.

The positive terms in the right-hand side form the partial sum of the geometric —except for the
first term, which is missing. Then

(1− x)Sk =
xk+1 −1

x−1
−1− kxk+1 =

xk+1 − x− kxk+2 + kxk+1

x−1
=

x− (k+1)xk+1 + kxk+2

1− x
and therefore

Sk =
x− (k+1)xk+1 + kxk+2

(1− x)2 .

Now, if x > 1 the partial sum Sk diverges when k → ∞ because of the term kxk+2. If x < −1
the partial sum Sk does not have a limit when k → ∞ because kxk+2 alternates sign and grows
indefinitely in size. Finally, if |x|< 1 then

lim
k→∞

Sk = lim
k→∞

x− (k+1)xk+1 + kxk+2

(1− x)2 =
x

(1− x)2 .

All this is summarized in the equation
∞

∑
n=1

nxn =
x

(1− x)2 , |x|< 1. (4.7)

■
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Exercise 4.1 Using a similar procedure, prove that

(1− x)
k

∑
n=1

n2xn = 2
k

∑
n=1

nxn −
k

∑
n=1

xn − k2xk+1.

By taking the limit in this expression, finally prove that

∞

∑
n=1

n2xn =
x+ x2

(1− x)3 , |x|< 1. (4.8)

■

Suppose that
∞

∑
n=1

an is a convergent series. This means that lim
n→∞

Sn exists. But clearly an =

Sn −Sn−1, therefore

lim
n→∞

an = lim
n→∞

(Sn −Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = 0.

In other words:

Proposition 4.1.1 If
∞

∑
n=1

an is a convergent series then lim
n→∞

an = 0.

Or in a form that turns out to be more useful: if lim
n→∞

an ̸= 0 then
∞

∑
n=1

an does not converge (it

either diverges or not converges).

■ Example 4.4 The series

1−1+1−1+1−1+ · · ·=
∞

∑
n=0

(−1)n

does not converge because an = (−1)n does not tend to zero as n → ∞ (as a matter of fact, it does
not even converge because it is alternating).

This is another case in which all can be told from the expresion of the partial sum, because

Sk =

{
1 if k is even,
0 if k is odd.

So Sk itself is alternating, and therefore not convergent. ■

■ Example 4.5 The series

∞

∑
n=1

1
n
√

n

does not converge (in fact it diverges to +∞) because

lim
n→∞

1
n
√

n
= 1 ̸= 0.

■

Unfortunately the converse of Proposition 4.1.1 is not true (otherwise telling the convergence
of a series would be a trivial matter), as the following example illustrates:
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■ Example 4.6

1+
1
2
+

1
3
+ · · ·+ 1

n
+ · · ·=

∞

∑
n=1

1
n
= ∞.

The reason is that Sk ∼ logk, as we know from Example 3.19. However, as we can see,

lim
n→∞

1
n
= 0.

■

4.2 Series of nonnegative terms

A series of nonnegative terms is a series
∞

∑
n=1

an such that an ⩾ 0 for all n ∈ N.

What is most relevant of this kind of series is that the sequence of partial sums is monotically
increasing, because Sk −Sk−1 = ak ⩾ 0. Therefore either the partial sums are bounded above —and
then the series converges— or they are unbounded —and then the series diverges to +∞.

Because of this property, every subsequence of {Sk}∞
k=1 will also be monotically increasing and

convergent to the same limit (or divergent it the series diverges). In other words: in this kind of
series convergence can be decided on any subsequence of partial sums. Often this simplifies the
problem.

A further consequence is that series, interpreted as “infinite sums”, satisfy the conmutative and
associative properties. This is sucintly captured by the term inconditional convergence. Series of
nonnegative terms are inconditionally convergent.

Based on these facts there is a set of tests to check convergence of a series of nonnegative terms.
Of the very many that can be found in the literature, we will simply list here the most common
ones.

Theorem 4.2.1 — Comparison test. Let 0 ⩽ an ⩽ bn for all n ∈ N. Then

∞

∑
n=1

bn < ∞ ⇒
∞

∑
n=1

an < ∞.

Alternatively,

∞

∑
n=1

an = ∞ ⇒
∞

∑
n=1

bn = ∞.

Proof. Since
k
∑

n=1
an ⩽

k
∑

n=1
bn ⩽

∞

∑
n=1

bn < ∞, the sequence of partial sums of {an}∞
n=1 is bounded

above. ■

The requirement 0 ⩽ an ⩽ bn for all n ∈ N is too strict. We can relax it to 0 ⩽ an ⩽ bn for all
n > N (for some N ∈ N). The reason is that what happens to a finite number of terms (the first N
ones) is irrelevant for the convergence of the series.

Exercise 4.2 Show that
∞

∑
n=0

1
n!

< ∞ by comparing this series with the geometric series. (Note

that n! > 2n for n > 3.) ■
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Exercise 4.3 Show that
∞

∑
n=2

1
logn

= ∞ by comparing this series with the harmonic series. ■

Theorem 4.2.2 — Condensation test. Let {an}∞
n=1 be a monotonically decreasing sequence of

nonnegative terms, and let q0 < q1 < · · ·< qk < · · · be a strictly increasing sequence of natural
numbers. Then

∞

∑
k=0

(qk+1−qk)aqk <∞ ⇒
∞

∑
n=1

an <∞ and
∞

∑
k=0

(qk+1−qk)aqk+1 =∞ ⇒
∞

∑
n=1

an =∞.

Proof. We can split the partial sum Sqp+1 =
qp+1

∑
n=1

an in blocks as

Sqp+1 = Sq0 +(Sq1 −Sq0)+(Sq2 −Sq1)+ · · ·+(Sqp+1 −Sqp).

Then

Sqk+1 −Sqk = aqk+1 +aqk+2 + · · ·+aqk+1 ⩽ (qk+1 −qk)aqk

because the sequence an is monotonically decreasing and thus aqk is an upper bound to all terms in
the sum. Therefore

Sqp+1 ⩽ Sq0 +
p

∑
k=0

(qk+1 −qk)aqk ,

so
∞

∑
k=0

(qk+1 −qk)aqk < ∞ implies
∞

∑
n=1

an < ∞ because of the comparison test. Likewise, as aqk+1 is

a lower bound to all terms in the sum, Sqk+1 −Sqk ⩾ (qk+1 −qk)aqk+1 , so

Sq0 +
p

∑
k=0

(qk+1 −qk)aqk+1 ⩽ Sqp+1

and hence
∞

∑
k=0

(qk+1 −qk)aqk+1 = ∞ implies
∞

∑
n=1

an = ∞, again as a consequence of the comparison

test. ■

As a corollary to this theorem we can obtain a simpler version that commonly appears in
textbooks as Cauchy’s condensation test. It just amounts to taking the sequence of integers qk = 2k

in the previous theorem. As qk+1 − qk = 2k, then (qk+1 − qk)aqk = 2ka2k and (qk+1 − qk)aqk+1 =
2ka2k+1 = 1

2 2k+1a2k+1 . Hence both “condensed” series are one and the same. As a matter of fact,
the choice of 2 is made for purely historical reasons because any other natural number m > 1 will
do—notice that mk+1 −mk = (m−1)mk = m−1(m−1)mk+1.

Corollary 4.2.3 — Cauchy’s condensation test. Let {an}∞
n=1 be a monotonically decreasing

sequence of nonnegative terms. Then

∞

∑
k=0

2ka2k < ∞ ⇔
∞

∑
n=1

an < ∞.

■ Example 4.7 We will apply Cauchy’s condensation test to decide the convergence of Riemann’s
(or the generalised harmonic) series

∞

∑
n=1

1
nα

.
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To this purpose we compute

∞

∑
k=0

2k

2kα
=

∞

∑
k=0

1
2k(α−1) =

∞

∑
k=0

(
1

2α−1

)k

.

This is the geometric series, which we know is convergent if and only if

1
2α−1 < 1 ⇔ 2α−1 > 1 ⇔ α > 1.

Therefore Riemann’s series converges if and only if α > 1. ■

■ Example 4.8 Cauchy’s condensation test is particularly useful when logarithms are involved.
For instance, consider the series

∞

∑
n=2

1
n(logn)α

and compute

∞

∑
k=1

2k

2k(k log2)α
=

1
(log2)α

∞

∑
k=1

1
kα

,

which, up to a constant, is Riemann’s series. Therefore the tested series converges if and only if
α > 1. ■

One of the most powerful tests is the limit comparison test. The idea behind it is that two series
that behave similarly as n → ∞ have the same convergence properties. So the notions of equivalent
and negligible sequences adquire a special relevance here.

Theorem 4.2.4 — Limit comparison test. Given the series of nonnegative terms
∞

∑
n=1

an,
∞

∑
n=1

bn:

(a) If an ∼ bn then

∞

∑
n=1

an < ∞ ⇒
∞

∑
n=1

bn < ∞ and
∞

∑
n=1

an = ∞ ⇒
∞

∑
n=1

bn = ∞.

(b) If an ≪ bn then

∞

∑
n=1

bn < ∞ ⇒
∞

∑
n=1

an < ∞ and
∞

∑
n=1

an = ∞ ⇒
∞

∑
n=1

bn = ∞.

Proof.
(a) an ∼ bn means lim

n→∞

an
bn

= 1. Thus, according to the definition of limit, given ε > 0,

−ε <
an

bn
−1 < ε ⇔ 1− ε <

an

bn
< 1+ ε ⇔ (1− ε)bn < an < (1+ ε)bn

for large enough n. If we take ε < 1, (a) follows from the last inequality by the comparison
test.

(b) an ≪ bn means lim
n→∞

an
bn

= 0. Thus, given ε > 0,

−ε <
an

bn
< ε ⇔ −εbn < an < εbn

for large enough n. Hence (b) follows from an < εbn by the comparison test (the inequality
−εbn < an is true but useless).
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■

■ Example 4.9 In order to know if the series

∞

∑
n=1

1√
3n2 +2n+7

converges or diverges, all we need to know is that 3n2 +2n+7 ∼ 3n2, so
√

3n2 +2n+7 ∼
√

3n.
Since the series

∞

∑
n=1

1√
3n

=
1√
3

∞

∑
n=1

1
n
= ∞

because it is the harmonic series, then the series we are testing also diverges. ■

Exercise 4.4 Prove, using appropriately the limit comparison test, that if an ⩾ 0 for all n ∈ N
and

lim
n→∞

nαan = ℓ⩾ 0,

then
∞

∑
n=1

an < ∞ if α > 1 and
∞

∑
n=1

an = ∞ if α ⩽ 1. ■

Theorem 4.2.5 — Root test. If an ⩾ 0 for all n ∈ N and

lim
n→∞

n
√

an = ℓ⩾ 0,

then
∞

∑
n=1

an < ∞ if ℓ < 1 and
∞

∑
n=1

an = ∞ if ℓ > 1. (The case ℓ= 1 remains undecided.)

Proof. Given ℓ > ε > 0,

−ε < n
√

an − ℓ < ε ⇔ ℓ− ε < n
√

an < ℓ+ ε ⇔ (ℓ− ε)n < an < (ℓ+ ε)n

for large enough n. Now, if ℓ < 1 we can take ε so that ℓ+ ε < 1 (e.g., ε = (1− ℓ)/2). Therefore
the geometric series

∞

∑
n=1

(ℓ+ ε)n < ∞

and
∞

∑
n=1

an < ∞ by the comparison test. On the contrary, if ℓ > 1 we can take ε so that ℓ− ε > 1

(e.g., ε = (ℓ−1)/2). Hence

∞

∑
n=1

(ℓ+ ε)n = ∞

and
∞

∑
n=1

an = ∞ by the comparison test.

If ℓ= 1 neither inequality is useful and we can conclude nothing. ■

Corollary 3.4.4 to Stolz’s theorem transforms this test into another one:
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Corollary 4.2.6 — Quotient test. If an ⩾ 0 for all n ∈ N and

lim
n→∞

an

an−1
= ℓ⩾ 0,

then
∞

∑
n=1

an < ∞ if ℓ < 1 and
∞

∑
n=1

an = ∞ if ℓ > 1. (The case ℓ= 1 remains undecided.)

4.3 Alternating series
When the terms of a series can be either positive or negative, the test developed in the previous
section are no longer valid. However, these series can be classified into two main groups according
to whether they are absolutely convergent or not.

Definition 4.3.1 — Absolutely converget series.
∞

∑
n=1

an is said to be an absolutely convergent

series if
∞

∑
n=1

|an|< ∞.

It is easy to prove that absolutely convergent series are also convergent in the usual sense.
Therefore all tests for series of nonnegative terms can be applied to the series of absolute values.

Dirichlet proved that absolutely convergent series converge inconditionally. On the contrary,
series that do not converge absolutely are conditionally convergent. This means that a permutation
and/or association of their terms can change their sum (this result was proven by Riemann). Their
interpretation as “infinite sums” is thus weaker than that of absolutely convergent series, because
an “order of sum” must be specified in advance (as a matter of fact, this is what the definition of a
convergent series does).

■ Example 4.10 Consider the series

∞

∑
n=1

(−1)n+1

n
.

We will show later, in Example 4.11, that this series converges, but clearly does not do it absolutely
(because the series of absolute values is the harmonic series). Let us denote S its sum. Then

S = 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

Let us reorder its terms by choosing one positive followed by two negative terms, in order, and
then associate each positive with the first subsequent negative. We obtain

S′ =
(

1− 1
2

)
︸ ︷︷ ︸

=1/2

−1
4
+

(
1
3
− 1

6

)
︸ ︷︷ ︸

=1/6

−1
8
+

(
1
5
− 1

10

)
︸ ︷︷ ︸

=1/10

− 1
12

+ · · ·

=
1
2
− 1

4
+

1
6
− 1

8
+

1
10

− 1
12

+ · · ·= 1
2

(
1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

)
=

S
2
,

so with this manipulation the series sums half its initial value. ■

Among the series with arbitrary sign patterns the most frequently met are those with alternating
signs. These are referred to as alternating series. They can have either of the two forms

∞

∑
n=1

(−1)n+1an,
∞

∑
n=1

(−1)nan, (4.9)
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where an ⩾ 0.

R Note that
∞

∑
n=1

(−1)nan =−
∞

∑
n=1

(−1)n+1an, so the two forms are actually equivalent.

There is only one test for alternating series:

Theorem 4.3.1 — Leibniz test. If {an}∞
n=1 decreases monotonically and lim

n→∞
an = 0, then the

alternating series

∞

∑
n=1

(−1)n+1an (4.10)

converges.

■ Example 4.11 The series

∞

∑
n=1

(−1)n+1

n

converges according to Leibniz’s test because an = 1/n is a monotonically decreasing sequence
that approaches 0 as n → ∞. ■

4.4 Telescoping series

A series
∞

∑
n=1

an is said to be telescoping if there exists a sequence {un}∞
n=1 such that an = un −un+1

for all n ∈ N.
The importance of telescoping series is that they can be easily summed. The reason is that the

partial sum

Sk =
k

∑
n=1

an =
k

∑
n=1

(un −un+1) = u1 −uk+1,

therefore we have the simple formula

∞

∑
n=1

an =
∞

∑
n=1

(un −un+1) = u1 − lim
n→∞

un. (4.11)

■ Example 4.12 Consider the series
∞

∑
n=1

1
n(n+1)

.

Since we can expand

1
n(n+1)

=
1
n
− 1

n+1

the series telescopes identifying un = 1/n, so

∞

∑
n=1

1
n(n+1)

=
∞

∑
n=1

(
1
n
− 1

n+1

)
= 1− lim

n→∞

1
n
= 1.

■
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■ Example 4.13 Consider the series

∞

∑
n=1

log
(

1+
1
n

)
.

Since

log
(

1+
1
n

)
= log

(
n+1

n

)
= log(n+1)− logn

the series telescopes identifying un =− logn, so

∞

∑
n=1

log
(

1+
1
n

)
= 0+ lim

n→∞
logn = ∞.

The series diverges to +∞. ■

■ Example 4.14 Consider the series

∞

∑
n=1

arctan
1

1+n+n2 .

The key to show that this series telescopes is to realise that

1
1+n+n2 =

1
1+n(n+1)

=
(n+1)−n
1+n(n+1)

,

and to compare this formula with the trigonometric identity

tan(x− y) =
tanx− tany

1+ tanx tany
,

which allows us to indentify x = arctan(n+1) and y = arctann. In other words,

arctan
1

1+n+n2 = arctan
(

(n+1)−n
1+n(n+1)

)
= arctan(n+1)− arctann

and the series telescopes identifying un =−arctann. Therefore

∞

∑
n=1

arctan
1

1+n+n2 =−arctan1+ lim
n→∞

arctann =−π

4
+

π

2
=

π

4
.

■

To be honest, every series is telescoping because

Sk =
k

∑
n=1

an =
k

∑
n=1

(un −un+1) = u1 −uk+1,

so we can identify uk ≡ u1 −Sk−1, and choose u1 arbitrarily. The problem is that this is tantamount
to being able to calculate Sk —usually a difficult problem. So we really call telescoping those series
for which the identification an = un −un+1 is more or less explicit —as in the previous examples.
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Problems
Problem 4.1 Determine the convergent character of the following series of nonnegative terms:

(i)
∞

∑
n=1

(
n+1
2n−1

)n

;

(ii)
∞

∑
n=1

1
(3n−1)2 ;

(iii)
∞

∑
n=1

1√
2n4 +1

;

(iv)
∞

∑
n=1

1√
n(n+1)

;

(v)
∞

∑
n=1

|sinn|
n2 +n

;

(vi)
∞

∑
n=1

sin
1
n2 ;

(vii)
∞

∑
n=1

arcsin
1√
n

;

(viii)
∞

∑
n=1

3n−1
(
√

2)n
;

(ix)
∞

∑
n=1

nn

3nn!
;

(x)
∞

∑
n=1

( n
√

n−1)n;

(xi)
∞

∑
n=1

(
1+

1
n

)n2

3−n;

(xii)
∞

∑
n=2

1
(logn)n ;

(xiii)
∞

∑
n=2

n2

(logn)n ;

(xiv)
∞

∑
n=1

(√
n2 +1−n

)
;

(xv)
∞

∑
n=2

1
nlogn ;

(xvi)
∞

∑
n=2

1
(logn)logn ;

(xvii)
∞

∑
n=1

1
n n
√

n
;

(xviii)
∞

∑
n=2

(
n

n−1

)n

.

Problem 4.2 Prove that the series
∞

∑
n=1

(
a

2n−1
− b

2n+1

)
converges if, and only if, a = b, and in that case calculate its sum.

Problem 4.3 Discuss, depending on the value of the parameter a in the given range, whether the
following series converge or diverge:

(i)
∞

∑
n=1

n(1+a)ne−na, for a >−1;

(ii)
∞

∑
n=1

nn

ann!
, for a > 0;

(iii)
∞

∑
n=1

n!en

nn+a , for any a ∈ R;

(iv)
∞

∑
n=1

an

(1+a)(1+a2) · · ·(1+an)
, for a ⩾ 0.

Problem 4.4 Determine whether the following series are absolutely convergent, and if not, whether
they converge conditionally:

(i)
∞

∑
n=2

(−1)n

logn
;

(ii)
∞

∑
n=1

sin
(

πn+
1
n

)
;

(iii)
∞

∑
n=1

(−1)n
(

arctan
1
n

)2

;

(iv)
∞

∑
n=1

(−1)n(arctann)2;

(v)
∞

∑
n=1

(−1)n
(√

n2 −1−n
)

;

(vi)
∞

∑
n=1

(−1)n log
(

n
n+1

)
;

(vii)
∞

∑
n=1

(−1)n
(

1− cos
1
n

)
;

(viii)
∞

∑
n=1

(−1)n

log(en + e−n)
.

Problem 4.5 Sum the following series:
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(i)
∞

∑
n=0

3n+1 −2n−3

4n ;

(ii)
∞

∑
n=1

n
2n ;

(iii)
∞

∑
n=0

4n+1
3n ;

(iv)
∞

∑
n=1

(√
n+2−2

√
n+1+

√
n
)

;

(v)
∞

∑
n=1

√
n+1−

√
n√

n(n+1)
;

(vi)
∞

∑
n=1

log
[

n(n+2)
(n+1)2

]
;

(vii)
∞

∑
n=0

x⌊
n
2 ⌋y⌊

n+1
2 ⌋, with |xy|< 1;

(viii)
∞

∑
n=0

1
2n cos

2πn
3

.

Problem 4.6 Obtain the sum of the series
∞

∑
n=1

1
n3 +3n2 +2n

by rewriting it as a telescoping series.

HINT: Expand the general term in elementary fractions.

Problem 4.7 Let C0 be a circle of radius r. Let Q0 be a square inscribed in C0. Let C1 be the
circle inscribed in Q0, and Q1 a square inscribed in C1. Continue the process this way and obtain
the sequence of circles {Cn}∞

n=0 with radii {rn}∞
n=0. What is the sum of the areas of these infinitely

many circles?

Problem 4.8 Calculate lim
n→∞

an, where an =
√

2 4
√

2 8
√

2 · · · 2n√
2.

HINT: Calculate the limit of logan first.

Problem 4.9 Let b0 ∈ Z, bn ∈ {0,1,2, . . . ,9}, for n = 1,2, . . . , and form the series
∞

∑
n=0

bn

10n .

(a) Prove that this series converges.

(b) Discuss the meaning of this series and why it is so important.

(c) Calculate its sum for bn = 9 for all n ⩾ 0.

(d) Calculate its sum if bn = 1 for n even and bn = 2 for n odd.

Problem 4.10
(a) Prove (graphically or otherwise) that the equation tanx = x has a solution (2n−1)π

2 < λn <
(2n+1)π

2 for every n ∈ N.

(b) Prove that
∞

∑
n=1

1
λ 2

n
< ∞.

Problem 4.11
(a) Let

∞

∑
n=1

an and
∞

∑
n=1

bn two convergent series of nonnegative terms. Prove that
∞

∑
n=1

√
anbn < ∞.

HINT: Use the inequality xy ⩽ (x2 + y2)/2.

(b) As an application prove that if the series of nonnegative terms
∞

∑
n=1

an < ∞ then
∞

∑
n=1

√
an

n
< ∞.

Problem 4.12 Let {un}∞
n=1 be the sequence of all positive integers containing no zeros in their

decimal expression.

(a) Prove that
∞

∑
n=1

1
un

< 90.

HINT: Group all terms un with the same number of decimal digits.

(b) What can you say about the series
∞

∑
n=1

1
wn

, where {wn}∞
n=1 is the sequence of all positive

integers containing at least one zero in their decimal expression?
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Problem 4.13 In a real tour-de-force we are going to calculate the —apparently impossible— sum
of the conditionally convergent series

∞

∑
n=1

(−1)n log
(

n
n+1

)
.

We will do that in steps:
(a) Show that

2 ·4 ·6 · · ·(2n) = n!2n, 1 ·3 ·5 · · ·(2n−1) =
(2n)!
n!2n .

(b) Use Stirling to prove

2 ·4 ·6 · · ·(2n)∼
√

2πne−n(2n)n, 1 ·3 ·5 · · ·(2n−1)∼
√

2e−n(2n)n.

(c) Show that the partial sum S2k of the series above can be written

S2k = log
(

22 ·42 ·62 · · ·(2k)2

1 ·32 ·52 · · ·(2k−1)2(2k+1)

)
.

(d) Use the Stirling formulas derived above to calculate the limit of S2k when k → ∞. Why does
this provide the answer to the problem?

Problem 4.14 Suppose a certain series can be written as

∞

∑
n=1

(α0un +α1un+1 +α2un+2), α0 +α1 +α2 = 0.

(a) Rewrite the general term as an ordinary telescoping series and provide a formula for the sum.

(b) Apply this result to calculate the sum

∞

∑
n=1

2n+1
n(n+1)(n+2)

.

(c) Do the same for the general case

∞

∑
n=1

(α0un +α1un+1 + · · ·+αkun+k),
k

∑
j=0

α j = 0.

HINT: In (a), add and substract α0un+1 and replace α2 =−(α0 +α1). Use a similar procedure in
(c).
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5. Limit of a Function

5.1 Concept and definition

Functions are defined for every single point of their domains. However, differential calculus has to
do with the behaviour of functions “around” points, not just at them. The limit of a function is a
way to characterise that behavior. The idea is to know what value the function is approaching as we
get closer and closer to a certain point a (not necessarily in the domain of the function).

Our first definition will base this knowledge in the well-known limit of sequences.

Definition 5.1.1 We say that the limit of a function f : A → R when x approaches a is ℓ, and
denote it

lim
x→a

f (x) = ℓ, (5.1)

if, for every sequence {xn}∞
n=1 ⊂ A such that xn ̸= a for all n ∈ N and

lim
n→∞

xn = a,

it holds

lim
n→∞

f (xn) = ℓ.

Having a sequence in the domain that tends to a as n → ∞ is a way to approach a. The condition
xn ̸= a is there to account for those cases in which a /∈ A. Note the remark “for every sequence” in
the definition. It is very important because if it holds, then what f (x) tends to does not depend on
how we approach a.

■ Example 5.1 Consider the function f (x) = x2 and the point a = 2 (in the domain). Take the
sequence xn = 2+ εn. As long as εn ̸= 0 for every n ∈ N and εn → 0 as n → ∞, this sequence
satisfies the conditions of the definition. Then

f (xn) = (2+ εn)
2 = 4+2εn + ε

2
n −−−−→

n→∞
4.
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This proves that

lim
x→2

x2 = 4.

■

■ Example 5.2 The previous example might suggest that calculating a limit could be as simple as
evaluating f (a). To show that this is not always the case consider the function

f (x) =
x−1
x2 −1

,

a rational function whose domain is R−{1}. Take any sequence xn = 1+εn, with εn ̸= 0. If εn → 0
as n → ∞ then xn → 1. Now,

f (xn) =
εn

(1+ εn)2 −1
=

εn

2εn + ε2
n
=

1
2+ εn

−−−−→
n→∞

1
2
.

This proves that

lim
x→1

x−1
x2 −1

=
1
2

even though 1 is not in the domain of f (hence f (1) does not even exists). ■

■ Example 5.3 For a final illustrating example consider the function f (x) = sin(π/x), whose
domain is R−{0}, and take a = 0 (not in the domain). Consider the sequence xn = 1/n, satisfying
the requirements of the definition. Now,

f (xn) = sin(πn) = 0

for all n → ∞. So, if the limit exists, it has to be 0.
But now consider the sequence yn = 2/(4n+1). Then,

f (yn) = sin
(

π
4n+1

2

)
= sin

(
π

(
2n+

1
2

))
= sin

(
2nπ +

π

2

)
= sin

π

2
= 1.

So we have found two different sequences, xn and yn, such that the two limits, f (xn) and f (yn)
exist, but are different. So f (x) does not have a limit when x → 0. ■

Checking that the limit exists for every conceivable sequence might be a daunting task. For this
reason there is this alternative (but equivalent) definition of limit, which is not based on sequences
and is more widely used.

Definition 5.1.2 — ε-δ definition. We say that the limit of a function f : A → R when x
approaches a is ℓ if for every ε > 0 there exists δ > 0 such that | f (x)− ℓ| < ε whenever
0 < |x−a|< δ .

The idea of this definition is that for every ε > 0 you can find a δ > 0 such that (a−δ ,a)∪
(a,a+δ )⊂ f−1

(
(ℓ− ε, ℓ+ ε)

)
(see Figure 5.1).

As with the limit of sequences (and for the same reason), if the limit exists it is unique. In other
words, if the limit of f (x) when x → a is both ℓ and m, then ℓ= m.

5.1.1 One-sided limits
There is a difference between the limit when n → ∞ and the limit when x → a: in the former case
we can only “approach ∞ from the left”, whereas in the latter case we can approach a both from the
left (x < a) or from the right (x > a). This motivate the definition of one-sided limit.
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Figure 5.1: Sketch for the ε-δ definition of limit. The horizontal green stripe marks the interval
(ℓ−ε, ℓ+ε), so the two vertical stripes correspond to f−1

(
(ℓ−ε, ℓ+ε)

)
—the set of points whose

image is (ℓ− ε, ℓ+ ε). It is pictorially obvious that, no matter how narrow is the band, we can
always construct an interval (a−δ ,a+δ ) (vertical orange stripe) such that its image through f
(except maybe that of a itself) (horizontal orange stripe) is contained in (ℓ− ε, ℓ+ ε).

Definition 5.1.3 — One-sided limit. We say that the left-handed limit of a function f : A →R
when x approaches a is ℓ, and denote it

lim
x→a−

f (x) = ℓ, (5.2)

if for every sequence {xn}∞
n=1 ⊂ A, such that xn < a for all n ∈ N and lim

n→∞
xn = a, we have

lim
n→∞

f (xn) = ℓ.

Similarly, we say that the right-handed limit of a function f : A → R when x approaches a
is ℓ, and denote it

lim
x→a+

f (x) = ℓ, (5.3)

if for every sequence {xn}∞
n=1 ⊂ A, such that xn > a for all n ∈ N and lim

n→∞
xn = a, we have

lim
n→∞

f (xn) = ℓ.

■ Example 5.4 The Heaviside step function is defined as

H(x) =

{
0, x < 0,
1, x > 0,

(5.4)

and H(0) is defined arbitrarily —if at all. Clearly for this function

lim
x→0−

H(x) = 0, lim
x→0+

H(x) = 1.

The two one-sided limits exist, but they are different. Clearly then H(x) has no limit when x → 0. ■

Proposition 5.1.1

lim
x→a

f (x) = ℓ ⇔ lim
x→a−

f (x) = lim
x→a+

f (x) = ℓ.
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5.1.2 Infinite limits

We can adapt the definitions above to describe a function that grows unbounded when x → a. For
instance:

Definition 5.1.4 — Infinite limits. We say that the limit of a function f : A → R when x
approaches a is +∞ (respectively −∞), and denote it

lim
x→a

f (x) = +∞ (respectively lim
x→a

f (x) =−∞), (5.5)

if for every sequence {xn}∞
n=1 ⊂ A, such that xn ̸= a for all n ∈ N and lim

n→∞
xn = a, we have

lim
n→∞

f (xn) = +∞ (respectively lim
n→∞

f (xn) =−∞).

And similarly for the one-sided limits.

■ Example 5.5 The function f (x) = 1
|x| tends to +∞ when x → 0. The reason is that for every

sequence xn ̸= 0 such that lim
n→∞

xn = 0,

lim
n→∞

1
|xn|

= ∞.

For the same reason, the function f (x) = 1
x has a right-handed limit +∞ when x → 0+. However,

its left-handed limit is −∞, because taking any sequence xn < 0 such that lim
n→∞

xn = 0,

lim
n→∞

1
xn

=−∞.

Thus, 1/x has no limit —not even infinite— when x → 0. ■

Two particularly important one-sided limits are:

Definition 5.1.5 — Limit at the infinities. We say that the limit of a function f : A → R when x
approaches +∞ (respectively −∞) is ℓ, and denote it

lim
x→+∞

f (x) = ℓ (respectively lim
x→−∞

f (x) = ℓ), (5.6)

if for every sequence {xn}∞
n=1 ⊂ A, such that lim

n→∞
xn =+∞ (respectively −∞), we have

lim
n→∞

f (xn) = ℓ.

Exercise 5.1 Extend the definitions above to express the cases of a function that approaches
±∞ when x approaches ±∞ (all combinations of signs). ■

A function such that f (x)→±∞ when x → a± is said to diverge at x = a.

■ Example 5.6 The function f (x) = 1
x → 0 when x →±∞. Let us see it for the case x →+∞. Take

any sequence xn that diverges to +∞. Then

lim
n→∞

1
xn

= 0.

For x →−∞ the argument is similar. ■
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5.2 Algebraic properties

As in the case of sequences, computing limits through the definition is not an easy task. However
—as for sequences— limits satisfy a set of properties that allow us to do algebraic manipulations
with limits and simplify their calculations.

Proposition 5.2.1 Let f and g be two real functions such that lim
x→a

f (x) = ℓ and lim
x→a

g(x) = ℓ′. Then
the following properties hold:

1. lim
x→a

[
f (x)±g(x)

]
= ℓ+ ℓ′;

2. lim
x→a

f (x)g(x) = ℓℓ′;

3. lim
x→a

f (x)
g(x)

=
ℓ

ℓ′
provided ℓ′ ̸= 0.

(These properties hold also in the case a =±∞ or even for one-sided limits.)

Proposition 5.2.2 Let f a real function such that lim
x→a

f (x) = ℓ. Then the following properties hold:
1. f is bounded in an evironment of a;

2. if ℓ ̸= 0, f (x) has the same sign as ℓ in an evironment of a;

3. if g is another function such that lim
x→b

g(x) = a, but g(x) ̸= a in an environment of b, then

lim
x→b

( f ◦g)(x) = ℓ; in particular, if ℓ > 0:

(a) lim
x→a

log f (x) = logℓ;

(b) lim
x→a

f (x)α = ℓα , for any α ∈ R.

R An environment of a point a ∈ R is an interval of the form (a−δ ,a+δ ), where δ > 0. If a
property holds “in an environment” it means that there exists some value δ > 0 such that the
property holds within the environment (a−δ ,a+δ ).

■ Example 5.7 Obviously lim
x→a

x = a. But from this and property 2. above we can conclude that for
all n ∈ R

lim
x→a

xn = an.

A polynomial Pn(x) is a linear combination of powers xk, k = 0,1, . . . ,n. Thus, applying
properties 1. and 2. it follows that

lim
x→a

Pn(x) = Pn(a). (5.7)

Then, applying property 3.,

lim
x→a

Pn(x)
Qm(x)

=
Pn(a)
Qm(a)

, (5.8)

provided a is not a root of Qm(x).
Thus, calculating limits of polynomials or rational functions is a trivial matter. ■

As for sequences, we have a Sandwich rule for functional limits:

Theorem 5.2.3 — Sandwich rule. If lim
x→a

g(x) = lim
x→a

h(x) = ℓ, and in an envionment of a it

holds g(x)⩽ f (x)⩽ h(x), then lim
x→a

f (x) = ℓ. (This rule is valid even if a =±∞ or ℓ=±∞.)
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A simple consequence of this sandwich rule is that

lim
x→a

| f (x)|= 0 ⇒ lim
x→a

f (x) = 0, (5.9)

simply because −| f (x)|⩽ f (x)⩽ | f (x)|.
■ Example 5.8 Let us apply the sandwich rule to calculate

lim
x→0

x2 sin
(

1
x

)
.

We cannot simply apply the algebraic rules because sin
(1

x

)
has no limit when x → 0 (it oscillates

more and more wildly between 0 and 1 as we approach 0). However,

−x2 ⩽ x2 sin
(

1
x

)
⩽ x2

because for every x ̸= 0 we have −1 ⩽ sin
(1

x

)
⩽ 1. Since ±x2 → 0 as x → 0, by the sandwich rule

lim
x→0

x2 sin
(

1
x

)
= 0.

Figure 5.2: Plot of f (x) = x2 sin
(1

x

)
. The dotted blue lines are plots of the two envelopes x2 and

−x2.

Figure 5.2 shows a plot of f (x) explaining intuitively what we have just proven analytically. ■

■ Example 5.9 Let a > 0 and let us prove that

lim
x→a

√
x =

√
a.

First of all, notice that this is equivalent to proving that

lim
x→a

(√
x−

√
a
)
= 0 ⇔ lim

x→a

∣∣√x−
√

a
∣∣= 0

Now, to prove the latter we can write

0 ⩽
∣∣√x−

√
a
∣∣= ∣∣∣∣ x−a√

x+
√

a

∣∣∣∣= |x−a|√
x+

√
a
⩽

|x−a|√
a

−−−−→
x→a

0,

and the result follows from the sandwich rule. ■
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Exercise 5.2 By a similar argument prove that for all a > 0

lim
x→a

n
√

x = n
√

a. (5.10)

HINT: Use the identity a−b = (an −bn)/(an−1 +an−2b+ · · ·+abn−2 +bn−1). ■

■ Example 5.10 From the equivalences (3.13), (3.14), it follows that for any sequence εn → 0 we
have

lim
n→∞

sinεn = 0, lim
n→∞

cosεn = 1, lim
n→∞

sinεn

εn
= 1, lim

n→∞

1− cosεn

ε2
n

=
1
2
.

By the sequential definition of limit it follows that

lim
x→0

sinx = 0, lim
x→0

cosx = 1, lim
x→0

sinx
x

= 1, lim
x→0

1− cosx
x2 =

1
2
. (5.11)

Using this limits and trigonometric identities we can easily prove that

lim
x→a

sinx = sina, lim
x→a

cosx = cosa. (5.12)

For instance, for the sine, setting x = a+ t,

lim
x→a

sinx = lim
t→0

sin(a+ t) = lim
t→0

(sinacos t + cosasin t) = sina
(

lim
t→0

cos t
)

︸ ︷︷ ︸
=1

+cosa
(

lim
t→0

sin t
)

︸ ︷︷ ︸
=0

= sina,

and similarly for the cosine. ■

5.3 Asymptotic comparison of functions
Example 5.10 makes it clear that, thanks to the sequential definition of limit, the notion of asymptotic
comparison can be brought to the realm of functional limits. Hence we have:

Definition 5.3.1 — Asymptotic comparison. Let f and g be two real functions that either
both diverge or both converge to 0 as x → a (−∞ ⩽ a ⩽ ∞). We say that f and g are equivalent
when x → a (and denote it f (x)∼ g(x) as x → a) if

lim
x→a

f (x)
g(x)

= 1.

Accordingly, given equations (3.13) and (3.14), we can state that

log(1+ x)∼ (ex −1)∼ sinx ∼ tanx ∼ x (x → 0), (5.13)

1− cosx ∼ x2

2
(x → 0). (5.14)

(We will later re-derive this same relations in a more systematic and natural way.)
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Problems
Problem 5.1 Calculate the following limits, simplifying the common factors that numerator and
denominator may contain:

(i) lim
x→a

xn −an

x−a
, n ∈ N;

(ii) lim
x→a

√
x−

√
a

x−a
;

(iii) lim
x→64

√
x−8

3
√

x−4
;

(iv) lim
x→0

1−
√

1− x2

x2 ;

(v) lim
x→0

1
(1−x)3 −1

x
;

(vi) lim
x→1

(
1√

x−1
− 2

x−1

)
.

Problem 5.2 Calculate the following limits:

(i) lim
x→0

(sin2x3)2

x6 ;

(ii) lim
x→0

tanx2 +2x
x+ x2 ;

(iii) lim
x→0

sin(x+a)− sina
x

;

(iv) lim
x→0

(1+ x)1/x;

(v) lim
x→0

log(1−2x)
sinx

;

(vi) lim
x→0

(1+ sinx)2/x;

(vii) lim
x→0

ex − esinx

x− sinx
;

(viii) lim
x→0

tanx− sinx
x3 ;

(ix) lim
x→0

( x
sinx

) sinx
sinx−x

;

(x) lim
x→0

(cosx)1/x2
;

(xi) lim
x→π

1− sin(x/2)
(x−π)2 ;

(xii) lim
x→0

ax −bx

x
.

Problem 5.3 Calculate the following limits:

(i) lim
x→∞

x3 +4x−7
7x2 −

√
2x6 + x5

;

(ii) lim
x→∞

x+ sinx3

5x+6
;

(iii) lim
x→∞

√
x√

x+
√

x+
√

x
;

(iv) lim
x→∞

(√
x2 +4x− x

)
;

(v) lim
x→±∞

ex

ex −1
;

(vi) lim
x→±∞

x−2√
4x2 +1

;

(vii) lim
x→±∞

tanhx;

(viii) lim
x→±∞

ex

sinhx
;

(ix) lim
x→±∞

(
2x+7
2x−6

)√
4x2+x−3

.

Problem 5.4 Calculate the one-sided limits:

(i) lim
x→0±

(
1
x

)⌊x⌋
;

(ii) lim
x→0±

e1/x; (iii) lim
x→0±

1− e1/x

1+ e1/x .



6. Continuity

6.1 Definition, properties, and continuity of elementary functions

Those functions whose limit at a point a of their domain coincides with the value of that function at
that point play a very special role in calculus. They mainly coincide with those functions whose
graph “can be plotted without lifting the pen from the paper” —which is the intuitive notion of a
continuous function.1 The formal definition of continuity is the following:

Definition 6.1.1 — Continuity. A real function f is said to be continuous at a point a of its
domain if

lim
x→a

f (x) = f (a). (6.1)

Definition 6.1.2 — Continuity in intervals. f is said to be continuous in
(a,b) if it is continuous at every point x ∈ (a,b);
[a,b) if it is continuous in (a,b) and lim

x→a+
f (x) = f (a);

(a,b] if it is continuous in (a,b) and lim
x→b−

f (x) = f (b);

[a,b] if it is continuous in [a,b) and in (a,b].

■ Example 6.1 Examples 5.7 and 5.10 prove that:

(a) polynomials Pn(x) are continuous in all R;
(b) rational functions Pn(x)/Qm(x) are continuous in all R except at the roots of Qm;
(c) sinx and cosx are continuous in all R;
(d) tanx is continuous except at the zeroes of cosx;
(e) cotx is continuous except at the zeroes of sinx.

■

1We say ‘mainly’ because there are very weird functions, which one would intuitively not refer to them as continuous,
and nevertheless they are continuous in some subsets. But we shall not be concerned with these functions in this course.
We will rather focus on practical, “sensible” functions.
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■ Example 6.2 Let us consider the exponential function. At any point a ∈ R we can write

ex = ea+(x−a) = eaex−a = ea + ea(ex−a −1).

Since ex−a −1 ∼ x−a as x → a,

lim
x→a

ex = ea + ea lim
x→a

(x−a) = ea.

Therefore the exponential function is continuous in R. ■

The algebraic properties of functional limits yield the following algebraic properties for contin-
uous functions:

Proposition 6.1.1
(i) If f and g are continuous at a, then so are f +g and f g. If on top of that g(a) ̸= 0, then f/g

is also continuous at a.
(ii) If g is continuous at a and f is continuous at g(a), then f ◦g is continuous at a.

(iii) If an invertible function f is continuous at a, then f−1 is continuous at f (a).

■ Example 6.3 As a consequence of (iii) in the previous Proposition, logx, arcsinx, arccosx,
arctanx, arccotx are continuous functions in their domains. ■

■ Example 6.4 Function f (x) = xα , for α ∈R, is continuous in (0,∞). The reason is that f can be
written

f (x) = xα = eα logx,

i.e., as a composition of continuous functions.
If α > 0 and we define f (0) = 0, then it is also continuous at x = 0 because

lim
x→0+

eα logx = lim
t→−∞

et = 0

(we have made the change of variable t = α logx).
If α = 0 then f (x) = 1 in (0,∞), so it is continuous also at x = 0 if we define f (0) = 1. ■

6.2 Discontinuities
Discontinuities are points where a function is not continuous. There are several reasons why a
function may not be continuous at a point, and some of them bear a specific name.

A function like f (x) =
sinx

x
is continuous in all R except x = 0, because the denominator van-

ishes at that point. However, the function has a well defined limit at that point (see equation (5.11)),

lim
x→0

sinx
x

= 1.

So we can re-define the function to be

f (x) =


sinx

x
, x ̸= 0,

1 x = 0,

and now it is continuous everywhere in R. One such discontinuity is called an avoidable disconti-
nuity because it can be “avoided” by properly defining the function.

The case of the Heaviside step function

H(x) =

{
0 x < 0,
1 x ⩾ 0,
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typifies a stronger case of discontinuity, which cannot be avoided. The function is continuous in
R−{0} (because it is a constant for x < 0 and for x > 0), but at x = 0 the left-handed limit is 0
whereas the right-handed limit is 1. So the limit when x → 0 does not exist because, although the
two one-sided limits exist, they are different. This is a jump discontinuity because the graph of
the function “jumps” at that point.

R Note that, given the definition of continuity in intervals that we have made, although H(x) is
discontinuous at x = 0, it is continuous e.g. in [0,1] (but it not continuous in [−1,0]).

Figure 6.1: Illustration of an asymptote for the function f (x) = x−2
x−3 .

In some cases the function is not continuous because the one or both of the two one-sided limits
is ±∞. Such is the case of 1/x or logx. We say that the function has a singularity at that point. We
also call it an asymptote (see Figure 6.1).

Finally, a function can be discontinuous simply because it has no limit at a point. For instance,
sin 1

x is continuous in R−{0} because the limit when x → 0 does not exist.

Exercise 6.1 Which kind of discontinuity has the function f (x) = xsin 1
x at x = 0? ■

6.3 Continuous functions in closed intervals
Continuity in a closed interval is a very restricting property. As a consequence, knowing that a
function is continuous in a closed interval provides us very relevant information about the function.
This information is captured in a series of theorems, the most important of which is due to Bolzano.

Theorem 6.3.1 — Bolzano’s theorem. If f is a continuous function in [a,b] and f (a) f (b)< 0,
then there exists c ∈ (a,b) such that f (c) = 0.

This theorem is the formal expression of the well-known fact that we cannot draw a continuous
curve from a point above the X axis to another point below without crossing the X axis.

This theorem has an important corollary that basically expresses the same idea.
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Corollary 6.3.2 — Intermediate values theorem. If f is a continuous function in [a,b] and
min{ f (a), f (b)}< z < max{ f (a), f (b)}, then there exists c ∈ (a,b) such that f (c) = z.

We reword this result by stating that a continuous function in a closed interval [a,b] takes all
intermediate values between f (a) and f (b).

Proof. The proof is as simple as defining the function g(x) = f (x)− z, which being the sum of
two continuous functions is continuous itself in [a,b]. But either f (a)< z < f (b) (i.e., f (a)− z <
0 < f (b)− z) or f (b)< z < f (a) (i.e., f (b)− z < 0 < f (a)− z); in any case, g(a)g(b)< 0. Then
Bolzano’s theorem implies that there exists c ∈ (a,b) such that g(c) = f (c)− z = 0. ■

■ Example 6.5 We shall prove, applying the intermediate value theorem, that the equation xex = 1
has a solution x∗ > 0.

Let us define the function f (x) = xex, which is continuous in R. Now, f (0) = 0 and f (1) =
e = 2.71828 . . . Then f (0)< 1 < f (1), so 1 is an intermediate value of those f takes in the interval
[0,1]. According to the intermediate values theorem there exists 0 < x∗ < 1 such that f (x∗) = 1,
and that is the solution we are looking for. ■

The last important result of this sort is the following theorem:

Theorem 6.3.3 If f is a continuous function in the interval [a,b] then there exists xm,xM ∈ [a,b]
such that f (xm)⩽ f (x)⩽ f (xM) for any x ∈ [a,b].

In other words, a continuous function in a closed interval reaches its maximum and minimum
values within the interval (in particular, it is bounded).

The requirement of f to be continuous is well illustrated by the function f (x) = 1/x in [−1,1].
It is not even bounded because is not continuous in the interval (as a matter of fact, it is not even
defined at x = 0).

The requirement of the interval to be closed is illustrated, for instance, by the function f (x) = x2

in [0,1). Although the function is continuous in the whole interval it does not reach the maximum
within it (the supreme of the values of f in that interval is f (1) = 1, but it is clearly reached outside
the interval).
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Problems
Problem 6.1

(a) Prove that if f is continuous then so is | f |. Show that the reciprocal is false by finding a
counterexample.

(b) What can be said about a function that is continuous but all the values it takes are in Q?

Problem 6.2
(a) Let f : [0,1]→ [0,1] be a continuous, surjective function. Prove that there exists c ∈ [0,1]

such that f (c) = c.

(b) Let f be a continuous function in [a,b] and let x1, . . . ,xn ∈ [a,b]. Prove that there exists

c ∈ [a,b] such that f (c) =
1
n

n

∑
k=1

f (xk).

Problem 6.3 Consider the function

f (x) =
1

λx2 −2λx+1
.

Determine for which values λ ∈ R the function is continuous in (a) R, or (b) [0,1].

Problem 6.4 Study the continuity of the following functions:

(i) f (x) =
e−5x + cosx
x2 −8x+12

;

(ii) f (x) = e3/x + x3 −9;

(iii) f (x) = x3 tan(3x+2);

(iv) f (x) =
√

x2 −5x+6;

(v) f (x) = (arcsinx)3;

(vi) f (x) = (x−5) log(8x−3);

(vii) f (x) = x−⌊x⌋;

(viii) f (x) =

{
x2 sin(1/x), x ̸= 0,
0, x = 0;

(ix) f (x) =


tanx√

x
, x > 0,

0, x = 0,
e1/x, x < 0;

(x) f (x) =

{
x, x ∈Q,

−x, x /∈Q;

(xi) f (x) =


sin(πx), x <−1,
|x|− x, −1 ⩽ x < 1,
(x−1)3, x ⩾ 1;

(xii) f (x) =


(x+1)2, x ⩽−1,
sgnx+1, −1 < x < 1,
2x, x ⩾ 1;

(xiii) f (x) =


x2, x ⩽−2,
|x2 −1|, −2 < x < 2,
4x−5, x ⩾ 2;

(xiv) f (x) =


(x−1)2, x > 1,
x−⌊x⌋, −1 ⩽ x ⩽ 1,
x+1, x <−1.

Problem 6.5 Which of these equations have at least one solution in the specified set?:

(i) x2 −18x+2 = 0, in [−1,1];

(ii) x− sinx = 1, in R;

(iii) ex +1 = 0, in R;

(iv) cosx+2 = 0, in R;

(v) f (x) = 0, in [−2,2], where f is given by

f (x) =

{
x2 +2, −2 ⩽ x < 0,
−(x2 +2), 0 ⩽ x ⩽ 2;

(vi) 1
4 x3 − sin(πx)+3 = 7

3 , in [−2,2];

(vii) |sinx|= sinx+3, in R.

Problem 6.6 Prove that any polynomial of odd degree has at least one real root.





7. Derivatives

7.1 Concept and definition

Derivates are introduced to characterise the rate of variation of a function with a number. The rate
of variation measures how much the function f (x) increases (positive) or decreases (negative) per
unit of variation of the variable x. Thus, within the interval [a,x] this rate will be

∆ f
∆x

=
f (x)− f (a)

x−a
.

Figure 7.1 illustrates that the narrower the interval [a,x] where the variation is measured the more
accurate the estimated rate. Ideally, the measure would be perfect if this interval were infinitely
narrow. This is the notion of derivative and the motivation of its definition:

Figure 7.1: The rate of variation of f (x) as obtained for different intervals.
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Definition 7.1.1 — Derivative. The derivative of the function f at the point a of its domain is
defined as

f ′(a) = lim
x→a

f (x)− f (a)
x−a

, (7.1)

provided the limit exists. (When it does, we say that the function is differentiable at a.)

Alternatively, introducing the change of variable x = a+h, the limit (7.1) can be obtained as

f ′(a) = lim
h→0

f (a+h)− f (a)
h

.

Figure 7.1 also shows that f ′(a) —the rate of variation of f (x) at x = a— coincides with the
slope of the straight line tangent to the graph of f (x) at the point

(
a, f (a)

)
—which is an important

geometric characterisation of the derivative concept.

R Often you will see the derivative denoted as

f ′(a) =
d f
dx

(a).

This is Leibniz’s notation —a bit more mnemotechnical because it reminds that the derivative
is, after all, a rate of change of f .

■ Example 7.1 Consider the function f (x) = x2. Its derivative at any point x would be, according
to the defintion,

lim
h→0

(x+h)2 − x2

h
= lim

h→0

x2 +2xh+h2 − x2

h
= lim

h→0

2xh+h2

h
= lim

h→0
(2x+h) = 2x.

Therefore f ′(x) = 2x. ■

Exercise 7.1 Using Newton’s binomial formula prove that the derivative of f (x) = xn, with
n ∈ N arbitrary, at any point x ∈ R is f ′(x) = nxn−1. (Note that this formula holds even if n = 0,
for which f (x) = 1.) ■

■ Example 7.2 Let f (x) = sinx and g(x) = cosx. By definition

f ′(x) = lim
h→0

sin(x+h)− sinx
h

= lim
h→0

sinxcosh+ cosxsinh− sinx
h

= sinx lim
h→0

cosh−1
h

+ cosx lim
h→0

sinh
h

.

But

lim
h→0

sinh
h

= 1, lim
h→0

cosh−1
h

=− lim
h→0

h
1− cosh

h2 =−0 · 1
2
= 0,

hence f ′(x) = cosx.
Similarly

g′(x) = lim
h→0

cos(x+h)− cosx
h

= lim
h→0

cosxcosh− sinxsinh− cosx
h

= cosx lim
h→0

cosh−1
h

− sinx lim
h→0

sinh
h

=−sinx.

Thus we have the result (sinx)′ = cosx, (cosx)′ =−sinx. ■
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■ Example 7.3 Let f (x) = ex and compute

f ′(x) = lim
h→0

ex+h − ex

h
= ex lim

h→0

eh −1
h

= ex.

■

We say that f is differentiable in the interval (a,b) if it is differentiable at every point of the
interval.

The function f ′, defined as

f ′ : A −→ R
x −→ y = f ′(x),

(7.2)

where A is the set of points where f is differentiable, is called the derivative function of f (or
simply the derivative of f ).

Likewise, we can introduce higher order derivatives. For instance, f ′′ is the second derivative
of f , i.e., the derivative function of f ′. Or f ′′′ is the third derivative of f , i.e., the derivative function
of f ′′. And so on. (Beyond the third derivative it is customary to denote higher order derivatives as
f (n), the nth derivative of f .)

The following theorem emphasises that differentiability is a more restrictive property than
continuity.

Theorem 7.1.1 If f is differentiable at a it is also continuous at a.

Proof. It is very simple. All we have to prove is that

lim
x→a

f (x) = f (a) ⇔ lim
x→a

[ f (x)− f (a)] = 0.

For that we just need to multiply and divide by x−a, and apply the algebraic properties of limits:

lim
x→a

[ f (x)− f (a)] = lim
x→a

f (x)− f (a)
x−a

(x−a) = lim
x→a

f (x)− f (a)
x−a

· lim
x→a

(x−a) = f ′(a) ·0 = 0,

where we have used that the first limit exists (the hypothesis of the theorem) and it is the derivative
of f at x = a. ■

An obvious consequence of this theorem is that discontinuous functions are not differentiable
at the discontinuities.

■ Example 7.4 Function f (x) = |x| is continuous in R, however, f ′(0) does not exist. The reason
is that

lim
x→0+

|x|−0
x−0

= lim
x→0+

x
x
= 1

because |x|= x for x ⩾ 0. However

lim
x→0−

|x|−0
x−0

= lim
x→0−

−x
x

=−1

because |x|=−x for x< 0. Therefore the limit defining f ′(0) does not exists because the left-handed
and right-handed limits are different. ■
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■ Example 7.5 Function

f (x) =

{
xsin(1/x), x ̸= 0,
0, x = 0

is continuous in R, however, f ′(0) does not exist:

lim
x→0

xsin(1/x)−0
x−0

= lim
x→0

sin(1/x).

On the contrary, function

g(x) =

{
x2 sin(1/x), x ̸= 0,
0, x = 0

is differentiable at x = 0 (in fact everywhere, as we will see later) and

f ′(0) = lim
x→0

x2 sin(1/x)−0
x−0

= lim
x→0

xsin(1/x) = 0.

■

7.2 Algebraic properties
The fact that derivatives are defined as limits leads to the following algebraic properties:

Proposition 7.2.1 Let f and g be two differentiable functions (in an appropriate set). Then:
(i) (λ f +µg)′ = λ f ′+µg′, where λ ,µ ∈ R; (linearity)

(ii) ( f g)′ = f ′g+ f g′; (Leibniz’s rule)

(iii) ( f ◦g)′ = ( f ′ ◦g)g′; (chain rule)

(iv)
(

f
g

)′
=

f ′g− f g′

g2 , provided g ̸= 0; (quotient rule)

(v)
(

f−1)′ = 1
f ′ ◦ f−1 ; (inverse rule)

Proof. Except for some technicalities —which we will omit here—, the proof of these rules is just
an application of the algebraic properties of limits.

(i) From the linearity of limits,

(λ f +µg)′(a) = lim
x→a

λ f (x)+µg(x)−λ f (a)+µg(a)
x−a

= λ lim
x→a

f (x)− f (a)
x−a

+µ lim
x→a

g(x)−g(a)
x−a

= λ f ′(a)+µg′(a).

(ii) Now we need to add and substract f (a)g(x):

( f g)′(a) = lim
x→a

f (x)g(x)− f (a)g(a)
x−a

= lim
x→a

f (x)g(x)− f (a)g(x)+ f (a)g(x)− f (a)g(a)
x−a

= lim
x→a

g(x)
f (x)− f (a)

x−a
+ f (a) lim

x→a

g(x)−g(a)
x−a

= g(a) f ′(a)+ f (a)g′(a),

where we have used that g is continuous because it is differentiable.
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(iii) Here we need to multiply and divide by g(x)−g(a):

( f ◦g)′(a) = lim
x→a

f
(
g(x)

)
− f
(
g(a)

)
x−a

= lim
x→a

f
(
g(x)

)
− f
(
g(a)

)
g(x)−g(a)

g(x)−g(a)
x−a

= lim
y→g(a)

f (y)− f
(
g(a)

)
y−g(a)

lim
x→a

g(x)−g(a)
x−a

= f ′
(
g(a)

)
g′(a) = ( f ′ ◦g)(a)g′(a),

where we have changed the variable y = g(x), so that y → g(a) as x → a because g is
continuous.

(iv) First we need to prove (x−1)′ =−x−2 for any x ̸= 0. We do that using the definition:(
1
x

)′
= lim

h→0

1
x+h −

1
x

h
= lim

h→0

x− (x+h)
hx(x+h)

= lim
h→0

−h
hx(x+h)

= lim
h→0

−1
x(x+h)

=− 1
x2 .

Now we write the quotien as a product and apply the product rule:(
f
g

)′
=

(
f · 1

g

)′
= f ′

(
1
g

)
+ f

(
1
g

)′
.

But 1/g = h◦g, where h(x) = x−1, so we can apply the chain rule and obtain(
1
g

)′
=− g′

g2 .

Thus, finally,(
f
g

)′
=

f ′

g
− f g′

g2 =
f ′g− f g′

g2 .

(v) The equation that defines the inverse is ( f ◦ f−1)(x) = x. If we differentiate this equation, we
get (

f ◦ f−1)′ (x) = 1.

Applying the chain rule we obtain(
f ′ ◦ f

)
(x)
(

f−1)′ (x) = 1,

from which we arrive at the result(
f−1)′ (x) = 1

( f ′ ◦ f )(x)
. ■

The following examples illustrate how these rules can be applied to obtain new derivatives:

■ Example 7.6 If f (x) = ex then f−1(x) = logx. Therefore

(logx)′ =
1

elogx =
1
x
.

Logarithms can have a different base, say a > 0. They are denoted loga x and form the inverse
function of ax. Now ax = ex loga, so by the chain rule

(ax)′ =
(
ex loga)′ = (ex loga) loga = ax loga.

Therefore

(loga x)′ =
1

aloga x loga
=

1
x loga

.

■
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■ Example 7.7 Function f (x) = xα , with α ∈ R, can be written as f (x) = eα logx. Thus, applying
the chain rule,

(xα)′ = eα logx α

x
= xα α

x
= αxα−1.

■

■ Example 7.8 If f (x) = sinx in [−π/2,π/2] then f−1(x) = arcsinx. Thus,

(arcsinx)′ =
1

cos(arcsinx)
.

But cosx =
√

1− sin2 x in [−π/2,π/2], so

(arcsinx)′ =
1√

1− sin2(arcsinx)
=

1√
1− x2

,

because sin(arcsinx) = x. ■

Exercise 7.2 Calculate the derivative of the functions tanx and arctanx. ■

f (x) f ′(x) f (x) f ′(x) f (x) f ′(x)

c 0 sinx cosx arctanx
1

1+ x2

xα αxα−1 cosx −sinx arccotx
−1

1+ x2

ex ex tanx
1

cos2 x
= 1+ tan2 x sinhx coshx

ax ax loga cotx
−1

sin2 x
=−1− cot2 x coshx sinhx

logx
1
x

arcsinx
1√

1− x2
tanhx

1
cosh2 x

= 1− tanh2 x

loga x
1

x loga
arccosx

−1√
1− x2

cothx
−1

sinh2 x
= 1− coth2 x

Table 7.1: Derivatives of most elementary functions. Here c,α ∈ R, a > 0.

7.3 Derivatives and local behaviour
We will see here a set of results related to the local behaviour of a function (i.e., the behaviour
within intervals). To begin with, we need to define local maxima and minima.

We say that a function f has a local maximum at a point a of its domain, if there is some
interval (a−δ ,a+δ ) such that f (x)⩽ f (a) for all x ∈ (a−δ ,a+δ ).

We say that a function f has a local minimum at a point a of its domain, if there is some
interval (a−δ ,a+δ ) such that f (x)⩾ f (a) for all x ∈ (a−δ ,a+δ ).

Local maxima and minima are collectively called local extrema. If local extrema remain
extrema for all x in the domain of f , they are absolute extrema.
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Theorem 7.3.1 — Derivatives at local extrema. If f has a local extremum at a point a where
it is differentible then f ′(a) = 0.

Proof. Consider the case of a maximum (the proof for a minimum is analogous). By the definition
of local maximum

lim
x→a−

f (x)− f (a)
x−a

⩾ 0

because f (x) ⩽ f (a) near a, so f (x)− f (a) ⩽ 0, but on the left of a we have x− a ⩽ 0. On the
other hand,

lim
x→a+

f (x)− f (a)
x−a

⩽ 0

because the numerator is again f (x)− f (a) ⩽ 0, but on the right of a we have x− a ⩽ 0. Since
the derivative exists both limits must coincide, so the only possibility is that both are 0. Hence
f ′(a) = 0. ■

■ Example 7.9 Consider the function f (x) = |x(1− x)|. We know that x(1− x)⩾ 0 if 0 ⩽ x ⩽ 1,
and x(1− x)< 0 if x < 0 or x > 1. Then we can rewrite

f (x) =

{
x(1− x), 0 ⩽ x ⩽ 1,
x(x−1), x < 0 or x > 1.

Let us compute the derivative,

f ′(x) =

{
1−2x, 0 < x < 1,
2x−1, x < 0 or x > 1.

The derivative at x = 0 and x = 1 does not exists because, being f (0) = 0 and f (x) = x(x−1) for
x < 0,

lim
x→0−

f (x)− f (0)
x−0

= lim
x→0−

x(x−1)
x

= lim
x→0−

(x−1) =−1.

However, since f (x) = x(1− x) for x > 0,

lim
x→0+

f (x)− f (0)
x−0

= lim
x→0+

x(1− x)
x

= lim
x→0+

(1− x) = 1.

Since both one-sided limits are different the limit does not exist. For x = 1 the argument is similar.
Now to find the local extrema we need to look for the solutions of f ′(x) = 0. This equation

boils down to 2x = 1, whose solution is x = 1
2 .

Figure 7.2 presents a plot of f (x). One can clearly see that x = 1
2 is indeed a local maximum

—albeit not absolute, because there are points where f (x)> f (1/2)—; however, we can also see that
x = 0 and x = 1 are local minima, but they are not contained in the equation f ′(x) = 0. (Incidentally,
these minima are both absolute.)

There is no contradiction with the theorem though, because, as we have just seen, the function
is not differentiable at those points —a premise of the theorem.

This example brings about the point that, when looking for extrema, we need to check not only
the solutions of f ′(x) = 0, but also the points where f ′(x) does not exist. ■

R Notice also that f ′(c) = 0 does not imply that c is an extremum. For instance take f (x) = x3.
Clearly f ′(0) = 0, however there is no extremum at x = 0 because f (x) > 0 for x > 0 and
f (x)< 0 for x < 0.
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Figure 7.2: Plot of the function f (x) = |x(1− x)|.

Theorem 7.3.2 — Rolle’s theorem. Let f be continuous in [a,b], differentiable in (a,b), and
such that f (a) = f (b); then there exists c ∈ (a,b) where f ′(c) = 0.

Proof. The proof is very simple. Every continuous function in a closed interval reaches its absolute
maximum and minimum within that interval. There are three possibilities:

(a) Both extrema are in (a,b). In that case f will be differentiable at both of them, cmin and cmax.
According to Theorem 7.3.1 f ′(cmin) = f ′(cmax) = 0.

(b) One extremum is at x = a or at x = b and the other one is at c ∈ (a,b). Then f ′(c) = 0.
(c) One extremum is at x = a and the other one at x = b. Then the function must be a constant

because f (a) = f (b), and its derivative will be f ′(x) = 0 everywhere in (a,b).
In any of the three cases we see that f ′(c) = 0 in at least one point of (a,b). ■

Theorem 7.3.3 — Mean value theorem. Let f be continuous in [a,b] and differentiable in
(a,b); then there exists c ∈ (a,b) such that f (b)− f (a) = f ′(c)(b−a).

Exercise 7.3 Prove the mean value theorem by applying Rolle’s theorem to the function

g(x) = f (x)−
(

f (b)− f (a)
b−a

)
(x−a)− f (a).

(First check that g satifies the hypotheses of the theorem.) ■

There are practical consequences of the mean value theorem, which can be summarised in this
corollary:

Corollary 7.3.4 With the hypothesis of the mean value theorem:
(i) If f ′(x) = 0 for all x ∈ (a,b) then f is constant in (a,b).

(ii) If f ′(x) = g′(x) for all x ∈ (a,b) then f (x) = g(x)+ k in (a,b), with k ∈ R a constant.
(iii) If f ′(x)> 0 for all x ∈ (a,b) then f is strictly increasing in (a,b).
(iv) If f ′(x)< 0 for all x ∈ (a,b) then f is strictly decreasing in (a,b).
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Figure 7.3: Geometric interpretation of the mean value theorem. The green straight line joining the
points

(
a, f (a)

)
and

(
b, f (b)

)
is defined by the equation y =

(
f (b)− f (a)

b−a

)
(x−a)+ f (a). The red

parallel line proves that there is at least one point in the curve,
(
c, f (c)

)
, where the tangent has the

same slope as (is parallel to) the straight line. This is the statement of the theorem.

Proof. Simply take a < x < y < b arbitrary and apply the mean value theorem:

f (y)− f (x) = f ′(c)(y− x),

where x < c < y.
If we assume f ′(c) = 0 for any c ∈ (a,b), then f (y) = f (x). Since this is valid for any pair of

points x,y in (a,b) this proves (i).
If we assume f ′(c)> 0 for any c ∈ (a,b), then f (y)> f (x) whenever y > x. Since this is valid

for any pair of points x,y in (a,b) this proves (iii).
If we assume f ′(c)< 0 for any c ∈ (a,b), then f (y)< f (x) whenever y > x. Since this is valid

for any pair of points x,y in (a,b) this proves (iv).
As for (ii), it is just a consequence of applying (i) to the function f −g. ■

These resuls are useful in identifying the nature of extrema, as this example illustrates:

■ Example 7.10 Find the absolute extrema of the function f (x) = 2x5/3 + 5x2/3 in the interval
[−8,1].

There are four steps to solve a problem like this:
(1) Find the set where f ′(x) exists, and solve the equation f ′(x) = 0 within that set.
(2) Take all solutions of f ′(x) = 0 along with the points where f ′(x) does not exist.
(3) Check whether any of those point is a local extremum by checking the sign of f ′ on their left

and on their right.
(4) Compare the value of f (x) in all those points as well as the values at the extremes of the

interval. Select the largest and the smallest and identify the absolute extrema.
In the case we are dealing with here

f ′(x) =
10
3
(x2/3 + x−1/3) =

10
3
(x+1)x−1/3.

This function is well defined for all x ̸= 0. At x = 0 the derivative does not exists because the limit

lim
x→0

2x5/3 +5x2/3

x
= lim

x→0

(
2x2/3 +5x−1/3

)
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diverges.
Now, the solution of f (x) = 0 is x = −1, and f ′(x) > 0 for x < −1 (notice that x−1/3 < 0

whenever x < 0), but f ′(x)< 0 for −1 < x < 0. The function thus increases on the left of x =−1
and decreases on the right, therefore there is a local maximum at x =−1.

As for x = 0, f ′(x)< 0 for −1 < x < 0, but f ′(x)> 0 for x > 0. Thus there is a local minimum
at x = 0.

That is all for local extrema. Concerning absolute extrema we need to compute

f (−1) = 3, f (0) = 0, f (−8) =−44, f (1) = 7.

So the absolute maximum is at x = 1 (the rightmost extreme of the interval) and the absolute
minimum is at x =−8 (the leftmost extreme of the interval).

Figure 7.4 illustrates what we have just found. ■

Figure 7.4: Plot of the function f (x) = 2x5/3 +5x2/3.

Theorem 7.3.5 — Cauchy’s mean value theorem. Let f and g be both continuous in [a,b]
and differentiable in (a,b); then there exists c ∈ (a,b) such that

[ f (b)− f (a)]g′(c) = [g(b)−g(a)] f ′(c). (7.3)

Exercise 7.4 Prove Cauchy’s mean value theorem by applying Rolle’s theorem to the function

h(x) = [ f (b)− f (a)]g(x)− [g(b)−g(a)] f (x).

(First check that h satifies the hypotheses of the theorem.) ■

Cauchy’s mean value theorem is the basis for the proof of an important result in the calculations
of limits of indeterminacies of the type 0

0 or ∞

∞
. The theorem can also be applied to sequences—for

which it is often an alternative to Stolz’s theorem. The theorem (or rule, as it is customary referred
to) is named after the 17th-century French mathematician Guillaume de l’Hôpital (1661–1704),
although it was first introduced to him in 1694 by the Swiss mathematician Johann Bernoulli
(1667–1748).
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Theorem 7.3.6 — l’Hôpital’s rule. Let f and g be two functions such that g′(x) ̸= 0 in an
environment of a (perhaps excluding a itself) and

lim
x→a

f ′(x)
g′(x)

= ℓ.

If the limits lim
x→a

f (x) and lim
x→a

g(x), are both 0 or ±∞, then

lim
x→a

f (x)
g(x)

= ℓ.

R L’Hôpital rule remains valid even if a =±∞ or if the limits are one-sided.

■ Example 7.11 Let us see a limit that we already know, but obtained using l’Hôpital’s rule:

lim
x→0

sinx
x

.

Since (sinx)′ = cosx and (x)′ = 1, and

lim
x→0

cosx
1

= 1,

we can readily conclude that

lim
x→0

sinx
x

= 1.

■

■ Example 7.12 To calculate the limit

lim
x→0

ex − x− cosx
sinx2 ,

which is a 0
0 indeterminacy, we first compute

d
dx

(ex − x− cosx) = ex −1+ sinx,
d
dx

sinx2 = 2xcosx2,

and try to obtain

lim
x→0

ex −1+ sinx
2xcosx2 .

This remains a 0
0 indeterminacy, so again we compute

d
dx

(ex −1+ sinx) = ex + cosx,
d
dx

(2xcosx2) = 2cosx2 −4x2 sinx2.

Now

lim
x→0

ex + cosx
2cosx2 −4x2 sinx2 =

1+1
2−0

= 1,

therefore

lim
x→0

ex −1+ sinx
2xcosx2 = 1

and finally

lim
x→0

ex − x− cosx
sinx2 = 1.

■
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Exercise 7.5 Prove the equivalences, when x → 0,

(1+ x)α −1 ∼ αx, ex −1− x ∼ x2

2
, x− log(1+ x)∼ x2

2
, x− sinx ∼ x3

6
,

using l’Hôpital’s rule. ■

R From the definition of limit it is clear that

lim
x→∞

f (x)
g(x)

= ℓ ⇒ lim
x→∞

f (n)
g(n)

= ℓ

because xn = n is a particular sequence xn → ∞. Therefore l’Hôpital’s rule can be applied to
sequences as well.

There is an important caveat to be made about l’Hôpital’s rule: in general, it is not true that

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

,

as it is typically read in (incorrect) applications of this result. L’Hôpital’s theorem states that the
existence of the second limit implies that the first limit is the same, but it may well happen that the
second limit does not exist while the first one does, as the following example illustrates.

■ Example 7.13 Consider the limit

ℓ= lim
x→0

x2 sin(1/x)
sinx

.

Since sinx ∼ x when x → 0, then

ℓ= lim
x→0

x2 sin(1/x)
x

= lim
x→0

xsin(1/x) = 0.

However, if we apply l’Hôpital’s rule and try to calculate

lim
x→0

2xsin(1/x)− cos(1/x)
cosx

this limit does not exist! ■

■ Example 7.14 Before applying l’Hôpital’s theorem one must check the hypothesis that the limits
of the numerator and denominator are both 0 or ±∞. Otherwise the application of the theorem will
lead to an incorrect result, as the following example illustrates:

lim
x→0

cosx
1+ log(1+ x)

= 1,

as it is easily verified. However, if one isists on applying l’Hôpital’s theorem despite the fact that
the limits of the numerator and denominator are neither 0 nor ±∞, this is what one would obtain:

lim
x→0

−sinx
1

1+x

= lim
x→0

[
− (1+ x)sinx

]
= 0,

which is clearly wrong! ■
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Problems
Problem 7.1 Let f and g be differentiable functions in R. Write down the derivative of the
following functions in their respective domains:

(i) h(x) =
√

f (x)2 +g(x)2;

(ii) h(x) = arctan
(

f (x)
g(x)

)
;

(iii) h(x) = f
(
g(x)

)
e f (x);

(iv) h(x) = log
(
g(x)sin f (x)

)
;

(v) h(x) = f (x)g(x);

(vi) h(x) =
1

log
(

f (x)+g(x)2
) .

Problem 7.2
(a) Make up a continuous function in R which vanishes for |x|⩾ 2 and equals 1 for |x|⩽ 1.

(b) Do it again, but this time make sure that the function is differentiable in R.

Problem 7.3 Check that the following functions satisfy the specified differential equations, where
c, c1, and c2 are constants:

(i) f (x) =
c
x

satisfies x f ′+ f = 0;

(ii) f (x) = x tanx satisfies x f ′− f − f 2 = x2;

(iii) f (x) = c1 sin3x+ c2 cos3x satisfies f ′′+9 f = 0;

(iv) f (x) = c1e3x + c2e−3x satisfies f ′′−9 f = 0;

(v) f (x) = c1e2x + c2e5x satisfies f ′′−7 f ′+10 f = 0;

(vi) f (x) = log(c1ex + e−x)+ c2 satisfies f ′′+( f ′)2 = 1.

Problem 7.4 Prove the identities (valid only in the specified regions)

(i) arctanx+ arctan
1
x
=

π

2
, for x > 0;

(ii) arctan
1+ x
1− x

− arctanx =
π

4
, for x < 1;

(iii) 2arctanx+ arcsin
2x

1+ x2 = π , for x ⩾ 1.

HINT: Differentiate the equation and check one point of the specified region.

Problem 7.5 At which points does the graph of the function f (x) = x+(sinx)1/3 has a vertical
tangent?

Problem 7.6 Given the function

f (x) =


x

1+ e1/x , x ̸= 0,

0 x = 0,

calculate the angle between the tangents on the left and on the right of its graph at x = 0.

Problem 7.7 Find the sets where the function f (x) =
√

x+2arccos(x+ 2) is continuous and
differentiable.

Problem 7.8 Calculate the smallest α for which f (x) = |αx2 − x+3| is differentiable in R.

Problem 7.9 Given the function

f (x) =

a+bx2, |x|⩽ c,
1
|x|

, |x|> c,
c > 0,

find a and b so that it is continuous and differentiable in R.
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Problem 7.10 Given the function

f (x) =


3− x2

2
, x < 1,

1
x
, x ⩾ 1,

(a) determine the sets where it is continuous and where it is differentiable;
(b) check that the mean value theorem can be applied to this function in [0,2] by determining the

point(s) c ∈ (0,2) where the theorem holds.

Problem 7.11 Function f (x) = 1− x2/3 vanishes in x =±1; however f ′(x) ̸= 0 in (−1,1). Find
which hypothesis of Rolle’s theorem is not satisfied.

Problem 7.12 Prove, using Rolle’s theorem, the following statements about a function f that is
continuous in [a,b] and differentiable in (a,b):

(i) If f vanishes k(⩾ 2) times in [a,b] then f ′ vanishes at least k−1 times in [a,b].

(ii) If f is n-times differentiable in (a,b) and vanishes in n+1 different points of [a,b], then f (n)

vanishes at least once in [a,b].

Problem 7.13 Using the mean value theorem, find an approximation to 262/3 and log(3/2).

Problem 7.14 Calculate the limits

(i) lim
x→0

ex − sinx−1
x2 ;

(ii) lim
x→0

log |sin7x|
log |sinx|

;

(iii) lim
x→1+

logx log(x−1);

(iv) lim
x→∞

x1/x;

(v) lim
x→0

(1+ x)1+x −1− x− x2

x3 ;

(vi) lim
x→∞

x
(

tan
2
x
− tan

1
x

)
.

Problem 7.15 Suppose h(x) is a twice-differentiable function and let

f (x) =


h(x)
x2 , x ̸= 0,

1, x = 0.

Calculate h(0), h′(0), and h′′(0) so that f is continuous.

Problem 7.16 Calculate the limits

(i) lim
x→∞

x
[(

1+
1
x

)x

− e
]

;

(ii) lim
x→∞

(
1+ 1

x

)x2

ex ;

(iii) lim
x→∞

(
21/x +181/x

2

)x

;

(iv) lim
x→∞

(
1
p

p

∑
k=1

a1/x
k

)x

, with p ∈ N and ak > 0.

Problem 7.17 If f is a differentiable funtion such that

lim
x→0

f (2x3)

5x3 = 1

and its derivative f ′ is continuous at x = 0,
(a) calculate f (0);

(b) calculate f ′(0);
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(c) calculate lim
x→0

( f ◦ f )(2x)
f−1(3x)

.

Problem 7.18 The equation e− f f ′ = 2+ tanx together with the condition f (0) = 1 define a one-
to-one, differentiable function in the interval [−π/4,π/4]. If g(x) = f−1(x+ 1), calculate the
limit

lim
x→0

ex − e−sinx

g(x)
.

Problem 7.19 Let f (x) = |x3(x−4)|−1.
(a) Find where f is continuous and where it is differentiable.

(b) Determine its extrema.

(c) Prove that f (x) = 0 has a unique solution in [0,1].

Problem 7.20 Solve these optimisation problems:
(a) A factory that produces tomato sauce wants to can it in cylindrical cans of a fixed volume V .

Determine their radius r and height h so that their fabrication consumes the least possible
material.

(b) A recipient with square bottom and no cap must be covered by a thin layer of lead. If the
volume of the recipient must be 32 litres, which dimensions should it have so that it requires
the least possible amount of lead?

(c) Find two numbers x,y > 0 such that x+ y = 20 and x2y3 is maximum.
(d) Find the rectangle inscribed in the ellipse (x/a)2 +(y/b)2 = 1 with its sides parallel to the

axes of the ellipse, such that its area is maximum.
(e) With a tangent to the parabola y = 6− x2 and the positive axes one can make a triangle.

Determine which of those triangles has the smallest area and compute it.
(f) We need to construct a box with no cap with the shape of a parallelepiped whose base is an

equilateral triangle, and whose volume is 128 cm3. If the material for the base costs 0.20
euros/cm2 and that for the lateral surfaces costs 0.10 euros/cm2, what are the dimensions of
the cheapest such box?

(g) A right triangle ABC has vertex A at the origin, vertex B on the circumference (x−1)2+y2 =
1 —side AB is the hypothenuse of the triangle— and side AC on the horizontal axis. Calculate
the location of C that maximises the area of the triangle.

(h) Let P = (x0,y0) be a point of the first quadrant (x0,y0 > 0). A straight line through P cuts the
axes at A = (x0 +α,0) and B = (0,y0 +β ). Calculate α > 0 and β > 0 so as to minimise

(i) the length of segment AB;

(ii) the sum of the lengths of OA and OB;

(iii) the area of the triangle OAB.
HINT: Triangle similarity implies β = x0y0/α .

Problem 7.21 Prove the following inequalities:
(a) (1+ x)a ⩾ 1+ax for all a ⩾ 1, x >−1 (Bernoulli’s inequality);

(b) ex ⩾ 1+ x for all x ∈ R;

(c)
x

1+ x
⩽ log(1+ x)⩽ x for all x >−1.

HINT: In all cases try to minimise the appropriate function.

Problem 7.22

(a) Prove that
logx

x
<

1
e

for all x > 0, x ̸= e.

(b) Prove that the previous inequality is equivalent to ex > xe for all x > 0, x ̸= e.
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Problem 7.23 Determine the number of solutions of the following equations in the specified
domains:

(i) x7 +4x = 3 in R;

(ii) x5 = 5x−6 in R;

(iii) x4 −4x3 = 1 in R;

(iv) sinx = 2x−1 in R;

(v) xx = 2 in [1,∞);

(vi) x2 = log 1
x in (1,∞).



8. Taylor Expansions

8.1 Landau’s ‘o’ notation
As we did for sequences, when it comes to functional limits comparing functions is worthwhile.
Over time, a standard notation has been created that makes algebraic manipulations of functions
easy. We are going to introduce and discuss that notation.

Definition 8.1.1 We say that function f is negligible with respect to g when x → a (where
−∞ ⩽ a ⩽ ∞) if

lim
x→a

f (x)
g(x)

= 0.

We denote this as f = o(g) (x → a), and read it “ f is small o of g as x goes to a”.

The intuitive meaning of f = o(g) (x → a) is that the numerical value of f (x) is much smaller
than that of g(x), the more so the closer is x to a.

This symbol bears a set of basic algebraic properties with which we can easily manipulate it:

Proposition 8.1.1 For given −∞ ⩽ a ⩽ ∞,
(a) if f = o(g) (x → a) and λ ∈ R, then λ f = o(g) scaling
(b) if f1 = o(g) (x → a) and f2 = o(g) (x → a), then f1 + f2 = o(g) (x → a) additive
(c) if f1 = o(g1) (x → a) and f2 = o(g2) (x → a), then f1 f2 = o(g1g2) (x → a) multiplicative
(d) if f = o(g) (x → a) and g = o(h) (x → a), then f = o(h) (x → a). transitive
(e) if f = o(g) (x → a) then h f = o(hg) (x → a) factorisation

R The short-hand version of these properties is
(a) λ o(g) = o(g),
(b) o(g)+o(g) = o(g),
(c) o(g1)o(g2) = o(g1g2),
(d) o

(
o(h)

)
= o(h),

(e) ho(g) = o(hg),
where it is implicitly understood x → a. These are the common manipulations of the o symbol.
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Proof. (a) We are given that

lim
x→a

f (x)
g(x)

= 0;

therefore

lim
x→a

λ f (x)
g(x)

= λ · lim
x→a

f (x)
g(x)

= 0.

(b) We are given that

lim
x→a

f1(x)
g(x)

= lim
x→a

f2(x)
g(x)

= 0;

therefore

lim
x→a

f1(x)+ f2(x)
g(x)

= lim
x→a

f1(x)
g(x)

+ lim
x→a

f2(x)
g(x)

= 0.

(c) In this case

lim
x→a

f1(x)
g1(x)

= lim
x→a

f2(x)
g2(x)

= 0;

therefore

lim
x→a

f1(x) f2(x)
g1(x)g2(x)

= lim
x→a

f1(x)
g1(x)

· lim
x→a

f2(x)
g2(x)

= 0.

(d) Now we know that

lim
x→a

f (x)
g(x)

= lim
x→a

g(x)
h(x)

= 0;

therefore

lim
x→a

f (x)
h(x)

= lim
x→a

f (x)g(x)
g(x)h(x)

= lim
x→a

f (x)
g(x)

· lim
x→a

g(x)
h(x)

= 0.

(e) Finally, if

lim
x→a

f (x)
g(x)

= 0,

then

lim
x→a

h(x) f (x)
h(x)g(x)

= lim
x→a

f (x)
g(x)

= 0.

■

■ Example 8.1
(a) If a,α,γ ∈ R and α > 0, then (x−a)γ+α = o

(
(x−a)γ

)
(x → a) because

lim
x→a

(x−a)γ+α

(x−a)γ
= lim

x→a
(x−a)α = 0.
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(b) If α,γ ∈ R, and α > 0, then
1

xγ+α
= o

(
1
xγ

)
(x →±∞), because

lim
x→±∞

x−γ−α

x−γ
= lim

x→±∞

1
xα

= 0.

(c) sinx = o(
√

x) (x → 0+) because

lim
x→0+

sinx√
x

= lim
x→0+

√
x

sinx
x

= lim
x→0+

√
x︸ ︷︷ ︸

=0

· lim
x→0+

sinx
x︸ ︷︷ ︸

=1

= 0.

(d) 1− cosx = o(x) (x → 0) because

lim
x→0

1− cosx
x

= lim
x→0

x
1− cosx

x2 = lim
x→0

x︸︷︷︸
=0

· lim
x→0

1− cosx
x2︸ ︷︷ ︸

= 1
2

= 0.

(e) Clearly, when x → ∞,

(logx)r = o(xq), xq = o(ax), ax = o(xx),

provided r,q > 0 and a > 1.
■

■ Example 8.2 To illustrate how to manipulate expressions involving o terms let us calculate

[1+ x+ x2 +o(x2)]2.

By expanding this espression we obtain

[1+ x+ x2 +o(x2)]2 =[1+ x+ x2 +o(x2)][1+ x+ x2 +o(x2)]

=1+ x+ x2 +o(x2)+ x+ x2 + x3 + x ·o(x2)+ x2 + x3 + x4 + x2 ·o(x2)

+o(x2)+o(x2) · x+o(x2) · x2 +o(x2) ·o(x2).

Our first simplification is to add equal powers and to transform products like x ·o(x2) = o(x3) (rule
(e)) or o(x2) ·o(x2) = o(x4) (rule (c)). Then we get

[1+ x+ x2 +o(x2)]2 =1+2x+3x2 +2x3 + x4 +2 ·o(x2)+2 ·o(x3)+3 ·o(x4)

=1+2x+3x2 +2x3 + x4 +o(x3)+o(x2)+o(x4).

Now we apply rule (d) and transform o(x3) = o(x2) and o(x4) = o(x2), so

[1+ x+ x2 +o(x2)]2 = 1+2x+3x2 +2x3 + x4 +3 ·o(x2) = 1+2x+3x2 +2x3 + x4 +o(x2).

Finally, 2x3 = o(x2) and x4 = o(x2), thus

[1+ x+ x2 +o(x2)]2 = 1+2x+3x2 +3 ·o(x2) = 1+2x+3x2 +o(x2).

This is the simplest form of the result.
For a practical implementation of this calculation we do not really need to take all these

intermediate steps. Once an o(x2) in present in the expression every other one, or every o(xn) with
n > 2, or every power xm with m > 2, can be simply neglected. ■

R Note that f = o(1) (x → a) is another way to express that lim
x→a

f (x) = 0.

Strongly related to the notion of negligible function is that of equivalent functions when x → a.
We will say that f1 = f2 +o(g) (x → a) if f1 − f2 = o(g) (x → a). The idea this represents is that
functions f1 and f2 differ in a amount that is negligible compared to g when x approaches a.
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8.2 Taylor’s polynomial
Using the o notation we can re-express some features of a function f . For example, if we know that
f is continuous at a we know that

lim
x→a

f (x) = f (a).

But we can rewrite this expression as

lim
x→a

[ f (x)− f (a)] = 0,

which in terms of the o notation can be stated as

f (x) = f (a)+o(1) (x → a). (8.1)

From this viewpoint, a continuous function at a can be approximated by its value at a if we are
close enough to a.

We can go a step beyond. Let us assume that a function is differentiable at a. Then

lim
x→a

f (x)− f (a)
x−a

= f ′(a).

But this can be rewritten as

0 = lim
x→a

[
f (x)− f (a)

x−a
− f ′(a)

]
= lim

x→a

f (x)− f (a)− f ′(a)(x−a)
x−a

,

in other words,

f (x) = f (a)+ f ′(a)(x−a)+o(x−a) (x → a). (8.2)

Since y = f (a)+ f ′(a)(x−a) is the equation of the tangent to f (x) at x = a, the equation above
expresses the fact that differentiable functions at a point a can be approximated by their tangent if
x is sufficiently close to a. The o(x−a), compared to the previous o(1) of continuous functions,
means that the approximation is better.

We can try to push the idea a bit further and see if this sort of approximations can be improved.
Inspired by the two equations (8.1) (8.2) we may try to seek for an expression like

f (x) = f (a)+ f ′(a)(x−a)+ c2(x−a)2 +o
(
(x−a)2) (x → a),

i.e., we can try to use a parabola to approximate better the function near a. For this expression to
hold we must have

0 = lim
x→a

f (x)− f (a)− f ′(a)(x−a)− c2(x−a)2

(x−a)2 = lim
x→a

[
f (x)− f (a)− f ′(a)(x−a)

(x−a)2 − c2

]
.

But this is equivalent to

lim
x→a

f (x)− f (a)− f ′(a)(x−a)
(x−a)2 = c2.

Now, to calculate the limit we can apply l’Hôpital’s rule (we know that f is differentiable at a).
This yields

c2 = lim
x→a

f ′(x)− f ′(a)
2(x−a)

=
1
2

lim
x→a

f ′(x)− f ′(a)
x−a

.
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But the last limit is the definition of the derivative of f ′ at x = a, so if we assume that f is twice
differentiable at a we conclude that

c2 =
f ′′(a)

2

and arrive to the formula

f (x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2
(x−a)2 +o

(
(x−a)2) (x → a). (8.3)

Let us do it once more: let us look for an improved approximation of the form

f (x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2
(x−a)2 + c3(x−a)3 +o

(
(x−a)3) (x → a).

Thus,

0 = lim
x→a

f (x)− f (a)− f ′(a)(x−a)− f ′′(a)
2 (x−a)2 − c3(x−a)3

(x−a)3

= lim
x→a

[
f (x)− f (a)− f ′(a)(x−a)− f ′′(a)

2 (x−a)2

(x−a)3 − c3

]
,

or equivalently

c3 = lim
x→a

f (x)− f (a)− f ′(a)(x−a)− f ′′(a)
2 (x−a)2

(x−a)3 .

To compute the limit we apply l’Hôpital’s rule twice (we know that f is twice differentiable at a)
and get

c3 = lim
x→a

f ′′(x)− f ′′(a)
3 ·2(x−a)

=
1
3!

lim
x→a

f ′′(x)− f ′′(a)
x−a

.

Again this limit is the expression of the derivative of f ′′ at x = a, so assuming f is three times
differentiable at a

c3 =
f ′′′(a)

3!

(because 3 ·2 = 3!), which yields

f (x) = f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 +

f ′′′(a)
3!

(x−a)3 +o
(
(x−a)3) (x → a) (8.4)

(note that 2 = 2!).
By now we can easily put forth a conjecture: if we define the nth degree polynomial

Pn,a(x)≡ f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 + · · ·+ f (n)(a)

n!
(x−a)n, (8.5)

which we will refer to as the nth order Taylor polynomial of function f at the point a, the previous
findings suggest the following theorem:
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Theorem 8.2.1 — Taylor’s theorem (I). If f is n times differentiable at a, then

f (x) = Pn,a(x)+o
(
(x−a)n) (x → a). (8.6)

Proof. In order to prove that

f (x) = Pn,a(x)+o
(
(x−a)n) (x → a),

we need to calculate the limit

lim
x→a

f (x)−Pn,a(x)
(x−a)n

and show that it is zero. To do that we apply n−1 times l’Hôpital’s rule, so that we need to calculate
the limit

lim
x→a

f (n−1)(x)−P(n−1)
n,a (x)

n!(x−a)
.

But differentiating n−1 times Pn,a(x) all powers smaller than n−1 disappear, and there remain the
last two terms. Now,

dn−1

dxn−1 (x−a)n−1 = (n−1)!,
dn−1

dxn−1 (x−a)n = n!(x−a),

therefore

P(n−1)
n,a (x) = f (n−1)(a)+ f (n)(a)(x−a).

Then the limit becomes

lim
x→a

f (n−1)(x)− f (n−1)(a)− f (n)(a)(x−a)
n!(x−a)

=
1
n!

lim
x→a

[
f (n−1)(x)− f (n−1)(a)

x−a
− f (n)(a)

]
= 0

because

lim
x→a

f (n−1)(x)− f (n−1)(a)
x−a

is the definition of the derivative of f (n−1) at a. This completes the proof. ■

R We will write Pn,a(x) in a more compact way as

Pn,a(x) =
n

∑
k=0

f (k)(a)
k!

(x−a)k, (8.7)

where we define f (0)(a) = f (a) and 0! = 1.

■ Example 8.3 Consider the function f (x) = (1+ x)α , where α ∈ R. Then f (0) = 1 and

f ′(x) = α(1+ x)α−1, f ′(0) = α,

f ′′(x) = α(α −1)(1+ x)α−2, f ′′(0) = α(α −1),

f ′′′(x) = α(α −1)(α −2)(1+ x)α−3, f ′′′(0) = α(α −1)(α −2),
...

...

f (n)(x) = α(α −1) · · ·(α −n+1)(1+ x)α−n, f (n)(0) = α(α −1) · · ·(α −n+1).
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Therefore

(1+ x)α = 1+αx+
α(α −1)

2
x2 + · · ·+ α(α −1) · · ·(α −n+1)

n!
xn +o(xn) (x → 0).

There is an interesting notation for this expression derived from the formula for the binomial
coefficients. From equation (B.4), if α ∈ N,(

α

n

)
=

α(α −1) · · ·(α −n+1)
n!

.

Since this formula is meaningful even if α ∈ R, we use it as a definition and thus write

(1+ x)α =
n

∑
k=0

(
α

k

)
xk +o(xn) (x → 0).

This is the famous binomial formula as it was first obtained by Newton in 1665. ■

8.3 Calculating limits
Taylor’s theorem can be applied to calculating complicated limits. As a matter of fact, it is more
powerful than l’Ĥopital’s rule in dealing with indeterminacies. A few examples will illustrate the
procedure.

■ Example 8.4 Suppose we want to calculate the limit

lim
x→0

cosx− ex + x
x2 .

All we need to do is to use the Taylor expansions

cosx = 1− x2

2
+o(x2), ex = 1+ x+

x2

2
+o(x2).

Then

cosx− ex + x = 1− x2

2
+o(x2)−1− x− x2

2
+o(x2)+ x =−x2 +o(x2).

Now

lim
x→0

cosx− ex + x
x2 = lim

x→0

−x2 +o(x2)

x2 =−1+ lim
x→0

o(x2)

x2 .

But by definition the last limit is 0, so

lim
x→0

cosx− ex + x
x2 =−1.

■

■ Example 8.5 In Example 7.12 we calculated the limit

lim
x→0

ex − x− cosx
sinx2 ,

by applying twice l’Hôpital’s rule. Let us do the same using Taylor expansion. As for the
denominator, since siny = y+o(y),

sinx2 = x2 +o(x2).
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f (x) Pk,0(x) o(xk)

(1+ x)α 1+αx+
α(α −1)

2
x2 + · · ·+ α(α −1) · · ·(α −n+1)

n!
xn o(xn)

log(1+ x) x− x2

2
+

x3

3
− x4

4
+ · · ·+(−1)n+1 xn

n
o(xn)

ex 1+ x+
x2

2!
+

x3

3!
· · ·+ xn

n!
o(xn)

sinx x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+(−1)n x2n+1

(2n+1)!
o(x2n+2)

sinhx x+
x3

3!
+

x5

5!
+

x7

7!
+ · · ·+ x2n+1

(2n+1)!
o(x2n+2)

cosx 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+(−1)n x2n

(2n)!
o(x2n+1)

coshx 1+
x2

2!
+

x4

4!
+

x6

6!
+ · · ·+ x2n

(2n)!
o(x2n+1)

arcsinx x+
x3

2 ·3
+

1 ·3
2 ·4 ·5

x5 +
1 ·3 ·5

2 ·4 ·6 ·7
x7 + · · ·+ 1 ·3 · · ·(2n−1)

2 ·4 · · ·(2n)(2n+1)
x2n+1 o(x2n+2)

arcsinhx x− x3

2 ·3
+

1 ·3
2 ·4 ·5

x5 − 1 ·3 ·5
2 ·4 ·6 ·7

x7 + · · ·+(−1)n 1 ·3 · · ·(2n−1)
2 ·4 · · ·(2n)(2n+1)

x2n+1 o(x2n+2)

arctanx x− x3

3
+

x5

5
− x7

7
+ · · ·+(−1)n x2n+1

2n+1
o(x2n+2)

arctanhx x+
x3

3
+

x5

5
+

x7

7
+ · · ·+ x2n+1

2n+1
o(x2n+2)

tanx x+
1
3

x3 +
2
15

x5 +
17
315

x7 o(x8)

tanhx x− 1
3

x3 +
2
15

x5 − 17
315

x7 o(x8)

Table 8.1: Taylor polynomials of some elementary functions as x → 0. (Here α ∈ R.)

This suggests expanding the numerator up to x2. Thus,

ex − x− cosx = 1+ x+
x2

2
+o(x2)− x−

[
1− x2

2
+o(x2)

]
= x2 +o(x2)

Therefore

lim
x→0

ex − x− cosx
sinx2 = lim

x→0

x2 +o(x2)

x2 +o(x2)
= lim

x→0

1+o(1)
1+o(1)

= 1.

■

■ Example 8.6 Here is a complicated limit:

lim
x→∞

x2
(

1− sec
1
x

)
.
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To calculate this limit it is convenient to change to the variable t = 1/x, so that

lim
x→∞

x2
(

1− sec
1
x

)
= lim

t→0+

1
t2

(
1− 1

cos t

)
.

Now, cos t = 1− t2

2 +o(t2) (t → 0), therefore the limit becomes

lim
t→0+

1
t2

(
1− 1

1− t2

2 +o(t2)

)
= lim

t→0+

1
t2

1− t2

2 +o(t2)−1

1− t2

2 +o(t2)
= lim

t→0+

−1
2 +o(1)

1+o(1)
=−1

2
.

Here we have used that o(t2)/t2 = o(1), − t2

2 = o(1), and o(t2) = o(1), as t → 0. ■

8.4 Remainder and Taylor’s theorem

The difference between the function f (x) and its Taylor polynomial Pn,a(x) is called the remainder,
and denoted Rn,a(x). It is the error we make when approximating f (x) by its Taylor polynomial.
So far we only know that Rn,a(x) = o((x−a)n) as x → a, but it would be interesting to have a
quantitative estimate of that error. As a matter of fact, Cauchy’s mean value theorem can help us
in deriving such an expression. The result is a second version of Taylor’s theorem that yields an
explicit form for the remainder.

Theorem 8.4.1 — Taylor’s theorem (II). Let f be a function n+1 times differentiable in an
interval I, and let a ∈ I. Then, for every x ∈ I there exists some c between a and x such that

f (x) = Pn,a(x)+
f (n+1)(c)
(n+1)!

(x−a)n+1. (8.8)

Proof. For each b ∈ I let us define two functions:

F(x) = f (b)−Pn,x(b), G(x) = (b− x)n+1, x ∈ I.

Note that

Pn,x(b) =
n

∑
k=0

f (k)(x)
k!

(b− x)k

is no longer a polynomial, but a complicated combination of the function f (x) and its n first
derivatives. Also note that both functions, F and G, are differentiable in I.

Under this conditions Cauchy’s mean value theorem states that there exists c between a and b
such that

F(b)−F(a)
G(b)−G(a)

=
F ′(c)
G′(c)

.

Let us now compute all these terms and see what this expression amounts to.
First of all Pn,b(b) = f (b), hence F(b) = 0. Then, F(a) = f (b)−Pn,a(b). Now, G(b) = 0 and

G(a) = (b−a)n+1. Thus,

F(b)−F(a)
G(b)−G(a)

=
F(a)
G(a)

=
f (b)−Pn,a(b)
(b−a)n+1 .
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On the other hand G′(x) =−(n+1)(b− x)n, and

d
dx

Pn,x(b) = f ′(x)+
n

∑
k=1

[
f (k+1)(x)

k!
(b− x)k +

f (k)(x)
k!

k(b− x)k−1(−1)

]

= f ′(x)+
n

∑
k=1

[
f (k+1)(x)

k!
(b− x)k − f (k)(x)

(k−1)!
(b− x)k−1

]
.

The sum in the last expression is telescoping. Thus,

n

∑
k=1

[
f (k+1)(x)

k!
(b− x)k − f (k)(x)

(k−1)!
(b− x)k−1

]
=

f (n+1)(x)
n!

(b− x)n − f ′(x),

which implies

F ′(x) =− d
dx

Pn,x(b) =− f (n+1)(x)
n!

(b− x)n.

Accordingly,

F ′(c)
G′(c)

=
− f (n+1)(c)

n! (b− c)n

−(n+1)(b− c)n =
f (n+1)(c)
(n+1)!

.

The theorem thus reads

f (b)−Pn,a(b)
(b−a)n+1 =

f (n+1)(c)
(n+1)!

,

or equivalently

f (b) = Pn,a(b)+
f (n+1)(c)
(n+1)!

(b−a)n+1.

Changing the name of b to x this is the stament of the theorem. ■

The theorem provides an expression for the remainder that bears the name Lagrange’s re-
mainder. Given that c = (1− θ)a+ θx for some 0 < θ < 1, it is customary to write it in the
form

Rn,a(x) =
f (n+1)

(
(1−θ)a+θx

)
(n+1)!

(x−a)n+1, 0 < θ < 1. (8.9)

This is not the only possible form in which we can write the remainder. For instance, in the
proof of the theorem Cauchy chose to apply Cauchy’s mean value theorem to the same function
F(x) but to G(x) = b− x. The expression this yields for the remainder is

Rn,a(x) =
f (n+1)(c)

n!
(x− c)n(x−a).

So we have Cauchy’s remainder that can be expressed as
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Rn,a(x) =
f (n+1)

(
(1−θ)a+θx

)
n!

(1−θ)n(x−a), 0 < θ < 1. (8.10)

In further chapters we will see yet another form for the remainder involving integrals.

Corollary 8.4.2 Pn(x) = Pn,a(x) for any polynomial Pn(x) of degree n and every a ∈ R.

Proof. If f (x) = Pn(x) then Rn,a(x) = 0 no matter what a is because f n+1(a) = 0 for every a ∈ R.
Hence Taylor formula is exact. ■

■ Example 8.7 To write down the polynomial P(x) = 1−2x2 + x3 in powers of x−1 all we need
to do is to obtain its Taylor’s polynomial P3,1(x). Since

P(x) = 1−2x2 + x3, P(1) = 0,

P′(x) =−4x+3x2, P′(1) =−1,

P′′(x) =−4+6x, P′′(1) = 2,

P′′′(x) = 6, P′′′(1) = 6,

we have P(x) = P3,1(x) =−(x−1)+(x−1)2 +(x−1)3. (Check that it is indeed the same polyno-
mial by expanding the two binomials and simplifying.) ■

8.5 Taylor series

Suppose we have a function f that can be differentiated infinitely often in an interval containing a.
For this function we have a formula

f (x) =
k

∑
n=0

f (n)(a)
n!

(x−a)n +Rk,a(x)

for each k ∈N and every x in the interval. We can then take the limit when k → ∞ in this expression.
Since the left-hand side does not depend on k we will obtain

f (x) =
∞

∑
n=0

f (n)(a)
n!

(x−a)n + lim
k→∞

Rk,a(x). (8.11)

Those functions for which

lim
k→∞

Rk,a(x) = 0 (8.12)

for every x in the interval are given by their Taylor series

f (x) =
∞

∑
n=0

f (n)(a)
n!

(x−a)n, (8.13)

as long as the series converges.
The expression we have just obtained is a particular case of a class of series referred to as

power series. These are series of the form

∞

∑
n=0

an(x−a)n, an ∈ R. (8.14)
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We can assess the absolute convergence of these series using the root test. Accordingly, one such
series will converge absolutely if

lim
n→∞

n
√
|an||x−a|n < 1 ⇔

(
lim
n→∞

n
√

|an|
)
|x−a|< 1. (8.15)

We can define the number ρ > 0 by the formula

1
ρ
≡ lim

n→∞

n
√
|an|. (8.16)

We refer to ρ as the convergence radius of the series because condition (8.15) holds for every x
such that

|x−a|< ρ. (8.17)

In other words, the series (8.14) converges absolutely in the interval (a−ρ,a+ρ).
What happens outside this interval? If |x−a|> ρ then

lim
n→∞

n
√
|an||x−a|n = |x−a|

ρ
≡ ℓ > 1.

Hence, for any ε > 0,

ℓ− ε < n
√

|an||x−a|n < ℓ+ ε ⇒ (ℓ− ε)n < |an||x−a|n

if n is large enough. As we can take ε so that ℓ− ε > 1 (e.g., ε = (ℓ−1)/2), then

lim
n→∞

(ℓ− ε)n = ∞ ⇒ lim
n→∞

|an||x−a|n = ∞ ⇒ lim
n→∞

an(x−a)n ̸= 0.

Therefore the power series does not converge.
In summary, the power series converges if x ∈ (a−ρ,a+ρ) and diverges otherwise, except

maybe at x = a±ρ (where the root test yields a limit 1 and does not decide). At these two points
the analysis has to be done on a case-by-case basis.

R As a consequence of Corollary 3.4.4, the convergence radius can also be obtained as

1
ρ
= lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣
provided this limit exists.

■ Example 8.8 Consider the Taylor expansion of f (x) = ex with remainder. Given that f (n)(x) = ex

we will have

ex =
n

∑
k=0

xn

n!
+Rn,0(x), Rn,0(x) = eθx xn+1

(n+1)!
, 0 < θ < 1.

Since the exponential is an increasing function, eθx < max{1,ex} —that includes the cases x > 0
and x < 0. Therefore

0 < Rn,0(x)< max{1,ex}xn

n!
−−−−→

n→∞
0

for any given x ∈ R. Hence

ex =
∞

∑
k=0

xn

n!
.

■
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Table 8.2 is a version of Table 8.1 containing a list with the Taylor series of some elementary
fractions, along with their convergence radii. For some of these series is easy to prove the equality
with the function —as the case of the exponential—, for other it is more difficult, but for all of them
it can be proven that Rn,0(x)→ 0 as n → ∞.

A nice —and very useful— property of power series is that they can be differentiated within
their interval of convergence. The precise statement of this property is:

Theorem 8.5.1 Let f (x) be an infinitely often differentiable function such that

f (x) =
∞

∑
n=0

an(x−a)n, |x−a|< ρ.

Then

f ′(x) =
∞

∑
n=1

nan(x−a)n−1 =
∞

∑
n=0

(n+1)an+1(x−a)n,

and the convergence radius of this series is also ρ .

Aside from the practical applications of this theorem, there is a very important consequence
that we can extract from it:

Corollary 8.5.2 The power series of f (x) in Theorem 8.5.1 is unique.

Proof. According to Theorem 8.5.1, the series for f can be differentiated term by term infinitely
often, and

f (k)(x) =
∞

∑
n=0

(n+ k)(n+ k−1) · · ·(n+1)an+k(x−a)n,

so f (k)(a) = k!ak, which implies ak = f (k)(a)/k!—hence the coefficients are uniquely determined
by the function and its derivatives at x = a. ■

■ Example 8.9 The differentiability of power series helps finding some series. For instance,
suppose we want to obtain a power series, in powers of x, of f (x) = arctanx. We know of this
function that is odd, so its powers series can only contain odd powers. In other words,

arctanx =
∞

∑
n=0

anx2n+1.

But we also know that

(arctanx)′ =
1

1+ x2 =
1

1− (−x2)
,

so
∞

∑
n=0

(2n+1)anx2n =
∞

∑
n=0

(−x2)n =
∞

∑
n=0

(−1)nx2n, |x|< 1.

As power series are unique, the coefficients of the two series that represent the same function must
be the same, therefore an = (−1)n/(2n+1) and

arctanx =
∞

∑
n=0

(−1)n

2n+1
x2n+1, |x|< 1.

■
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f (x) Taylor series ρ

(1+ x)α

∞

∑
n=0

(
α

n

)
xn 1

log(1+ x)
∞

∑
n=1

(−1)n+1 xn

n
1

ex
∞

∑
n=0

xn

n!
∞

sinx
∞

∑
n=0

(−1)n x2n+1

(2n+1)!
∞

sinhx
∞

∑
n=0

x2n+1

(2n+1)!
∞

cosx
∞

∑
n=0

(−1)n x2n

(2n)!
∞

coshx
∞

∑
n=0

x2n

(2n)!
∞

arcsinx
∞

∑
n=0

1 ·3 · · ·(2n−1)
2 ·4 · · ·(2n)(2n+1)

x2n+1 1

arcsinhx
∞

∑
n=0

(−1)n 1 ·3 · · ·(2n−1)
2 ·4 · · ·(2n)(2n+1)

x2n+1 1

arctanx
∞

∑
n=0

(−1)n x2n+1

2n+1
1

arctanhx
∞

∑
n=0

x2n+1

2n+1
1

Table 8.2: Taylor series of some elementary functions as powers of x, along with their convergence
radii ρ . (Here α ∈ R.)

8.6 Numerical approximations
With the expression of the remainder we can find bounds to the error that we incur when approxi-
mating a function by its Taylor polynomial of a certain degree. This allows us to obtain numerical
values of transcendental functions —which would otherwise be difficult to obtain. Some examples
illustrate the method.

■ Example 8.10 We know that

sinx = x− x3

6
+R4,0(x), R4,0(x) =

cos(θx)
120

x5, 0 < θ < 1.

We of course ignore the value of θ (otherwise sinx could be exactly computed), but we know that
irrespective of θ and x, |cos(θx)|⩽ 1. Thus,

|R4,0(x)|⩽
|x|5

120
.

Suppose we want to compute sin(0.1). From the previous inequality |R4,0(x)|⩽ 8.3333×10−8.
Now compare:

sin(0.1) = 0.09983341664 . . . , P4,0(0.1) = 0.09983333333 . . .
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The error incurred using this simple approximation is 8.3313×10−8, very close to our estimate.
Suppose we do not want our error to be larger than 10−5. What is the largest x for which we can

use this approximation? To answer this question we simply set the estimate to the error tolerance
and find |x|:

|x|5

120
= 10−5 ⇒ |x|= 5

√
120×0.1 ≈ 0.26.

■

■ Example 8.11 Imagine that we want to compute
√

3.8. We can do it by expanding the function√
4− x around x = 0. Thus,

f (x) =
√

4− x, f (0) =
√

4 = 2,

f ′(x) =
−1

2
√

4− x
, f ′(0) =

−1
2
√

4
=−1

4
,

f ′′(x) =
−1

4(4− x)3/2 , f ′′(0) =
−1

4 ·43/2 =− 1
32

,

f ′′′(x) =
−3

8(4− x)5/2 .

Then

√
4− x = 2− x

4
− x2

64
+R2,0(x), R2,0(x) =

−1
16(4−θx)5/2 x3, 0 < θ < 1.

If x > 0,

|R2,0(x)|<
x3

16(4− x)5/2 =
x3

16
(√

4− x
)5 .

Now we can estimate

√
3.8 = P2,0(0.2) = 2− 0.2

4
− (0.2)2

64
= 1.949375 . . .

and use this estimation in the error bound

|R2,0(x)|<
(0.2)3

16(1.949375 . . .)5 ≈ 1.78×10−5.

As a matter of fact,
√

3.8 = 1.949358869 . . . , P2,0(0.2) = 1.949375,

the difference being 1.61×10−5. ■

8.7 Local behaviour of functions
We saw in Corollary 7.3.4 that the sign of f ′(x) determines wether the function is increasing
(positive) or decreasing (negative) at x, and Theorem 7.3.1 showed that at local extrema the function
satisfies f ′(x) = 0 (provided it is differentiable). In its second formulation —with the remainder—
Taylor’s theorem provides a more detailed information about the local behaviour of a function
which has higher order derivatives.
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Before getting into it, we need to characterise another qualitative feature of functions: whether
their slope increases or decreases. This feature is called convexity.

We say that f is convex at x = a if it is locally above its tangent at that point, i.e., f (x) >
f (a)+ f ′(a)(x−a) for all 0 < |x−a|< ε , for some ε > 0.

Likewise, we say that it is concave at x = a if it is locally below its tangent a that point, i.e.,
f (x)< f (a)+ f ′(a)(x−a) for all 0 < |x−a|< ε , for some ε > 0.

Finally, we say that f has an inflection point at x = a if the sign of f (x)− f (a)− f ′(a)(x−a)
is different for x < a and for x > a.

Figure 8.1 illustrates these three behaviours.

convex concave inflection point

Figure 8.1: Local behaviour of a function with respect to its tangent at a point (convexity).

Suppose that a function f can be differentiated several times (posibly infinitely many) in a
certain interval and that the first nonzero derivative beyond the first at x = a is f (n)(a). We can use
Taylor’s theorem —with Lagrange’s remainder— to write

f (x) = f (a)+ f ′(a)(x−a)+
f (n)(c)

n!
(x−a)n,

where c= (1−θ)a+θx with 0< θ < 1. One important point to stress here is that, since f (n)(a) ̸= 0
—so it is either positive or negative—, when x is sufficiently close to a —and so is c— f (n)(c) will
have the same sign as f (n)(a). This is key for the argument to come.

Since we can write the Taylor expansion as

f (x)− f (a)− f ′(a)(x−a) =
f (n)(c)

n!
(x−a)n,

the sign of the left-hand side —which decides the convexity— will be determined by sign of the
product f (n)(c)(x−a)n or, given what we have just argued, by the sign of the product f (n)(a)(x−
a)n.

Now, if n is odd, the sign of f (n)(a) is irrelevant because (x−a)n has a different sign for x < a
and for x > a. Therefore a will be an inflection point.

If n is even then (x−a)n > 0 for all x ̸= a. Then the sign is determined by that of f (n)(a). We
will then have two possibilities:

(a) f (n)(a)> 0, and then the function is convex, or
(b) f (n)(a)< 0, and then the function is concave.

If added to that we have that f ′(a) = 0, then for n odd nothing changes —hence x = a still
is an inflection point—, but for n even the point x = a is a local extremum. A convex extremum
( f (n)(a)> 0) is a local minimum and a concave extremum ( f (n)(a)< 0) is a local maximum.

All these results are summarised in Table 8.3.
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n sign of f (n)(a) f ′(a) ̸= 0 f ′(a) = 0

odd +/− inflection point inflection point
even + convex local minimum
even − convex local maximum

Table 8.3: Classification of the local behaviour of a function according to the sign of the first
nonzero derivative f (n)(a) with n > 1.

8.8 Function graphing
All the local information provided by the derivatives can be gathered to sketch a qualitative graph
of any function f (x). The steps to follow in graphing a function are these (some of them might not
be necessary):

1. Domain: Determine precisely the set of points where the function f (x) is defined.
2. Symmetries: It is helpful to know whether the function has one of these symmetries:

(a) Even: f (−x) = f (x).
(b) Odd: f (−x) =− f (x).
(c) Periodic: f (x+ c) = f (x) for some c > 0.

In the first two cases it is enough to represent the function for x ⩾ 0 (for x < 0 it is represented
using the symmetry). In the last case it is enough to represent the function in the interval
[0,c] (or any other interval of the same lenght) and then reproduce its graph periodically.
Other symmetries might be possible (e.g., f (a+ x) =± f (a− x), i.e., f is even/odd around
the vertical axis x = a).

3. Continuity and differentiability: Discontinuities (“jumps”) and points where f ′(x) does
not exists (“cusps”) are relevant features of the function, and might be useful in detecting
local extrema.

4. Zeroes: Finding the solutions of f (x) = 0 determines where f crosses the X axis. These
points separate regions where the sign of f remains constant.

5. Growth: Finding the solutions of f ′(x) = 0 determines the regions where f increases
( f ′(x)> 0) or decreases ( f ′(x)> 0). Usually this is enough to locate the extrema of f .

6. Convexity: The convex/concave regions are usually determined by the sign of f ′′(x). Inflec-
tions points can be inferred from that information (as points where the concavity changes).

7. Asymptotes: These are known curves (usually straight lines) which f (x) approaches when it
gets close to some points or to ±∞. The main ones are:

(a) Vertical asymptotes: These are the vertical straight lines through the points x = a where
lim

x→a±
f (x) =±∞.

(b) Horizontal asymptotes: These are the horizontal straight lines y = ℓ where ℓ is such
that lim

x→±∞
f (x) = ℓ.

(c) Inclined asymptotes: We say that y = mx+b is an asymptote of f (x) when x →±∞ if

m = lim
x→±∞

f (x)
x

, b = lim
x→±∞

[ f (x)−mx].

(In other words, f (x) = mx+b+o(1) (x →±∞).)
Other types of asymptote are possible. In general, the curve y = g(x) is an asymptote of f
when x →±∞ if f (x) = g(x)+o(1) (x →±∞).

■ Example 8.12 Sketch the graph of

f (x) =
3x2 + x+1

x+2
.
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Figure 8.2: Sketch of f (x) =
3x2 + x+1

x+2
.

The domain of this function is R−{−2} (because the denominator vanishes at that point.) It has
no obvious symmetries and, being a rational function, it is continuous and differentiable (an infinite
number of times) in all its domain.

We can obtain the derivative as

f ′(x) =
(6x+1)(x+2)− (3x2 + x+1)

(x+2)2 =
6x2 +13x+2−3x2 − x−1

(x+2)2 =
3x2 +12x+1

(x+2)2 .

This derivative vanishes when 3x2 +12x+1 = 0. The roots of this parabola are x =−2±
√

11/3,
i.e., x1 ≈ −0.085, x2 ≈ −3.91. For x < x2 and x > x1 function f increases ( f ′ > 0) and for
x2 < x < x1 it decreases ( f ′ < 0).

f has no zeros because 3x2 + x+1 > 0 for all x ∈ R (the parabola has no roots). So f (x)< 0
for x <−2 and f (x)> 0 for x >−2.

It is not necessary to analyse the concavity, as it can be inferred from all the other information,
including that of the asymptotes. We know there is a vertical asymptote at x =−2 because

lim
x→−2−

f (x) =−∞, lim
x→−2+

f (x) = +∞.

There are no horizontal asymptotes because f diverges when x →±∞. However, we can express the
polynomial P(x) = 3x2 + x+1 in powers of x+2 using Taylor’s polynomial, because P2,−2(x) =
P(x). As

P(x) = 3x2 + x+1, P(−2) = 11,

P′(x) = 6x+1, P′(−2) =−11,

P′′(x) = 6, P′′(−2) = 6,

we have P(x) = 11−11(x+2)+3(x+2)2. Therefore

f (x) =
3x2 + x+1

x+2
=

11−11(x+2)+3(x+2)2

x+2
=

11
x+2

−11+3(x+2) =
11

x+2
−5+3x

= 3x−5+o(1) (x →±∞),
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i.e., y = 3x−5 is an inclined asymptote both when x →±∞.
f (x) is represented in Figure 8.2. ■

Figure 8.3: Sketch of f (x) =
4x

x2 +9
.

■ Example 8.13 Sketch the graph of

f (x) =
4x

x2 +9
.

The domain of this function is R, and it is continuous and differentiable everywhere. It is an odd
function because

f (−x) =
4(−x)

(−x)2 +9
=− 4x

x2 +9
=− f (x),

so we only need to care about the region x ⩾ 0. As every odd continuous function f (0) = 0, and
this is the only point where f croses the X axis. Besides f (x)> 0 for x > 0.

Its derivative is

f ′(x) =
4(x2 +9)−4x ·2x

(x2 +9)2 =
4x2 +36−8x2

(x2 +9)2 =
4(9− x2)

(x2 +9)2 .

Thus, in x ⩾ 0 we have f ′(x)> 0 for x < 3 and f ′(x)< 0 for x > 3. The function grows up to x = 3,
where it has a local maximum, and then decreases beyond that point.

As for the second derivative,

f ′′(x) =
−8x(x2 +9)2 − (36−4x2)2(x2 +9)2x

(x2 +9)4 =
−8x(x2 +9)− (36−4x2)4x

(x2 +9)3

=
8x3 −216x
(x2 +9)3 =

8x(x2 −27)
(x2 +9)3 ,

so f is concave ( f ′′ < 0) for x <
√

27 = 3
√

3 and convex ( f ′′ > 0) for x > 3
√

3. At x = 3
√

3 there
is an inflection point.
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Finally, there are no vertical asymptotes ( f is defined in the whole R), but since lim
x→∞

f (x) = 0,
the X axis is a horizontal asymptote.

f (x) is represented in Figure 8.3. ■
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Problems
Problem 8.1 Write the Taylor polynomial P5,0(x) for these functions:

(i) ex sinx;

(ii) e−x2
cos2x;

(iii) sinxcos2x;

(iv) ex log(1− x);

(v) sin2 x;

(vi)
1

1− x3 .

Problem 8.2 Write the polynomial x4 −5x3 + x2 −3x+4 in powers of x−4.

Problem 8.3 Write the Taylor polynomial Pn,a(x) for these functions around the specified a:

(i) f (x) = 1/x around a =−1;

(ii) f (x) = xe−2x around a = 0;

(iii) f (x) = (1+ ex)2 around a = 0;

(iv) f (x) = sinx around a = π .

Problem 8.4 Consider the function

f (x) =

{
e−1/x2

, x ̸= 0,
0 x = 0.

(i) Prove by induction that f (n)(x) = Qn(1/x)e−1/x2
for x ̸= 0, where Qn(t) is some polynomial.

(ii) Prove by induction that f (n)(0) = 0 for all n ∈ N.

(iii) Write the Taylor polynomial Pn,0(x) of f (x). What can you conclude from that?

Problem 8.5 Prove that

(i) sinx = o(xα) (x → 0) for all α < 1;

(ii) log(1+ x2) = o(x) (x → 0);

(iii) logx = o(x) (x → ∞);

(iv) tanx− sinx = o(x2) (x → 0).

Problem 8.6 Calculate the following limits using Taylor’s theorem:

(i) lim
x→0

ex − sinx−1
x2 ;

(ii) lim
x→0

sinx− x+ x3/6
x5 ;

(iii) lim
x→0

cosx−
√

1− x
sinx

;

(iv) lim
x→0

tanx− sinx
x3 ;

(v) lim
x→0

x− sinx
x(1− cos3x)

;

(vi) lim
x→0

cosx+ ex − x−2
x3 ;

(vii) lim
x→0

(
1
x
− 1

sinx

)
;

(viii) lim
x→0

1
x

(
1
x
− cotx

)
;

(ix) lim
x→∞

x3/2
(√

x+1+
√

x−1−2
√

x
)

;

(x) lim
x→∞

[
x− x2 log

(
1+

1
x

)]
.

Problem 8.7 If f (x) =− x
2
− x2

4
+o(x2) (x → 0), calculate

lim
x→0

log[1+ f (x)]+ x/2
x2 .

Problem 8.8 Prove that the function

f (x) =


1
x
− 1

ex −1
, if x ̸= 0,

1
2
, if x = 0,

is differentiable at x = 0 by calculating f ′(0) from the definition.
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Problem 8.9 Determine the first nonzero order in the Taylor expansion of the following functions:
(i) f (x) = tan(sinx)− sin(tanx);

(ii) f (x) =
1

R2 −
1

(R+ x)2 ;

(iii) f (x) = 3

√
1+ x
1− x

− 3

√
1− x
1+ x

.

Problem 8.10 Consider the function

f (x) =
1− cosx
1+ cosx

.

This function is even and f (0) = 0, so its Taylor expansion up to 7th order will be

f (x) = Ax2 +Bx4 +Cx6 +o(x7), (x → 0).

Then

1− cosx =
[
Ax2 +Bx4 +Cx6 +o(x7)

]
(1+ cosx).

Using the Taylor expansion of cosx up to 7th order find the coefficients A, B, and C from this
equation.

Problem 8.11 Find coefficients a and b so that
(i) x− (a+bcosx)sinx = o(x4) (x → 0);

(ii) cotx− 1+ax2

x+bx3 = o(x4) (x → 0).

Problem 8.12 Find constants a,b,c,d ∈ R such that

ex =
1+ax+bx2

1+ cx+dx2 +o(x4) (x → 0).

Problem 8.13 Given that
√

1+ x = 1+ x
2 +o(x) (x → 0), prove:

(i) lim
n→∞

sin
(

π
√

1+n2
)
= 0;

(ii)
∞

∑
n=0

sin2
(

π
√

1+n2
)
< ∞.

Problem 8.14 Calculate the Taylor polynomial P4,0(x) for f (x) = 1+ x3 sinx. Given the result,
does f have a local maximum, minimum or inflection point at x = 0?

Problem 8.15 Use a Taylor polynomial of the specified degree to provide an approximation to
these numbers, and give an upper bound for the error incurred:

(i)
1√
1.1

, degree 3; (ii) 3
√

28, degree 2.

Problem 8.16 Given the function f (x) = cosx+ ex,
(i) find its Taylor polynomial P3,0(x);

(ii) estimate an upper bound for the error incurred if −1/4 ⩽ x ⩽ 1/4.

Problem 8.17 What is the smallest degree Taylor polynomial necessary to approximate the function
f (x) = ex in [−1,1] with at least three exact decimal places?

Problem 8.18 Determine the convergence radius of the following power series, and specify the
interval where they converge absolutely:
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(i)
∞

∑
n=1

xn

2nn2 ;

(ii)
∞

∑
n=1

n!xn

nn ;

(iii)
∞

∑
n=1

xn

n10n−1 ;

(iv)
∞

∑
n=1

xn
√

n
;

(v)
∞

∑
n=0

(3−2x)n;

(vi)
∞

∑
n=1

(x−2)n
√

2n
.

Problem 8.19 Expand the function f (x) =
1

(1− x)k for k = 1, 2, and 3.

Problem 8.20 Consider the power series

1
x2 + x+1

=
∞

∑
n=0

anxn.

What are the values of the coefficients a300, a301, and a302?
HINT: Recall that 1− x3 = (1− x)(x2 + x+1).

Problem 8.21 Calculate the derivatives f (100)(0) and f (231)(0) of the function f (x) = log
(
1+x2

)
.

Problem 8.22 Determine the convergence radius of the following power series, and calculate their
sums:

(i)
∞

∑
n=1

xn

n
; (ii)

∞

∑
n=0

(n+1)2−nxn.

Problem 8.23 Expand in power series the following functions, specifying the domain of validity
of those expansions:

(i) f (x) = sin2 x;

(ii) f (x) = log

√
1+ x
1− x

;

(iii) f (x) =
x

a+bx
;

(iv) f (x) =
1

2− x2 ;

(v) f (x) =
1+ x− (1− x)e2x

ex .

Problem 8.24 Sum the following series:

(i)
∞

∑
n=0

(−1)n

2nn!
;

(ii)
∞

∑
n=1

n
2n ;

(iii)
∞

∑
n=1

1
n2n ;

(iv)
∞

∑
n=0

(−1)n

2n+1
.

Problem 8.25 Given the function f (x) =
∞

∑
n=1

nx

n!
, compute the values f (0), f (1), and f (2).

Problem 8.26 Find a function f (x) that can be expaded in power series of x and such that it
satisfies the equation f ′(x) = f (x)+ x with the condition f (0) = 2.

Problem 8.27 Prove that if f and g are twice differentiable, convex functions, and f is increasing,
then h = f ◦g is convex.

Problem 8.28 Discuss the convexity of the following functions:

(i) f (x) = (x−2)x2/3; (ii) f (x) = |x|e|x|; (iii) f (x) = log(x2 −6x+8).

Problem 8.29
(i) Sketch the graph of the function f (x) = x+ log |x2 −1|.

(ii) Based on the previous graph, plot function g(x)= |x|+log |x2−1| and h(x)=
∣∣x+ log |x2 −1|

∣∣.
Problem 8.30 Sketch a plot of the following functions:
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(i) f (x) = ex sinx;

(ii) f (x) =
√

x2 −1−1;

(iii) f (x) = xe1/x;

(iv) f (x) = x2ex;

(v) f (x) = (x−2)x2/3;

(vi) f (x) = (x2 −1) log
(

1+ x
1− x

)
;

(vii) f (x) =
x

logx
;

(viii) f (x) =
x2 −1
x2 +1

;

(ix) f (x) =
e1/x

1− x
;

(x) f (x) = log[(x−1)(x−2)];

(xi) f (x) =
ex

x(x−1)
;

(xii) f (x) = 2sinx+ cos2x;

(xiii) f (x) =
x−2√
4x2 +1

;

(xiv) f (x) =
√
|x−4|;

(xv) f (x) =
1

1+ ex ;

(xvi) f (x) =
e2x

ex −1
;

(xvii) f (x) = e−x sinx;

(xviii) f (x) = x2 sin
1
x

.

Problem 8.31 Draw the graph of the following functions:

(i) f (x) = min{log |x3 −3|, log |x+3|};

(ii) f (x) =
1

|x|−1
− 1

|x−1|
;

(iii) f (x) =
1

1+ |x|
− 1

1+ |x−a|
, (a > 0);

(iv) f (x) = x
√

x2 −1;

(v) f (x) = arctan log |x2 −1|;

(vi) f (x) = 2arctanx+ arcsin
(

2x
1+ x2

)
.

Problem 8.32 Plot the function

f (x) =


e1/x

1+ x
, x ̸= 0,

0 x = 0,

and discuss how many real solutions has the equation
e1/x

1+ x
= x3.

Problem 8.33 Given the function f (x) =
1+ x
3+ x2 plot the functions g(x) = sup

y>x
f (y) and h(x) =

inf
y>x

f (y).

Problem 8.34 Determine the equations of the tangents to f (x) = log(1+x2) at its inflection points
and plot them along with the graph of f (x).
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9. Primitives

Differentiating is an operation that transforms an appropriate function f into another function f ′,
which we refer to as its derivative. It makes sense to wonder about the inverse operation, i.e., given
the function f ′ to determine f .

Definition 9.0.1 — Primitive. A function F is called a primitive of f if F ′ = f . We denote this
operation∫

f (x)dx = F(x). (9.1)

(Function f is called integrand.)

The first question we can ask is whether the primitive, if it exists, is unique. According to
Corollary 7.3.4 the answer is no —but almost so. The reason is that if F and G are such that
F ′ = G′ = f (i.e., F and G are two primitives of f ), then F(x) = G(x)+ c for some constant c.
Thus, primitives are unique up to an additive constant.

Some properties of primitives are inherited from those of derivatives. For instance, primitives
are linear, i.e., given functions f and g and constants a,b ∈ R,

∫
[a f (x)+bg(x)]dx = a

∫
f (x)dx+b

∫
g(x)dx. (9.2)

We can obtain a few elementary primitives by reversing the derivatives Table 7.1. The list is
shown in Table 9.1.

Some primitives have the pattern

∫
f ′
(
g(x)

)
g′(x)dx = f

(
g(x)

)
+ c. (9.3)

We call this primitives immediate.
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f (x) F(x) f (x) F(x) f (x) F(x)

xα (α ̸=−1)
xα+1

α +1
sinx −cosx

1
1+ x2 arctanx

x−1 log |x| cosx sinx
1√

1− x2
arcsinx

ex ex sinhx coshx
1

cos2 x
tanx

ax ax

loga
coshx sinhx

1
cosh2 x

tanhx

Table 9.1: Primitives F(x) of some elementary functions f (x) (up to the additive constant) as
obtained by reversing Table 7.1. Here α ∈ R, a > 0.

Here are some important special cases:∫ g′(x)
g(x)

dx = log |g(x)|+ c,
∫

g′(x)[g(x)]α dx =
g(x)α+1

α +1
, α ̸=−1, (9.4)∫ g′(x)

1+g(x)2 dx = arctang(x)+ c,
∫ g′(x)√

1−g(x)2
dx = arcsing(x)+ c. (9.5)

■ Example 9.1 The primitive∫
tanxdx =

∫ sinx
cosx

dx

has nearly the form∫ g′(x)
g(x)

dx

because (cosx)′ =−sinx. Then∫ sinx
cosx

dx =−
∫ −sinx

cosx
dx =−

∫
(cosx)′

cosx
dx.

Therefore

∫
tanxdx =− log |cosx|+ c. (9.6)

By a similar argument

∫
cotxdx = log |sinx|+ c. (9.7)

■

■ Example 9.2 Here is a more involved example:∫
secxdx =

∫ dx
cosx

.
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In order to find this primitive, let us first compute

(secx)′ =
sinx

cos2 x
= secx tanx, (tanx)′ = sec2 x.

Adding up these two equations we get

(secx+ tanx)′ = secx tanx+ sec2 x = secx(tanx+ secx).

Therefore

(secx+ tanx)′

secx+ tanx
= secx

and from this we conclude

∫
secxdx = log |secx+ tanx|+ c = log

∣∣∣∣1+ sinx
cosx

∣∣∣∣+ c. (9.8)

Similarly we obtain

∫
cscxdx =− log |cscx+ cotx|+ c = log

∣∣∣∣ sinx
1+ cosx

∣∣∣∣+ c. (9.9)

Notice that(
1+ sinx

cosx

)2

=
(1+ sinx)2

1− sin2 x
=

1+ sinx
1− sinx

=
cos2 x

2 + sin2 x
2 +2sin x

2 cos x
2

cos2 x
2 + sin2 x

2 −2sin x
2 cos x

2

=

(
cos x

2 + sin x
2

cos x
2 − sin x

2

)2

=

(
1+ tan x

2
1− tan x

2

)2

= tan2
( x

2
+

π

4

)
,(

sinx
1+ cosx

)2

=
1− cos2 x
(1+ cosx)2 =

1− cosx
1+ cosx

=
2sin2 x

2
2cos2 x

2
= tan2 x

2
,

therefore, we have the alternative expressions

log
∣∣∣∣1+ sinx

cosx

∣∣∣∣= 1
2

log
(

1+ sinx
1− sinx

)
= log

(
1+ tan x

2
1− tan x

2

)
= log

∣∣∣tan
( x

2
+

π

4

)∣∣∣ ,
log
∣∣∣∣ sinx
1+ cosx

∣∣∣∣= 1
2

log
(

1− cosx
1+ cosx

)
= log

∣∣∣tan
x
2

∣∣∣
■

9.1 Integration by parts

Theorem 9.1.1 If f and g are two differentiable functions, then∫
f (x)g′(x)dx = f (x)g(x)−

∫
f ′(x)g(x)dx. (9.10)

Proof. Since f (x)g(x) is the primitive of
[

f (x)g(x)
]′, we have

f (x)g(x) =
∫ [

f (x)g(x)
]′ dx =

∫ [
f ′(x)g(x)+ f (x)g′(x)

]
dx =

∫
f ′(x)g(x)dx+

∫
f (x)g′(x)dx.

From here equation (9.10) follows straight away. ■
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This is one of the most useful integration techniques, as a few examples will reveal.

■ Example 9.3 A classic example is the integral∫
xex dx.

Since ex = (ex)′ it is easy to recognise the left-hand side of (9.10). Therefore∫
xex dx = xex −

∫
1 · ex dx = xex − ex + c = (x−1)ex + c.

■

This example can be generalised whenever we have a function g′(x) easy to integrate several
times (e.g., an exponential, a power, a trigonometric function. . . ) multiplied by a polynomial. The
polynomial plays the role of function f (x), and we have to apply integration by parts as many times
as the degree of the polynomial. (The example above is one of those cases, in which the polynomial
has degree 1.)

Exercise 9.1 Calculate∫
(x2 +1)sin(2x−1)dx.

■

■ Example 9.4 Often we cannot see g′(x) explicitly because g′(x) = 1. For example, in the integral∫
logxdx.

If g′(x) = 1 then g(x) = x, therefore∫
logxdx = x logx−

∫
x · 1

x
dx = x logx−

∫
dx = x logx− x+ c.

Thus, we can add the primitive of yet another elementary function to our list:

∫
logxdx = x logx− x+ c. (9.11)

■

We can generalise this example to obtain the primitive of an inverse f−1 if we know that F(x)
is a primitive of f (x):∫

f−1(x)dx = x f−1(x)−
∫

x
(

f−1)′ (x)dx.

But x = f
(

f−1(x)
)
, therefore∫

x( f−1)′(x)dx =
∫

f
(

f−1(x)
)(

f−1)′ (x)dx = F
(

f−1(x)
)

because the last integral matches the pattern of an immediate integral. Thus, we can con-
clude:
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Theorem 9.1.2 If function f has an inverse f−1 and F ′(x) = f (x), then∫
f−1(x)dx = x f−1(x)−F

(
f−1(x)

)
. (9.12)

■ Example 9.5 We know that∫
tanxdx =− log |cosx| ≡ F(x)

is a primitive of f (x) = tanx. Therefore∫
arctanxdx = xarctanx+ log |cos(arctanx)|+ c.

We can simplify this expression if we rewrite the cosine in terms of the tangent. Since

cos2 x =
1

1+ tan2 x
⇒ cosx = (1+ tan2 x)−1/2,

then

log |cos(arctanx)|= log |(1+ x2)−1/2|=−1
2

log(1+ x2).

Thus

∫
arctanxdx = xarctanx− 1

2
log(1+ x2)+ c. (9.13)

■

Exercise 9.2 Prove that∫
arcsinxdx = xarcsinx+

√
1− x2 + c. (9.14)

■

■ Example 9.6 Another typical use of the integration by parts is to recover the same integral after
applying the formula. Such is the case of∫ logx

x
dx.

since 1/x = (logx)′,∫ logx
x

dx = (logx)2 −
∫

logx
dx
x
.

From this we conclude that

2
∫ logx

x
dx = (logx)2

thus ∫ logx
x

dx =
1
2
(logx)2 + c.

■
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■ Example 9.7 The integrals∫
ex sinxdx,

∫
ex cosxdx,

are another example of the same technique, where we have to integrate by parts more than once. In
the first integration we identify g′(x) = sinx and get∫

ex sinxdx = ex(−cosx)−
∫
(−cosx)ex dx =−ex cosx+

∫
cosxex dx.

In the second integration we identify g′(x) = cosx, so∫
cosxex dx = ex sinx−

∫
sinxex dx.

Therefore, if we denote

S ≡
∫

ex sinxdx, C ≡
∫

ex cosxdx,

what we have obtained are the equations

S =−ex cosx+C, C = ex sinx−S.

Solving this system we obtain

S =
ex

2
(sinx− cosx)+ c, C =

ex

2
(sinx+ cosx)+ c.

■

■ Example 9.8 Another technique associated to the integration by parts is the construction of
recurrence formulas. This is illustrated by the example

In(x) =
∫ dx

(1+ x2)n ,

whose case n = 1 is straightforward: I1(x) = arctanx. In order to find the recurrence we proceed as
follows:

In+1(x) =
∫ dx

(1+ x2)n+1 =
∫ 1+ x2

(1+ x2)n+1 dx−
∫ x2

(1+ x2)n+1 dx= In(x)−
1
2

∫
x

2x
(1+ x2)n+1 dx.

We now integrate by parts∫
x

2x
(1+ x2)n+1 dx =− x

n
1

(1+ x2)n +
1
n

∫ dx
(1+ x2)n =

In(x)
n

− x
n(1+ x2)n .

Thus

In+1(x) = In(x)
(

1− 1
2n

)
+

x
2n(1+ x2)n =

2n−1
2n

In(x)+
1

2n
x

(1+ x2)n .

For instance,

I2(x) =
1
2

arctanx+
1
2

x
(1+ x2)

,

I3(x) =
3
4

I2(x)+
1
4

x
(1+ x2)2 =

3
8

arctanx+
3
8

x
(1+ x2)

+
1
4

x
(1+ x2)2 ,

etc. ■
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9.2 Primitives of rational functions
Rational functions can be integrated thanks to a partial fractions decomposition. First of all, we can
focus on rational functions

R(x) =
P(x)
Q(x)

, (9.15)

where the degree of P(x) is smaller than the degree of Q(x), and Q(x) is a monic polynomial. The
reason is that if this is not true, then we can divide P(x) by Q(x), obtain a quotient polynomial C(x)
and a remainder M(x), so that we can write

R(x) =
P(x)
Q(x)

=C(x)+
M(x)
Q(x)

.

In the last rational fraction the degree of M(x) is smaller than the degree of Q(x), and the polynomial
C(x) can be readily integrated.

Any monic polynomial Q(x) can be factored out into a series of elementary factors, i.e.,

Q(x) = (x−a1)
n1 · · ·(x−ar)

nr
(
x2 + p1x+q1

)m1 · · ·
(
x2 + psx+qs

)ms
. (9.16)

Numbers a1,a2, . . . ,ar are real roots of the polynomial and n1,n2, . . . ,nr their respective multiplic-
ities. The quadratic factors

(
x2 + p jx+q j

)m j are irreducible (i.e., p2
j < 4q j) and correspond to

complex roots of the polynomial. Numbers m j are their respective multiplicities.
It turns out that the rational function (9.15) with denominator (9.16) can be expanded as

R(x) =
r

∑
i=1

[
Ai1

x−ai
+ · · ·+ Aini

(x−ai)ni

]
+

s

∑
j=1

[
B j1x+C j1

x2 + p jx+q j
+ · · ·+

B jm j x+C jm j

(x2 + p jx+q j)m j

]
(9.17)

These partial fractions are easier to integrate. A few examples will illustrate the method.

■ Example 9.9 Calculate∫ 2x2 −4x+6
(x−1)3 dx.

According to the partial fractions decomposition (9.17),

2x2 −4x+6
(x−1)3 =

A
(x−1)3 +

B
(x−1)2 +

C
x−1

.

There are several ways to find A, B, and C. For instance, we can multiply the equation above by
(x−1)3 and get

2x2 −4x+6 = A+B(x−1)+C(x−1)2.

Then setting x = 1 we obtain A = 4. Substituting this value of A in the previous equation and
simplifying yields

2x2 −4x+2 = B(x−1)+C(x−1)2 ⇒ 2(x−1)2 = B(x−1)+C(x−1)2,

hence B = 0 and C = 2.
An alternative is to obtain the Taylor polynomial for 2x2 − 4x+ 6 in powers of x− 1. It is

4+2(x−1)2. Then

2x2 −4x+6
(x−1)3 =

4+(x−1)2

(x−1)3 =
4

(x−1)3 +
2

x−1
.
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Finally∫ 2x2 −4x+6
(x−1)3 dx =

∫ 4
(x−1)3 dx+

∫ 2
x−1

dx =− 2
(x−1)2 +2log |x−1|+ c.

■

■ Example 9.10 Calculate∫ x+2
x(x−1)(x−2)

dx.

The partial fraction decomposition yields

x+2
x(x−1)(x−2)

=
A
x
+

B
x−1

+
C

x−2
.

Multiplying by x(x−1)(x−2) leads to

x+2 = A(x−1)(x−2)+Bx(x−2)+Cx(x−1).

Setting x = 0 we get 2 = 2A, i.e., A = 1. Setting x = 1 we get 3 =−B, i.e., B =−3. Finally, setting
x = 2 we get 4 = 2C, i.e., C = 2. Thus∫ x+2

x(x−1)(x−2)
dx =

∫ dx
x
−3

∫ dx
x−1

+2
∫ dx

x−2
= log |x|−3log |x−1|+2log |x−2|+ c.

■

■ Example 9.11 Calculate∫ x2 +1
x2(x−1)(x+1)

dx.

The partial fraction decomposition yields

x2 +1
x2(x−1)(x+1)

=
A
x
+

B
x2 +

C
x−1

+
D

x+1
.

Multiplying by x2(x−1)(x+1) leads to

x2 +1 = Ax(x−1)(x+1)+B(x−1)(x+1)+Cx2(x+1)+Dx2(x−1).

Setting x = 0 leads to 1 = −B, i.e., B = −1. Setting x = 1 leads to 2 = 2C, i.e., C = 1. Setting
x =−1 leads to 2 =−2D, i.e., D =−1. Now, substituting these constants

x2 +1 = Ax(x−1)(x+1)− (x−1)(x+1)+ x2(x+1)− x2(x−1)

= Ax(x−1)(x+1)− x2 +1+ x3 + x2 − x3 + x2 = Ax(x−1)(x+1)+ x2 +1,

so A = 0.
Now,∫ x2 +1

x2(x−1)(x+1)
dx =−

∫ dx
x2 +

∫ dx
x−1

−
∫ dx

x+1
=

1
x
+ log |x−1|− log |x+1|+ c.

■
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■ Example 9.12 Calculate∫ 5x2 − x+3
x(x2 +1)

dx.

The partial fraction decomposition yields

5x2 − x+3
x(x2 +1)

=
A
x
+

Bx+C
x2 +1

.

Multiplying by x(x2 +1)leads to

5x2 − x+3 = A(x2 +1)+(Bx+C)x.

Setting x = 0 leads to A = 3. Substituting this value

5x2 − x+3 = 3(x2 +1)+(Bx+C)x ⇒ 2x2 − x = (Bx+C)x ⇒
2x−1 = Bx+C,

so B = 2 and C =−1.
Then∫ 5x2 − x+3

x(x2 +1)
dx = 3

∫ dx
x
+
∫ 2x

x2 +1
dx−

∫ dx
x2 +1

= 3log |x|+ log(x2 +1)−arctanx+c.

■

■ Example 9.13 Calculate∫ 2x+4
x2 +2x+2

dx.

In order to perform a partial fraction decomposition we need to find the roots of the denominator.
However these roots are −1± i, so x2 +2x+2 is an irreducible square factor. The way to proceed
in these cases is to take the first two terms and complete the square. In other words, we write
x2 +2x = (x+1)2 −1. Thus,∫ 2x+4

x2 +2x+2
dx =

∫ 2(x+2)
(x+1)2 +1

dx =
∫ 2(x+1)

(x+1)2 +1
dx+2

∫ dx
(x+1)2 +1

= log
[
(x+1)2 +1

]
+2arctan(x+1)+ c

= log(x2 +2x+2)+2arctan(x+1)+ c.

■

■ Example 9.14 Calculate∫ 2x+4
(x2 +2x+2)2 dx.

Using the same transformation as in the previous example∫ 2x+4
(x2 +2x+2)2 dx =

∫ 2(x+1)

[(x+1)2 +1]2
dx+2

∫ dx

[(x+1)2 +1]2
.

The first integral is immediate,∫ 2(x+1)

[(x+1)2 +1]2
dx =− 1

(x+1)2 +1
=− 1

x2 +2x+2
.
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The second integral can be done using the recurrence derived in Example 9.8,

2
∫ dx

[(x+1)2 +1]2
= arctan(x+1)+

x+1
x2 +2x+2

.

Thus, ∫ 2x+4
(x2 +2x+2)2 dx = arctan(x+1)+

x
x2 +2x+2

+ c.

■

9.3 Change of variable

Let F(x) be one primitive of f (x), and let x = g(t) be a change from variable x to the new variable
t. By the chain rule

d
dt

F
(
g(t)

)
= f
(
g(t)

)
g′(t),

thus, integrating this equation,

F
(
g(t)

)
=
∫

f
(
g(t)

)
g′(t)dt.

But using the change x = g(t) and the fact that F(x) =
∫

f (x)dx, we can rewrite this identity
as

∫
f (x)dx =

∫
f
(
g(t)

)
g′(t)dt. (9.18)

This is the equation ruling a change of variable in the calculation of a primitive.

R A simple way to remember this rule is to rewrite dx according to

dx =
dx
dt

dt = g′(t)dt.

■ Example 9.15 Calculate∫ ex

e2x +1
dx.

Here the obvious change of variable is ex = t or x = log t. Then dx = dt/t and∫ ex

e2x +1
dx =

∫ t
t2 +1

dt
t
=
∫ dt

t2 +1
= arctan t + c = arctan(ex)+ c.

■

■ Example 9.16 Calculate∫ dx
3
√

(1−2x)2 −
√

1−2x
.
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Here the change of variable is tm = 1−2x, choosing m so that all roots disappear. The simplest
choice is the least common multiple of 2 and 3 in this case, i.e., m = 6. So x = (1− t6)/2 and
therefore dx =−3t5 dt. Then,∫ dx

3
√

(1−2x)2 −
√

1−2x
=
∫ −3t5

t4 − t3 dt =−3
∫ t2

t −1
dt =−3

∫ (
t +1+

1
t −1

)
dt

=−3
2
(t +1)2 −3log |t −1|+ c

=−3
2

(
1+ 6

√
1−2x

)2
−3log

∣∣∣1− 6
√

1−2x
∣∣∣+ c

■

■ Example 9.17 Calculate∫ dx

x
√

1− x2
.

Whenever we have an expression like
√

1− x2 one possible change of variable is x = sin t, for then√
1− x2 = cos t and dx = cos t dt. In this case this leads to∫ dx

x
√

1− x2
=
∫ cos t

sin t cos t
dt =

∫ dt
sin t

= log
∣∣∣∣ sin t
1+ cos t

∣∣∣∣+ c = log
(

|x|
1+

√
1− x2

)
+ c.

■

Suggested changes of variables:

(I) If there appear
√

1+ x2 then x = tan t transforms√
1+ x2 =

1
cos t

, dx =
dt

cos2 t
,

or x = sinh t transforms√
1+ x2 = cosh t, dx = cosh t dt.

(II) If there appear
√

x2 −1 then x = sec t transforms√
x2 −1 = tan t, dx = sec t tan t dt,

or x = cosh t transforms√
x2 −1 = sinh t, dx = sinh t dt.

(III) As a last resource, in rational functions of sines and cosines we can use t = tan(x/2), which
transforms

sinx =
2t

1+ t2 , cosx =
1− t2

1+ t2 , dx =
2dt

1+ t2 .
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Problems
Problem 9.1 Obtain the following immediate (or nearly so) primitives:

(i)
∫ dx

cos2 x
;

(ii)
∫ sinx− cosx

sinx+ cosx
dx;

(iii)
∫ x

(x2 +1)5/2 dx;

(iv)
∫ 1+ sinx

1+ cosx
dx;

(v)
∫ dx

1− sinx
dx;

(vi)
∫ x√

1+ x2
dx;

(vii)
∫ 1+

√
1−

√
x√

x
dx;

(viii)
∫ cos3 x

sin4 x
dx;

(ix)
∫

x3
√

1− x2 dx.

HINTS: (iv) multiply and divide by 1− cosx and expand; (v) idem with 1+ sinx; (vii) alternatively t =
√

1−
√

x; (viii)

cos3 x = (1− sin2 x)cosx and expand; (ix) write x3 = x(x2 −1)+ x and expand.

Problem 9.2 Obtain the primitives of the following rational functions:

(i)
∫ x2

(x−1)3 dx;

(ii)
∫ dx

(x−1)2(x2 + x+1)
;

(iii)
∫ 2x2 +3

x2(x−1)
dx;

(iv)
∫ 2

x2 −2x+2
dx;

(v)
∫ 4x4 − x3 −46x2 −20x+153

x3 −2x2 −9x+18
dx;

(vi)
∫ x5 −2x3

x4 −2x2 +1
dx.

HINTS: (ii) x2 + x + 1 = (x + 1/2)2 + 3/4; (v) x3 − 2x2 − 9x + 18 = (x − 2)(x − 3)(x + 3); (vi) x4 − 2x2 + 1 =

(x−1)2(x+1)2.

Problem 9.3 Obtain the following primitives doing an appropriate change of variable:

(i)
∫

x2√x−1dx;

(ii)
∫

x2 sin
√

x3 dx;

(iii)
∫

cos(logx)dx;

(iv)
∫

sin(logx)dx;

(v)
∫

cos2(logx)dx;

(vi)
∫ √

x+1
x+3

dx;

(vii)
∫

(x+1)3√
1− (x+1)2

dx;

(viii)
∫ x3

(1+ x2)3 dx;

(ix)
∫ dx

(2+ x)
√

1+ x
;

(x)
∫ dx

1+ 3
√

1− x
;

(xi)
∫ e4x

e2x +2ex +2
dx;

(xii)
∫ dx√

e2x −1
dx;

(xiii)
∫ √

ex −1dx;

(xiv)
∫ sin2 xcos5 x

tan3 x
dx;

(xv)
∫ dx

3+
√

2x+5
;

(xvi)
∫ √x−1

x+1
dx;

(xvii)
∫ √√

x+1dx;

(xviii)
∫ √

x+2
1+

√
x+2

dx;

(xix)
∫ √

2+ ex dx;

(xx)
∫ sinx+3cosx

sinx+2cosx
dx;

(xxi)
∫ sinx+3cosx

sinxcosx+2sinx
dx;

(xxii)
∫ √1+ 3

√
x

3
√

x
dx;

(xxiii)
∫ dx

(x+1) 3
√

x+2
;

(xxiv)
∫ dx

ex −4e−x dx.

HINTS: (i) t =
√

x−1 (or int. by parts twice); (ii) t2 = x3; (iii)–(v) t = logx; (vi) t =
√

x; (vii) t =
√

1− (x+1)2;

(viii) t = 1+ x2; (ix) t2 = 1+ x; (x) t3 = 1− x; (xi) t = ex; (xii) t2 = e2x − 1; (xiii) t2 = ex − 1; (xiv) t = cosx; (xv)

t = 3+
√

2x+5; (xvi) t =
√

(x−1)/(x+1); (xvii) t =
√√

x+1; (xviii) t =
√

x+2; (xix) t =
√

2+ ex; (xx) t = tanx;

(xxi) t = tan(x/2); (xxii) t =
√

1+ x1/3; (xxiii) t3 = x+2; (xxiv) t = ex.

Problem 9.4 Obtain the following primitives with the help of some trigonometric identity:
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(i)
∫

sin2 xdx;

(ii)
∫

cos2 xdx;

(iii)
∫

sin4 xdx;

(iv)
∫

cos4 xdx;

(v)
∫

cos6 xdx;

(vi)
∫

sin2 xcos2 xdx;

(vii)
∫

tan2 xdx;

(viii)
∫

tan4 xdx;

(ix)
∫ dx

cos4 x
;

(x)
∫

sin5 xdx;

(xi)
∫

cos3 xsin2 xdx;

(xii)
∫

sec6 xdx;

(xiii)
∫

sin3 xcos2 xdx;

(xiv)
∫

tan3 xdx;

(xv)
∫

tan3 xsec4 xdx.

HINTS: Identities to use: 2cos2 x = 1+ cos2x; 2sin2 x = 1− cos2x; cos2 x+ sin2 x = 1; sec2 x = 1+ tan2 x.

Problem 9.5 Integrate by parts to obtain the following primitives:

(i)
∫

x tan2(2x)dx;

(ii)
∫

ex sinπxdx;

(iii)
∫

ex cos2xdx;

(iv)
∫

sec3 xdx;

(v)
∫

tan2(3x)sec3(3x)dx;

(vi)
∫

esinx cos3 xdx;

(vii)
∫

x2 logxdx;

(viii)
∫

xm logxdx;

(ix)
∫
(logx)3 dx;

(x)
∫

x(logx)2 dx;

(xi)
∫ x logx

(1+ x2)2 dx;

(xii)
∫

arctan 3
√

xdx.

Problem 9.6 Obtain the following primitives by performing a trigonometric substitution:

(i)
∫ x2 +1√

x2 −1
dx;

(ii)
∫ x2

(x2 +1)5/2 dx;

(iii)
∫ x2

(1− x2)3/2 dx;

(iv)
∫ dx

x2
√

1− x2
;

(v)
∫ dx

x2
√

9− x2
.

Problem 9.7 Find recurrence formulas for the following integrals:

(i) Im =
∫

sinm xdx −→ Im =− 1
m

sinm−1 xcosx+
m−1

m
Im−2;

(ii) Im =
∫
(logx)m dx −→ Im = x(logx)m −mIm−1;

(iii) Im =
∫

xme−x dx −→ Im =−xme−x +mIm−1;

(iv) Im =
∫

tanm xdx −→ Im =
1

m−1
tanm−1 x− Im−2;

(v) Im =
∫

secm xdx −→ Im =
1

m−1
tanxsecm−2 x+

m−2
m−1

Im−2;

(vi) Im =
∫

xmex2
dx −→ Im =

1
2

xm−1ex2 − m−1
2

Im−2;

(vii) Im,n =
∫

sinm xcosn xdx −→ Im,n =− 1
m+n

sinm−1 xcosn+1 x+
m−1
m+n

Im−2,n.

Problem 9.8 Without calculating the integral, prove that∫ acosx+bsinx
ccosx+d sinx

dx = Ax+B log |ccosx+d sinx|+ const.

by determining the constants A and B as functions of a, b, c, and d.





10. Fundamental Theorem of Calculus

Integration is a device that was invented to calculate areas of figures limited by curved sides. The
idea can be traced back at least to Archimedes. He is well known —among many other things—
by calculating the area of a circle of unit diameter, A, in terms of its perimeter, π (π is the initial
of περίμετρος = perimeter), obtaining the celebrated formula A = π/4. He did that by using two
sequence of polygons, both circumscribed to and inscribed in the circumference, and then taking
the limit of the number of sides going to infinity (see Figure 10.1).

Figure 10.1: Archimedes’s construction to obtain the relation between the area and the perimeter of
a circle.

A similar idea was employed to obtain the area under more complicated curves. If we define a
signed area as in Figure 10.2(a) (i.e., it adds if f (x)> 0 and substracts if f (x)< 0), the problem is
how to calculate the total area enclosed by a curved within a given interval. Following Archimedes,
one way to estimate that area is to approximate it as a sum of rectangles, as in Figure 10.2(b). In
the limit when the width of these rectangles goes to zero we obtain the value of the seeked area.

■ Example 10.1 As an example of this procedure, let us calculate, using this method, the area
below the curve f (x) = x2 within the interval [0,a]. To do that, we divide the interval in n rectangles
of width a/n and heights (ak/n)2, with k = 1,2, . . . ,n. The areas of these rectangles will then be
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(a) (b)

Figure 10.2: (a) Area “under” a curve: above the X axis area has a positive sign and below the X
axis has a negative sign. (b) Approximations to that area as sums of thiner and thiner rectangles.

a3k2/n3. This yields the following approximation to the area:

An =
n

∑
k=1

k2

n3 =
a3

n3

n

∑
k=1

k2.

It is a know result that

12 +22 + · · ·+n2 =
n(n+1)(2n+1)

6
,

thus

An = a3 n(n+1)(2n+1)
6n3 .

Therefore

A = lim
n→∞

An = lim
n→∞

a3 n(n+1)(2n+1)
6n3 =

a3

3
is the area we are seeking. ■

10.1 Riemann’s integral
The problem with the heuristic idea exposed above is that, for that procedure to make sense, the
result should not depend on the division in rectangles that we propose. In other words, irrespective
of whether we choose all rectangles to have the same or different widths, the limit process should
yield the same area. Thus we need a more rigorous construction and limit process.

To this purpose, given an interval [a,b] we will define a partition of the interval as as the set
P = {x0,x1, . . . ,xn}, where a = x0 < x1 < x2 < · · ·< xn−1 < xn = b.

Now, for any function f bounded in [a,b], if we define

mi ≡ inf
xi−1⩽x⩽xi

f (x), Mi ≡ sup
xi−1⩽x⩽xi

f (x), (10.1)

then the (signed) area between the X axis and f (x) within the interval [xi−1,xi] —provided it can
be defined— will be bounded from below by mi(xi − xi−1) and from above by Mi(xi − xi−1) —the
areas of two rectangles (see Figure 10.3). Thus, the two numbers

L( f ,P) = ∑
i=1

mi(xi − xi−1), U( f ,P) = ∑
i=1

Mi(xi − xi−1), (10.2)
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respectively called lower sum and upper sum of f with respect to the partition P, will be an upper
and a lower bound to the (signed) area between f (x) and the X axis within the interval [a,b]. By
construction L( f ,P)⩽U( f ,P).

Figure 10.3: Definition of the upper sum and lower sum for a function f (x) with respecto to a
partition of the interval [a,b]. The (signed) area between the X axis and f (x) is bounded between
them two.

Partitions can be defined by adding more points to it. Thus, Q is a refinement of P if P ⊂ Q.
Upon refining partitions we increase the lower sum and decrease the upper sum, i.e.,

L( f ,P)⩽ L( f ,Q), U( f ,Q)⩽U( f ,P).

Accordingly, if P1 and P2 are two partitions of [a,b], then Q = P1 ∪P2 will be a refinement of both
of them and therefore

L( f ,P1)⩽ L( f ,Q)⩽U( f ,Q)⩽U( f ,P2).

In other words, L( f ,P1)⩽U( f ,P2) irrespective of the partitions P1 and P2.
This is summarised in the statement

sup
P

L( f ,P)⩽ inf
P

U( f ,P). (10.3)

This led Riemann to invent the following definition:

Definition 10.1.1 — Integral. A function f bounded in [a,b] is integrable in [a,b] if

sup
P

L( f ,P) = inf
P

U( f ,P) =
∫ b

a
f . (10.4)

The number
∫ b

a
f is known as the (Riemann’s) integral of f in [a,b].

R It is customary to use Leibniz’s notation for the integral and write∫ b

a
f =

∫ b

a
f (x)dx.

This notation reminds the definition of the integral as a sum (hence the sign
∫

) of the areas of
rectagles of with dx and height f (x), for all a ⩽ x ⩽ b.
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■ Example 10.2 Not all bounded functions can be integrated. For instance the function

f (x) =

{
1, x ∈Q,

0, x /∈Q,

does not satisfy the definition because for every partition P of the interval [a,b] we have L( f ,P) = 0
and U( f ,P) = b− a —because every subterval [xk−1,xk] contains both rational and irrational
numbers. ■

■ Example 10.3 The function

f (x) =

{
1, x = 1

2 ,

0, x ̸= 1
2 ,

can be integrated in e.g. [0,1]. Let P be any partition of that interval. Then L( f ,P) = 0 because in
every interval of P f takes the value 0. On the other hand, U( f ,P) = ∆x, where ∆x is the length of
the interval containing the point x = 1/2. Since by refining the partition ∆x can be made arbitrarily
small,

L( f ,P) = inf
P

U( f ,P) = 0 ⇒
∫ b

a
f = 0.

■

An important result that justifies the heuristic construction is this:

Theorem 10.1.1 The bounded function f is integrable in [a,b] if and only if there exists a
sequence of partitions {Pn}∞

n=1 such that

lim
n→∞

L( f ,Pn) = lim
n→∞

U( f ,Pn).

In other words, to prove the existence of an integral we simply have to take a partition Pn of the
interval [a,b] into n equal segments, compute L( f ,Pn) and U( f ,Pn) and take the limits.

Exercise 10.1 Transform Example 10.1 into a rigorous proof that
∫ a

0
x2 dx =

a3

3
. ■

The full characterisation of the set of functions that can be integrated according to Riemann’s
definition is out of the scope of this course. However, this set includes important classes of functions
worth mentioning:

Theorem 10.1.2 If f is continuous in [a,b] then it is integrable in [a,b].

The idea of the proof of this result is that continuous functions have the property that the
difference between their maximum and minimum values in a closed interval is smaller the smaller
the interval. This means that we can make the difference between L( f ,P) and U( f ,P) arbitrarily
small by simply refining the partition sufficiently.

Theorem 10.1.3 If f is monotonic in [a,b] then it is integrable in [a,b].

Proof. Let us assume that f is increasing (the proof is analogous for decreasing functions). The
idea of the proof is that, within the interval [xi−1,xi], the maximum of f is f (xi) and the minimum
is f (xi−1). Thus, if Pn is the partition of [a,b] into n equal size intervals,

L( f ,Pn) =
n

∑
i=1

f (xi−1)
b−a

n
, U( f ,Pn) =

n

∑
i=1

f (xi)
b−a

n
,
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and therefore

0 ⩽U( f ,Pn)−L( f ,Pn) =
b−a

n

n

∑
i=1

[ f (xi)− f (xi−1)] =
b−a

n
[ f (b)− f (a)] −−−−→

n→∞
0.

■

Notice that monotonic functions need not be continuous, so this result is not contained in the
previous one.

10.2 Properties of the integral

Theorem 10.2.1 Let f and g be two integrable functions in [a,b]. Then the following properties
hold:

(i)
∫ b

a
(α f +βg) = α

∫ b

a
f +β

∫ b

a
g for all α,β ∈ R linearity

(ii)
∫ b

a
f ⩽

∫ b

a
g whenever f ⩽ g in [a,b] boundedness

(iii) | f | is integrable in [a,b] and
∣∣∣∣∫ b

a
f
∣∣∣∣⩽ ∫ b

a
| f | absolute integrability

A consequence of (ii) is that if f ⩾ 0 then
∫ b

a
f ⩾ 0.

Another consequence is that if M = sup
x∈[a,b]

f (x) and m = inf
x∈[a,b]

f (x), then

m(b−a)⩽
∫ b

a
f ⩽ M(b−a). (10.5)

Theorem 10.2.2 — Interval additivity. Given a < b < c, function f is integrable in [a,c] if and
only if it is integrable in [a,b] and [b,c]. Besides∫ c

a
f =

∫ b

a
f +

∫ c

b
f . (10.6)

Notice that this formula implies∫ b

a
f =

∫ c

a
f −

∫ c

b
f ,

so interval additivity will be preserved beyond the constraint a < b < c if we define

∫ b

c
f =−

∫ c

b
f . (10.7)

10.3 Riemann’s sums
Let f be a bounded function in [a,b]. For any partition P of this interval the expression

S( f ,P) =
n

∑
i=1

f (ci)(xi − xi−1), (10.8)

for any choice of points xi−1 ⩽ ci ⩽ xi is referred to as a Riemann’s sum.
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It is clear from the definition that Riemann’s sums satisfy L( f ,P)⩽ S( f ,P)⩽U( f ,P). There-
fore, if f is integrable in [a,b] and {Pn}∞

n=1 is a sequence of partitions such that

lim
n→∞

[U( f ,Pn)−L( f ,Pn)] = 0,

then

lim
n→∞

S( f ,Pn) =
∫ b

a
f . (10.9)

This result is very useful in calculating some limits, as the examples illustrate.

■ Example 10.4 Suppose we need to calculate the limit

lim
n→∞

n

∑
k=1

1
n+ k

.

This limit does not define a series, because the terms in the sum change not only with k but also
with n.

In order to calculate this limit we need to rewrite the sum as

n

∑
k=1

1
n+ k

=
n

∑
k=1

1
1+(k/n)

· 1
n
.

The right-hand side is the expression of S( f ,Pn), where f (x) = 1/(1+ x), ck = k/n and Pn is a
partition of [0,1] in n equal-size intervals. Since f is continuous —hence integrable—, then

lim
n→∞

n

∑
k=1

1
n+ k

= lim
n→∞

S( f ,Pn) =
∫ 1

0

dx
1+ x

.

■

■ Example 10.5 Let us calculate

lim
n→∞

n

∏
k=1

(
1+

k
n

)1/n

.

If we denote the limit ℓ, then

logℓ= lim
n→∞

n

∑
k=1

1
n

log
(

1+
k
n

)
= lim

n→∞
S( f ,Pn),

where Pn is a partition of [0,1] in n equal-size intervals and f (x) = log(1+ x). Thus,

logℓ=
∫ 1

0
log(1+ x)dx.

■

10.4 Fundamental theorem of calculus

The basic idea of the connection between integrals and derivatives —the essence of the fundamental
theorem of calculus— is this. Let us denote A(x) the (signed) area between the X axis and the
function f within the interval [a,x]. Suppose that we increase the inverval by a very small amount
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h. In practical terms, we are enlarging the area by adding almost a rectangle of width h and height
≈ f (x). In other words,

A(x+h)≈ A(x)+ f (x)h ⇒ f (x)≈ A(x+h)−A(x)
h

.

If we now take the limit h → 0 we obtain the connection A′(x) = f (x). This is the basic result that
both Newton and Leibniz were aware of and which renders calculus such a powerful tool.

We are going to obtain this result in a more rigorous way by using our definition of (Riemann’s)
integral.

To begin with, let us first prove that integrals always define continuous functions:

Theorem 10.4.1 If f is integrable in [a,b], then F(x) =
∫ x

a
f (t)dt defines a continuous function

in [a,b].

Proof. Take any point c ∈ [a,b]. Since f is integrable in [a,b] it is also bounded, so let M =
sup

x∈[a,b]
| f (x)|. Then

|F(x)−F(c)|=
∣∣∣∣∫ x

a
f (t)dt −

∫ c

a
f (t)dt

∣∣∣∣= ∣∣∣∣∫ x

c
f (t)dt

∣∣∣∣⩽ ∣∣∣∣∫ x

c
| f (t)|dt

∣∣∣∣⩽ ∣∣∣∣∫ x

c
M dt

∣∣∣∣=M|x−c|.

By the sandwich rule,

lim
x→c

|x− c|= 0 ⇒ lim
x→c

|F(x)−F(c)|= 0 ⇒ lim
x→c

F(x) = F(c).

This proves that F is continuous at any c ∈ [a,b]. ■

Notice that this result requieres nothing from f apart from its integrability. In particular, f
needs not be a continuous function.

■ Example 10.6 Let

f (x) =

{
0, x ⩽ 1

2 ,

1, x > 1
2

be a function with a jump discointinuity at x = 1/2. Now, for any x ⩽ 1/2,

F(x) =
∫ x

0
f (t)dt =

∫ x

0
0dt = 0,

whereas for any x > 1/2,

F(x) =
∫ x

0
f (t)dt =

∫ 1/2

0
f (t)dt +

∫ x

1/2
f (t)dt =

∫ 1/2

0
0dt +

∫ x

1/2
dt = x− 1

2
.

Thus,

F(x) =

{
0, x ⩽ 1

2 ,

x− 1
2 , x > 1

2 ,

which is continuous everywhere. ■
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Theorem 10.4.2 — First fundamental theorem of calculus. If f is continuous in [a,b] then

F(x) =
∫ x

a
f (t)dt is differentiable in (a,b) and F ′(x) = f (x).

Proof. First of all

F(x+h)−F(x)
h

=
1
h

∫ x+h

x
f (t)dt.

Now, in the interval [x,x+h] (or [x+h,x] if h < 0) f reaches its maximum Mh and minimum mh
values —as every continuous function in a closed interval. Then, if h > 0

mhh ⩽
∫ x+h

x
f (t)dt ⩽ Mhh ⇒ mh ⩽

1
h

∫ x+h

x
f (t)dt ⩽ Mh,

and if h < 0

mh(−h)⩽
∫ x

x+h
f (t)dt ⩽ Mh(−h) ⇒ mh ⩽

1
(−h)

∫ x

x+h
f (t)dt ⩽ Mh

⇒ mh ⩽
1
h

∫ x+h

x
f (t)dt ⩽ Mh.

In any case, the number
1
h

∫ x+h

x
f (t)dt is an intermediate value between mh and Mh. Any continuous

function in a closed interval reaches all intermediate values between its maximum and its minimum,
so there must be a point ch ∈ [x,x+h] (or in [x+h,x] if h < 0) such that

f (ch) =
1
h

∫ x+h

x
f (t)dt.

Clearly ch → x when h → 0. Therefore

F ′(x) = lim
h→0

F(x+h)−F(x)
h

= lim
h→0

f (ch) = f (x).

■

The take-home message of this theorem is that integrals of functions are primitives of those
functions. Here is the connection between differentiation and integration. From now on, calculating
the area between the X axis and a given curve f (x) is as simple as finding the right primitive of f .
Actually, the problem is even easier: any primitive will do, because of this second version of the
fundamental theorem of calculus:

Theorem 10.4.3 — Second fundamental theorem of calculus (Barrow’s rule). If f is
continuous in [a,b] and G is any primitive of f in (a,b), then∫ b

a
f (x)dx = G(b)−G(a).

Proof. According to the first version of this theorem F(x) =
∫ x

a
f (t)dt is a primitive of f in (a,b).

Therefore G(x) = F(x)+ c. Now F(a) =
∫ a

a
f (t)dt = 0, hence G(a) = F(a)+ c = c. In other

words, F(x) = G(x)−G(a). Then∫ b

a
f (x)dx = F(b) = G(b)−G(a).

■
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R Often primitives are referred to as “indefinite integrals” and denoted
∫

f (x)dx, whereas

integrals of the form
∫ b

a
f (x)dx are called “definite integrals”.

Corollary 10.4.4 If f is continuous in [a,b] and g1,g2 are differentiable in (a,b) then

H(x) =
∫ g2(x)

g1(x)
f (t)dt (10.10)

is also differentiable in (a,b) and

H ′(x) = f
(
g2(x)

)
g′2(x)− f

(
g1(x)

)
g′1(x). (10.11)

Proof. Let F(x) be a primitive of f (x) in (a,b). Then H(x) = F
(
g2(x)

)
−F

(
g1(x)

)
. Since F,g1,g2

are all differentiable, so is H. Finally, the derivative of H will be, by the chain rule,

H ′(x) = F ′(g2(x)
)
g′2(x)−F ′(g1(x)

)
g′1(x) = f

(
g2(x)

)
g′2(x)− f

(
g1(x)

)
g′1(x)

because F ′(x) = f (x). ■

■ Example 10.7 If

F(x) =
∫ x3

0
cos t dt,

then F ′(x) = 3x2 cos(x3). ■

Applying Barrow’s rule we can obtain particular versions of the integration by parts and change
of variable theorems:

Theorem 10.4.5 — Integration by parts. If f and g are two differentiable functions in (a,b),
then ∫ b

a
f (x)g′(x)dx = f (x)g(x)

∣∣∣b
a
−
∫ b

a
f ′(x)g(x)dx. (10.12)

The symbol in the right-hand side is a short-hand for

f (x)g(x)
∣∣∣b
a
= f (b)g(b)− f (a)g(a). (10.13)

Theorem 10.4.6 — Change of variable. If g is continuous in [a,b] and differentiable in (a,b),
and f is continuous in g

(
[a,b]

)
, then

∫ g(b)

g(a)
f (u)du =

∫ b

a
f
(
g(x)

)
g′(x)dx. (10.14)

Proof. On the one hand, if F is a primitive of f then

∫ g(b)

g(a)
f (u)du = F

(
g(b)

)
−F

(
g(a)

)
.
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On the other hand, by the chain rule,

d
dx

F
(
g(x)

)
= F ′(g(x))g′(x) = f

(
g(x)

)
g′(x),

therefore F
(
g(x)

)
is a primitive of f

(
g(x)

)
g′(x) and, according to Barrow’s rule,

∫ b

a
f
(
g(x)

)
g′(x)dx = F

(
g(b)

)
−F

(
g(a)

)
.

The result follows from the fact that the right-hand side is the same for both integrals. ■

■ Example 10.8 Let us calculate the area of a circle of radius a. The equation of its circumference
is x2 + y2 = a2, from which we obtain y =±

√
a2 − x2. Clearly the area between the X axis and the

function f (x) =
√

a2 − x2 within the interval [−a,a] is half the area we want to calculate, therefore

A = 2
∫ a

−a

√
a2 − x2 dx.

We can introduce the variable t = x/a, or x = at, so that
dx
dt

= a, and the limits x =−a → t =−1
and x = a → t = 1. Thus

A = 2
∫ 1

−1

√
a2 −a2t2 adt = 2a2

∫ 1

−1

√
1− t2 dt.

Let us now introduce a second change of variable: t = sinθ . Then
dt
dθ

= cosθ , and the limits

t =−1 → θ =−π/2 and t = 1 → θ = π/2. The integral then becomes

A = 2a2
∫

π/2

−π/2
cos2

θ dθ = a2
∫

π/2

−π/2
(1+ cos2θ)dθ = a2

(
π +

1
2

sin2θ

∣∣∣π/2

−π/2︸ ︷︷ ︸
=0

)
= πa2.

■

■ Example 10.9 — One last integration trick. Suppose one has to compute the integral

I =
∫ b

a
f (x)dx.

A simple change of variable is given by x = a+b− t, which transforms the integral into

I =
∫ b

a
f (a+b− t)dt

(because dx =−dt and t = b for x = a and t = a for x = b). Then, an alternative way of writing the
original integral is as an average of these two expressions, namely

∫ b

a
f (x)dx =

1
2

∫ b

a

[
f (x)+ f (a+b− x)

]
dx.

As an illustrative example, let us calculate the integral

I =
∫

π/2

0

dx
1+

√
tanx

.
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A first remark about this integral is that the integrand is a bounded, continuous function in [0,π/2],
because tanx ⩾ 0 in this interval and, although it diverges when x →

(
π

2

)−,

lim
x→( π

2 )
−

1
1+

√
tanx

= 0.

A second remark is that performing this integral by any other standard method poses a real challenge
(give it a try!) With this last trick though, it is a piece of cake.

According to the formula we have just derived,

I =
1
2

∫
π/2

0

(
1

1+
√

tanx
+

1
1+

√
cotx

)
dx

because tan(π/2− x) = cotx. But

1
1+

√
tanx

+
1

1+
√

cotx
=

1+
√

cotx+1+
√

tanx
(1+

√
tanx)(1+

√
cotx)

=
2+

√
cotx+

√
tanx

1+
√

tanx+
√

cotx+
√

tanxcotx

=
2+

√
cotx+

√
tanx

2+
√

tanx+
√

cotx
= 1,

where we have just used the fact that tanxcotx = 1. Then

I =
1
2

∫
π/2

0
dx =

π

4
.

■

Exercise 10.2 Use the method above to prove that∫
π

0

xsinx
1+ cos2 x

dx =
π2

4
.

■
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Problems

Problem 10.1 Find a continuous function f such that f (0) = 0 and

f ′(x) =


4− x2

(4+ x2)2 , x < 0,

e
√

x, x > 0.

Problem 10.2

(a) Prove that if f is odd then
∫ a

−a
f (x)dx = 0.

(b) Prove that if f is even then
∫ a

−a
f (x)dx = 2

∫ a

0
f (x)dx.

(c) Calculate the integral
∫ 10

6
sin
(

sin
(
(x−8)3))dx.

Problem 10.3 Calculate the following limits:

(i) lim
n→∞

n

∑
k=1

n
n2 + k2 ; (ii) lim

n→∞

1
n

n

∑
k=1

n
√

e2k; (iii) lim
n→∞

n−1

∑
k=0

1√
n2 − k2

.

Problem 10.4 Calculate F(x) =
∫ x

−1
f (t)dt, with −1 ⩽ x ⩽ 1, for the following functions:

(i) f (x) = |x|e−|x|;
(ii) f (x) = |x−1/2|;

(iii) f (x) =

{
−1, −1 ⩽ x < 0,
1, 0 ⩽ x ⩽ 1;

(iv) f (x) =

{
x2, −1 ⩽ x < 0,
x2 −1, 0 ⩽ x ⩽ 1;

(v) f (x) =

{
1, −1 ⩽ x ⩽ 0,
x+1, 0 < x ⩽ 1;

(vi) f (x) =


1+ x, −1 ⩽ x ⩽−1

2 ,
1
2 , −1

2 < x < 1
2 ,

1− x, 1
2 ⩽ x ⩽ 1;

(vii) f (x) = max
{

sin(πx/2),cos(πx/2)
}

.

Problem 10.5 Calculate the following integrals:

(i)
∫ log2

0

√
ex −1dx; (ii)

∫ 2

1

√
x2 −1

x
dx.

Problem 10.6 Calculate the derivative of the following functions:

(i) F(x) =
∫ x3

x2

et

t
dt;

(ii) F(x) =
∫ x3

−x3

dt
1+ sin2 t

;

(iii) F(x) =
∫ ∫ x

1 sin3 t dt

3

dt
1+ sin6 t + t2

;

(iv) F(x) =
∫ exp

{∫ x2
1 tan

√
t dt
}

2

ds
logs

;

(v) F(x) =
∫ x

0
x2 f (t)dt, with f continuous in R;

(vi) F(x) = sin
(∫ x

0
sin
(∫ y

0
sin3 t dt

)
dy
)

.

Problem 10.7 Find the absolute maximum and minimum in the interval [1,∞) of the function

f (x) =
∫ x−1

0

(
e−t2 − e−2t

)
dt.

HINT: lim
x→∞

∫ x
0 e−t2

dt =
√

π/2.
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Problem 10.8 Prove that the equation∫ x

0
et2

dt = 1

has a unique solution in R and that it can be found in the interval (0,1).

Problem 10.9 Let f (x) be a continuous function such that f (x)> 0 for all 0 ⩽ x ⩽ 1, and consider
the function

F(x) = 2
∫ x

0
f (t)dt −

∫ 1

x
f (t)dt.

Determine how many solutions the equation F(x) = 0 has in [0,1].

Problem 10.10 Find and classify the local extrema within (0,∞) of the function

G(x) =
∫ x2

0
sin tesin t dt.

Problem 10.11 Write the equation of the straight tangent to the curve

y =
∫ √

π/2

x2
tan(t2)dt

at the point x = 4
√

π/4.

Problem 10.12 Given the function

f (x) =


ex −1− x

x2 , x < 0,

a+b
∫ x

0
e−t4

dt, x ⩾ 0,

calculate a and b so that it is continuous and differentiable.

Problem 10.13 Calculate the following limits:

(i) lim
x→0

1
x3

(∫ x

0
et2

dt − x
)

; (ii) lim
x→0

cosx
x4

∫ x

0
sin(t3)dt.

Problem 10.14 Calculate the two one-sided limits at x = 0 of the function

f (x) =
1

2x3

∫ x2

0
tan

√
t dt.

Problem 10.15 Consider the function f (x) =
∫ x2

0

sin t
t

dt.

(a) Using the Taylor series of sin t in powers of t, find that of f in powers of x.

(b) Calculate lim
x→0

f (x)
1− cosx

.

(c) Discuss the convergence of the series
∞

∑
n=1

f (1/n).

Problem 10.16 Let f (x) =
∫ x

−1/x

dt
a2 + t2 . Determine, without computing the integral, for which

values of a the function f is constant.

Problem 10.17 Consider the functions f (x) = ex2 − x2 −1 and g(x) =
∫ x

0
f (t)dt.
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(a) Write the Taylor series of g in powers of x.
(b) Determine if g has a maximum, a minimum, or an inflection point at x = 0.

Problem 10.18
(a) Use the change of variable t = sin2

θ to calculate the integral∫ 1

0
arcsin

√
t dt.

(b) Consider the function

f (x) =
∫ sin2 x

0
arcsin

√
t dt +

∫ cos2 x

0
arccos

√
t dt.

Prove that f (x) = c, a constant, in the interval [0,π/2].
(c) Determine the value of the constant c.

Problem 10.19 The equation∫ g(x)

0

(
et2

+ e−t2
)

dt = x3 +3arctanx

defines an injective, differentiable function g in R. Calculate:
(a) g(0), g′(0), and

(
g−1
)′
(0).

(b) lim
x→0

g−1(x)
g(x)

.

Problem 10.20 Let f : [−1,1] 7→ R be any integrable function.
(a) Prove that∫

π

0
x f (sinx)dx =

π

2

∫
π

0
f (sinx)dx.

HINT: Do the change of variables y = π − x.
(b) Calculate the integral∫

π

0

xsinx
1+ cos2 x

dx.

Problem 10.21 Let f be a differentiable function such that∫ x

0
f (t)dt =

∫ 1

x
t2 f (t)dt +

x16

8
+

x18

9
+ c.

Find f (x) and the constant c.

Problem 10.22 Prove that∫ x

0
et2

dt ∼ ex2

2x
(x → ∞).

Problem 10.23 Let f be a function n+ 1 times differentiable in an interval I, and let a,x ∈ I.
Assume that the integral defining the function

Rn(x) =
1
n!

∫ x

a
(x− t)n f (n+1)(t)dt, n = 0,1, . . .

exists.
(a) Calculate R0(x).
(b) Integrating by parts, find a recurrence formula for Rn(x).
(c) Solve the recurrence and interpret the result.



11. Geometric Applications of Integrals

11.1 Area of flat figures

Given two functions f and g such that f (x)⩽ g(x) for all x ∈ [a,b], we can obtain the area of the
flat figure S delimited by them and the vertical lines at x = a and x = b (see Figure 11.1(a)) as

A (S) =
∫ b

a

[
g(x)− f (x)

]
dx. (11.1)

(a) (b)

Figure 11.1: Flat figure delimited by the functions f (x) and g(x) and the vertical lines at x = a and
x = b. (a) Simple case where f ⩽ g. (b) Case in which f and g cross each other, so the figure is
actually the union of several figures.

In a general case, where f and g can cross one or several times within the interval [a,b], the
figure S is made of the union of several figures —joined at the crossing points (see Figure 11.1(b)).
Strictly speaking we should then decompose the calculation between consecutive crossing points
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and apply formula (11.1) taking into account which function is the largest in each subinterval. This
can be done automatically by extending formula (11.1) as

A (S) =
∫ b

a

∣∣g(x)− f (x)
∣∣dx. (11.2)

■ Example 11.1 Let us calculate the area between f (x) = x(x− 2) and g(x) = x/2 within the
interval [0,2]. Since in that interval f (x)⩽ 0 and g(x)⩾ 0,

A (S) =
∫ 2

0

( x
2
− x(x−2)

)
dx =

∫ 2

0

( x
2
− x2 +2x

)
dx =

x2

4
− x3

3
+ x2

∣∣∣∣2
0

= 1− 8
3
+4 =

7
3
.

■

■ Example 11.2 Let us now calculate the area between the curves f (x) = x and g(x) = x3/4 within
the interval [−1,2]. First we need to find the crossing points:

x =
x3

4
⇒ x = 0, x =±2.

Between −2 and 0 we have g ⩾ f , but between 0 and 2 the opposite holds. Thus,

A (S) =
∫ 0

−1

(
x3

4
− x
)

dx+
∫ 2

0

(
x− x3

4

)
dx =

(
x4

16
− x2

2

)∣∣∣∣0
−1

+

(
x2

2
− x4

16

)∣∣∣∣2
0

= 2−1− 1
16

+
1
2
=

23
16

.

■

11.2 Area of flat figures in polar coordinates
Suppose we have a curve given as r = f (θ), where r is the distance to the origin and θ the angle
with the positive X axis. These two variables are known as polar coordinates, and its relation to the
cartesian coordinates is given by the transformation (see Figure 11.2(a))

x = r cosθ , y = r sinθ . (11.3)

Figure 11.2(b) illustrates a curve r = f (θ) expressed in polar coordinates.
The problem we face now is that of calculating the area of the figure formed by the curve

r = f (θ) and the radii at angles θ = a and θ = b, i.e., the figure S =
{
(r,θ) : a ⩽ θ ⩽ b, 0 ⩽ r ⩽

f (θ)
}

. In order to achieve that we can introduce the analogue of upper and lowe sums. If we
introduce the partition P = {θ0,θ1, . . . ,θn}, where a = θ0 < θ1 < · · ·< θn−1 < θn = b and define

mi = inf
θi−1⩽θ⩽θi

f (θ), Mi = sup
θi−1⩽θ⩽θi

f (θ), (11.4)

then A (S), the area of S, should be bounded as

n

∑
i=1

1
2

m2
i (θi −θi−1)⩽ A (S)⩽

n

∑
i=1

1
2

M2
i (θi −θi−1). (11.5)

If f 2 is an integrable function, this is equivalent to the Riemann definition of the integral. Thus, in
the limit we will find
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(a) (b)

Figure 11.2: (a) Polar coordinates. (b) A curve expressed in polar coordinates r = f (θ) and its
associated upper and lower sums construction. Here rectangles are replaced by circular sectors.

A (S) =
1
2

∫ b

a
f (θ)2 dθ . (11.6)

■ Example 11.3 Let us calculate the area enclosed by the curve (x2 + y2)3 = y2 —represented in
Figure 11.3.

Figure 11.3: Curve (x2 + y2)3 = y2.

To begin with, we will rewrite the curve in polar coordinates as

(r2)3 = r2 sin2
θ ⇒ r4 = sin2

θ ⇒ r =
√
|sinθ |= f (θ), 0 ⩽ θ ⩽ 2π.

Accordingly

A (S) =
1
2

∫ 2π

0
|sinθ |dθ =

∫
π

0
sinθ dθ = (−cosθ)

∣∣∣π
0
= 2.

■
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11.3 Volumes
11.3.1 Solids of a given section

Suppose we have a solid S whose sections parallel to certain plane at a distance u from that plane
are given by the function aS(u). Suppose further that the solid spans all distances a ⩽ u ⩽ b. Then
the volume of S will be given by

V (S) =
∫ b

a
aS(u)du. (11.7)

The proof of this result —first used by Pappus of Alexandria in the 4th century— follows
the same spirit as Riemann’s upper and lower sums construction. Suppose we make a partition
P = {a = u0,u1, . . . ,un−1,un = b} of the segment [a,b]. Any sum

n

∑
i=1

aS(ci)(ui −ui−1), ui−1 ⩽ ci ⩽ ui,

is a Riemann sum of the function aS(u) which represent the sum of the volumes of a stack of
parallelepipeds that provides an estimate of the volume of the solid S. Thus we obtain formula
(11.7) as long as aS(u) is an integrable function.

■ Example 11.4 As an example let us calculate the volume of a square pyramid of base side l and
height h. If we take the basal plane as the reference plane, sections parallel to the base at height u
are squares of side x (see Figure 11.4). The value of x can be determined by triangle similarity as

h
l/2

=
u

(l − x)/2
⇒ x = l

(
1− u

h

)
.

Accordingly

aS(u) = l2
(

1− u
h

)2

and therefore

V (s) =
∫ h

0
l2
(

1− u
h

)2
du = l2

[
−h

3

(
1− u

h

)3
]∣∣∣∣h

0
=

l2h
3
.

Figure 11.4: Volume of a square pyramid of base side l and height h calculated through its sections.

■
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11.3.2 Solids of revolution

As a special application of formula (11.7) we can obtain formulas for solids of revolution —i.e.,
solids generated by the turn of a plane figure around the X or the Y axis.

Around the X axis

Figure 11.5: Solid of revolution generated by the curve y = f (x) with a ⩽ x ⩽ b as it revolves
around the X axis.

As illustrated in Figure 11.5, the portion of the curve y= f (x) within the interval [a,b] generates,
as it revolves around the X axis, the surface of a solid of revolution S. Sections of this solid
perpendicular to the X axis are disks. If the section is taken at a ⩽ x ⩽ b, then the radius of the disk
is f (x). Therefore aS(x) = π f (x)2 and consequently

V (S) = π

∫ b

a
f (x)2 dx. (11.8)

■ Example 11.5 To determine the volume of a sphere of radius a we can take as a solid of revolution
of the curve f (x) =

√
a2 − x2 within the interval [−a,a]. Thus,

V (S) = π

∫ a

−a
(a2 − x2)dx = π

(
a2x− x3

3

)∣∣∣∣a
−a

= 2π

(
a3 − a3

3

)
=

4π

3
a3.

■

Around the Y axis

In the case that the flat figure between the curve y = f (x) and the X axis delimited by the interval
[a,b] revolves around the Y axis, we obtain a solid of revolution S as that of Figure 11.6. To
calculate its volume we need to adapt Pappus’s construction a little bit, because each interval of
a partition P = {a = x0,x1, . . . ,xn−1,xn = b}, along with the corresponding heights f (ci) (where
xi−1 ⩽ ci ⩽ xi), generates a hollow cylinder (a tube). The volume of that cylinder is the difference
between that of the outer cylinder π f (ci)x2

i and that of the inner cylinder π f (ci)x2
i−1. Thus, the

Riemann sum

n

∑
i=1

π(x2
i − x2

i−1) f (ci) (11.9)



160 Chapter 11. Geometric Applications of Integrals

Figure 11.6: Solid of revolution generated by the curve y = f (x) with a ⩽ x ⩽ b as it revolves
around the Y axis.

provides an estimate of the volume of the solid S. This is valid for any ci, but if we choose
ci = (xi + xi−1)/2 we can rewrite in a much better way as

n

∑
i=1

2πci f (ci)(xi − xi−1). (11.10)

This is a Riemann sum of the function g(x) = 2πx f (x), so if g is integrable in [a,b] then

V (S) = 2π

∫ b

a
x f (x)dx. (11.11)

■ Example 11.6 Let us calculate the volume of a doughnut (a torus in mathematical parlance), the
solid represented in Figure 11.7. This volume will be twice the volume generated by the half-disk
delimited by the function f (x) =

√
a2 − (x−R)2 and the X axis within the interval [R−a,R+a],

as it revolves around the Y axis. Hence

V (S) = 4π

∫ R+a

R−a
x
√

a2 − (x−R)2 dx

With the change of variable x = R+asinθ (thus x′ = acosθ ) we transform the integral into

V (S) = 4π

∫
π/2

−π/2
(R+asinθ)a2 cos2

θ dθ

Figure 11.7: Solid of revolution generated by the curve (x−R)2 + y2 = a2 as it revolves around the
Y axis. This solid —actually a doughnut— is called in mathematics torus.
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Now, sinθ cos2 θ is an odd function, so∫
π/2

−π/2
sinθ cos2

θ dθ = 0

and therefore

V (S) = 4πRa2
∫

π/2

−π/2
cos2

θ dθ = 2πRa2
∫

π/2

−π/2
(1+ cos2θ)dθ = 2πRa2

(
π +

1
2

sin2θ

∣∣∣π/2

−π/2︸ ︷︷ ︸
=0

)

= (2πR)(πa2).

■

11.4 Length of curves
Consider a parametric curve C = {r(t) ∈ Rn : a ⩽ t ⩽ b}, and the partition of the interval [a,b]
defined by P = {a = t0, t1, . . . , tn−1, tn = b}. If we join with straight segments the point r(t0) with
r(t1), the point r(t1) with r(t2), and so on and so forth up to r(tn−1) with r(tn), we obtain a
polygonal curve Π(P) that approximates the curve C (see Figure 11.8). The length of Π(P) is easy
to calculate:

L
(
Π(P)

)
=

n

∑
i=1

∥r(ti)− r(ti−1)∥. (11.12)

If we multiply and divide each term of this sum by the length of the interval of the parameter we
obtain

L
(
Π(P)

)
=

n

∑
i=1

∥∥∥∥r(ti)− r(ti−1)

ti − ti−1

∥∥∥∥(ti − ti−1). (11.13)

As we refine more and more the partition

r(ti)− r(ti−1)

ti − ti−1
−−−−→
ti−ti−1→0

r′(ti)

and L
(
Π(P)

)
gets closer and closer to a Riemann sum of the function ∥r′(t)∥. Thus, if this

function is integrable,

Figure 11.8: A curve along with its polygonal curve associated to a partition.
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L (C) =
∫ b

a
∥r′(t)∥dt. (11.14)

■ Example 11.7 A circumference of radius a is a plane curve C given by the parametrisation
r(t) = (acos t,asin t), where 0 ⩽ t ⩽ 2π . Thus, its length can be obtained as

L (C) =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0

√
a2 sin2 t +a2 cos2 t dt =

∫ 2π

0
adt = 2πa.

■



Problems 163

Problems
Problem 11.1 Calculate the area delimited by the following curves:

(i) y = x2, y = (x−2)2, y = (2− x)/6;
(ii) x2 + y2 = 1, x2 + y2 = 2x;

(iii) y =
1− x
1+ x

, y =
2− x
1+ x

, y = 0, y = 1;

(iv) one loop of the curve y2 = (x−a)(x−b)2, with a < b.

Problem 11.2 Determine the area between the curve f (x) =
x(x2 −1)
(x2 +1)3/2 and the X axis.

Problem 11.3 Calculate the area delimited by the following curves:
(i) r = aθ (Archimedes’s spiral), 0 ⩽ θ ⩽ 2π , and the segment {(x,0) : 0 ⩽ x ⩽ 2πa};

(ii) a petal of the three-petal rose r = acos3θ , −π/6 ⩽ θ ⩽ π/6;
(iii) half a lemniscata r = a

√
cos2θ , −π/4 ⩽ θ ⩽ π/4.

Problem 11.4 Let A the plane figure limited by the curves y = x2 and y =
√

x. Determine:
(a) the area of A;
(b) the volume of the solid generated when A revolves around the X axis.

Problem 11.5 Compute the volume of the solids generated when the following sets revolve around
the X asis:

(i) 0 ⩽ y ⩽ 1+ sinx, 0 ⩽ x ⩽ 2π;
(ii) R2 ⩽ x2 + y2 ⩽ 4R2;

(iii) plane figure delimited by the curves y = sinx and y = x with 0 ⩽ x ⩽ π .

Problem 11.6 Compute the volume of the following solids:

(i) the solid generated when the ellipse
x2

a2 +
y2

b2 = 1 revolves around the X axis;
(ii) same thing around the Y axis;

(iii) the solid whose base is the ellipse above and whose sections perpendicular to the X axis are
isosceles triangles of height 2.

Problem 11.7

(a) Calculate the area of the ellipse
x2

a2 +
y2

b2 = 1.

(b) Calculate the volume of the ellipsoid
x2

a2 +
y2

b2 +
z2

c2 = 1.
(c) Check the result of Problem 11.6 (i) and (ii) as particular cases of the previous result.

HINT: Notice that intersecting the ellipsoid by planes parallel to the coordinate planes (x = 0, y = 0,
or z = 0) we obtain ellipses.

Problem 11.8 Calculate the length of the following curves:
(i) catenary: y = ex/2 + e−x/2, 0 ⩽ x ⩽ 2;

(ii) cycloid: x(t) = a(t − sin t), y(t) = a(1− cos t), 0 ⩽ t ⩽ 2π;
(iii) hypocycloid or astroid: x2/3 + y2/3 = 4;

(iv) tractrix: y = a log

(
a+

√
a2 − x2

x

)
−
√

a2 − x2, a/2 ⩽ x ⩽ a;

(v) cardioid: r = 1+ cosθ , 0 ⩽ θ ⩽ 2π .
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A. Sums and products

Sums and products are commonly denoted by the symbols
n

∑
k=1

ak ≡ a1 +a2 + · · ·+an,
n

∏
k=1

ak ≡ a1a2 · · ·an. (A.1)

This is a handy symbolic notation that helps doing calculations thanks to a set of properties that
allow simple manipulations. Some of these properties are common to sums and products:

Common properties of symbolic sums and products:

(i) Trivial sum/product:

1

∑
k=1

ak =
1

∏
k=1

ak = a1.

(ii) Separating out some elements:

n

∑
k=1

ak = a1 +a2 + · · ·+ar +
n

∑
k=r+1

ak =

(
n−r

∑
k=1

ak

)
+an−r+1 +an−r+2 + · · ·+an,

n

∏
k=1

ak = a1a2 · · ·ar

n

∏
k=r+1

ak =

(
n−r

∏
k=1

ak

)
an−r+1an−r+2 · · ·an,

for all 1 ⩽ r ⩽ n−1.

(iii) Shifting indices:

n

∑
k=1

ak =
n+r

∑
k=r+1

ak−r,
n

∏
k=1

ak =
n+r

∏
k=r+1

ak−r,

for all r ∈ Z.
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(iv) Reversal:

n

∑
k=1

ak =
n

∑
k=1

an−k+1,
n

∏
k=1

ak =
n

∏
k=1

an−k+1.

Other properties are specific for sums and for products:

Properties of symbolic sums:

(i) Additive property:

n

∑
k=1

(ak +bk) =
n

∑
k=1

ak +
n

∑
k=1

bk.

(ii) Homogeneous property:

n

∑
k=1

cak = c
n

∑
k=1

ak, c ∈ R.

(iii) Telescoping property:

n

∑
k=1

(ak −ak−1) = an −a0,
n

∑
k=1

(ak −ak+1) = a1 −an+1.

(iv) Distributive property:(
n

∑
j=1

a j

)(
m

∑
k=1

bk

)
=

n

∑
j=1

m

∑
k=1

a jbk.

(v) Sum of a constant:

n

∑
k=1

c = nc, c ∈ R.

Properties of symbolic products:

(i) Multiplicative property:

n

∏
k=1

akbk =

(
n

∏
k=1

ak

)(
n

∏
k=1

bk

)

(ii) Homogeneous property:

n

∏
k=1

aγ

k =

(
n

∏
k=1

ak

)γ

, γ ∈ R.

(iii) Telescoping property:

n

∏
k=1

ak

ak−1
=

an

a0
,

n

∏
k=1

ak

ak+1
=

a1

an+1
.
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(iv) Product of a constant:

n

∏
k=1

c = cn, c ∈ R.

■ Example A.1 In order to calculate

1+2+ · · ·+n =
n

∑
k=1

k

we can simply apply the reversal property of sums:

n

∑
k=1

k =
n

∑
k=1

(n+1− k) =
n

∑
k=1

(n+1)−
n

∑
k=1

k.

This provides an equation for our sum, which leads to

2
n

∑
k=1

k =
n

∑
k=1

(n+1) = n(n+1),

because (n+1) is a constant (i.e., does not dependent on k). Hence the well-known result

n

∑
k=1

k =
n(n+1)

2
.

■

■ Example A.2 Let us now calculate

1+3+5+ · · ·+(2n−1) =
n

∑
k=1

(2k−1).

We will do that in two ways. The first one amounts to splitting the sum as

n

∑
k=1

(2k−1) = 2
n

∑
k=1

k−
n

∑
k=1

1 = 2
n(n+1)

2
−n = n(n+1)−n = n2.

For the second one we “complete” the sum with the even numbers, i.e., 2+4+ · · ·+2n, so that

n

∑
k=1

(2k−1)+
n

∑
k=1

2k =
[
1+3+ · · ·+(2n−1)

]
+
[
2+4+ · · ·+2n

]
= 1+2+3+4+ · · ·+(2n−1)+2n =

2n

∑
k=1

k =
2n(2n+1)

2
= 2n2 +n.

But it is very easy to calculate the sum of the even numbers:

n

∑
k=1

2k = 2
n

∑
k=1

k = 2
n(n+1)

2
= n2 +n,

So we obtain
n

∑
k=1

(2k−1) = 2n2 +n− (n2 +n) = n2.

■
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Exercise A.1 Write down as symbolic sums:
(a) 3+6+9+ · · ·+60, and calculate it;
(b) the polynomial 3x−6x2 +9x3 −12x4 + · · ·+57x19 −60x20.

■

■ Example A.3 The simplest way to calculate the sum

S =
3

∑
k=1

(
3

∑
m=k

mk

)
.

is to write the first sum down explicitly, like

S =
3

∑
m=1

m+
3

∑
m=2

2m+
3

∑
m=3

3m = (1+2+3)+2(2+3)+3 ·3 = 6+10+9 = 25.

■

■ Example A.4 Let us calculate

S =
100

∑
k=51

(2k−1) = 101+103+105+ · · ·+199.

To do that we write

S =
100

∑
k=1

(2k−1)−
50

∑
k=1

(2k−1),

where we have added an substracted all the terms from k = 1 to k = 50. But we now know that
100

∑
k=1

(2k−1) = 1002 = 10000,
50

∑
k=1

(2k−1) = 502 = 2500,

therefore

S = 10000−2500 = 7500.

■

■ Example A.5 The apparently complicated sum

S =
99

∑
j=4

√
j−

101

∑
j=6

√
j−1

is actually very easily done with a few manipulations. First of all, we can shift the index in the
second sum as,

S =
99

∑
j=4

√
j−

100

∑
j=5

√
j,

and secondly,
99

∑
j=4

√
j =

√
4+

99

∑
j=5

√
j = 2+

99

∑
j=5

√
j,

100

∑
j=5

√
j =

99

∑
j=5

√
j+

√
100 =

99

∑
j=5

√
j+10,

so

S = 2+
�
�
��

99

∑
j=5

√
j −

�
�
��

99

∑
j=5

√
j −10 =−8.

■



B. Binomial formula

B.1 Binomial coefficients

Consider the following combinatorial problem. We have two letters, a and b and we want to form
sequences of length n using k letters a and n−k letters b. For the sake of clarity, suppose that n = 5
and k = 3. We can form 10 different sequences, namely

aaabb, aabab, abaab, baaab, aabba, ababa, baaba, abbaa, babaa, bbaaa.

This procedure becomes inpractical if n and k are large, so we need an alternative way of counting
these expression without explicitly writing them down. For the moment, we will introduce a symbol
to express this number: the combinatorial coefficient

(n
k

)
(read it “n choose k”).

Imagine that we want to evaluate
(n

k

)
. We divide the sequences into a block with the first n−1

letters, and a block with the last letter. Sequences are of two types: those having an a in the second
block, and those having a b. How many are there of the first type? Well, we have a block formed by
all possible sequences of length n−1 containing k−1 letters a and n− k letters b. We do not know
how many of these sequences are there but we know the number must be

(n−1
k−1

)
. And what about

the second type? In this case the first block are all possible sequences of length n−1 containing k
letters a and n− k−1 letters b, and this number is

(n−1
k

)
. Then the total number of sequences of

length n we want to know is the sum of the two types. In other words,(
n
k

)
=

(
n−1
k−1

)
+

(
n−1

k

)
. (B.1)

This is a recurrence equation, but in order to iterate and obtain the numerical values we need some
starting value.

Some combinatorial numbers are easy to obtain. For instance, if k = 0 or n all letters in the
sequence are identical, so only one sequence is possible. Hence(

n
0

)
=

(
n
n

)
= 1. (B.2)
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Besides, the number of sequences with k letters a and n− k letters b is the same as the number of
sequences with k letters b and n− k letters a, because this number does not depend on the identity
of the letters. In terms of binomial coefficients,(

n
k

)
=

(
n

n− k

)
. (B.3)

Now, equation (B.2) provides all binomial coefficients for n = 1. For n = 2 we can apply the
recurrence (B.1) and obtain the one we still don’t know,(

2
1

)
=

(
1
0

)
+

(
1
1

)
= 1+1 = 2.

There are two sequences with one a and one b (obviously, ab and ba). If we continue calculating
now the coefficients for n = 3,4, . . . we will obtain the table

n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 5 1 6 15 20 15 6 1

...
...

which is known as Pascal’s triangle. It is very easy to write a new row because they start and end
with 1 and every position is obtained by adding up the two coefficients it has on top (this is what
equation (B.1) actually says).

There is a closed formula for
(n

k

)
which we can derive using combinatorics. Imagine that the k

letters a are all distinct (e.g., because the carry a subscript, a1, a2, . . . , ak) and the same holds for
the n− k letters b. The total number of different sequences is not the permutation of n elements,
because now all of them are different. This number is n! = n · (n−1) · · ·2 ·1 (we can take any of
the n letters for the first position, then any of the n−1 remaining ones for the second position, then
any of the n−2 remaining ones for the third position, etc.).

But there is an alternative way of making all these sequences, namely we take the
(n

k

)
sequences

we had when all a’s and all b’s were identical, but now make all possible substitutions of them by
the nonidentical letters. There are k! different arrangements of the letters a1, a2,. . . ,ak in the stubs
left by the letters a, and (n− k)! different arrangements of the letters b1, b2,. . . ,bn−k in the stubs
left by the letters b. This makes a total of k!(n− k)!

(n
k

)
sequences. Since both countings must yield

the same result,

k!(n− k)!
(

n
k

)
= n!.

In other words,(
n
k

)
=

n!
k!(n− k)!

=
n(n−1) · · ·(n− k+1)

k!
, (B.4)

where in the second version we have simply cancelled common factors in the numerator and the
denominator.

Exercise B.1 Check recursion (B.1) explicitly using formula (B.4). ■



B.2 Binomial formula 173

Exercise B.2 Prove the identities

k
(

n
k

)
= n
(

n−1
k−1

)
, (n− k)

(
n
k

)
= n
(

n−1
k

)
.

■

B.2 Binomial formula

We now whan to derive a formula for (a+b)n as a sum of powers of a and b. Take, for instance,
the case n = 2:

(a+b)2 = (a+b)(a+b) = aa+ab+ba+bb = a2 +2ab+b2.

Or the case n = 3:

(a+b)3 = (a+b)(a+b)2 = (a+b)(aa+ab+ba+bb)

= aaa+aab+aba+abb+baa+bab+bba+bbb = a3 +3a2b+3ab2 +b3.

In the explicit multiplication we can see how all sequences of letters a and b appear. As a matter of
fact, the last step is just grouping those having k letters a and n−k letters b and adding a coefficient
that counts how many such sequences there are. So it’s not surprising that the coefficients that we
see appearing are the binommial coefficients in the nth row of Pascal’s triangle.

We can therefore guess the binomial formula

(a+b)n =
n

∑
k=0

(
n
k

)
akbn−k. (B.5)

We will prove this formula using induction.
For n = 1 the formula reads

a+b =

(
1
0

)
a+
(

1
1

)
b,

which is trivially true.
Now, let us assume that the formula holds for n. Then we can obtain the formula for n+1 as

(a+b)n+1 = (a+b)(a+b)n = a(a+b)n +b(a+b)n = a
n

∑
k=0

(
n
k

)
akbn−k +b

n

∑
k=0

(
n
k

)
akbn−k

=
n

∑
k=0

(
n
k

)
ak+1bn−k +

n

∑
k=0

(
n
k

)
akbn−k+1.

In the first sum we arrange the expression so that it explicitly depends on k+ 1 (by adding and
substracting 1 as appropriate):

(a+b)n+1 =
n

∑
k=0

(
n

(k+1)−1

)
ak+1bn+1−(k+1)+

n

∑
k=0

(
n
k

)
akbn+1−k,

and now shift the index from k+1 to k (see Appendix A):

(a+b)n+1 =
n+1

∑
k=1

(
n

k−1

)
akbn+1−k +

n

∑
k=0

(
n
k

)
akbn+1−k.
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Next we single out the last element (k = n+1) of the first sum and the first element (k = 0) of the
second sum and merge both sums into one:

(a+b)n+1 =

(
n
n

)
︸︷︷︸
=1

an+1 +
n

∑
k=1

(
n

k−1

)
akbn+1−k +

n

∑
k=1

(
n
k

)
akbn+1−k +

(
n
0

)
︸︷︷︸
=1

bn+1

= an+1 +
n

∑
k=1

[(
n

k−1

)
+

(
n
k

)]
akbn+1−k +bn+1.

Finally we use the recurrence (B.1):

(a+b)n+1 = an+1 +
n

∑
k=1

(
n+1

k

)
akbn+1−k +bn+1,

and identify an+1 and bn+1 with the terms k = n+1 and k = 0 of the sum, respectively:

(a+b)n+1 =
n+1

∑
k=0

(
n+1

k

)
akbn+1−k.

This is formula (B.5) with n replaced by n+1, so assuming that the formula holds for n implies
that it also holds for n+1. This completes the proof.

Exercise B.3 Using the binomial formula (B.5) prove the identities

n

∑
k=0

(
n
k

)
= 2n,

n

∑
k odd

(
n
k

)
=

n

∑
k even

(
n
k

)
.

HINT: choose appropriate values for a and b. ■



C. Euler’s number

A usurer lends money at an Annual Percentage Rate (APR) of 100%. This means that if you needed
1000 euros, you would have to return 2000 euros after a year (the ‘principal’ plus 1000 euros of
interest). But this guy realises he is loosing money with this procedure, for he can lend you the
1000 euros for 6 months, after which you must return 1500 euros, and if you still need the money
for another 6 months you can keep it, but the interest rate during the second 6 months is applied to
the new principal, 1500 euros. So at the end you must pay 2250 euros, instead of 2000. You end up
paying a factor 1.5×1.5 = 2.25 the initial principal (i.e., 125% APR).

But why stopping there? What if he repeats this procedure every three months? After each
three-month period you owe the usurer 1.25 the previous principal. This means you owe 1250
euros after 3 months, 1562.50 after 6 months, 1953.125 euros after 9 months, and you must return
2441.40625 euros after one year. In total you pay 1.254 = 2.44140625 times the principal (≈ 144%
APR).

The logical step is obvious: if the usurer divides the year in n periods, after one year you end
up paying(

1+
1
n

)n

times the principal. The optimal for the usurer is to make as many divisions of the year as possible,
and it’s clear that there is no limit to the number of such divisions. So, according to this logical
argument, the usurer feels entitled to multiply the principal by a factor

lim
n→∞

(
1+

1
n

)n

= e = 2.71828182845904 . . .

Rounding up, you owe the usurer 2718.28 euros (≈ 172% APR). Perhaps the surprise here is
that—to the usurer’s disappointment—this amount is not infinite!

As a matter of fact this is what modern banks do—only they do not apply usurious annual
interest rates. Thus, if the interest rate is 0 < r < 1 per year, the amount you must return after one
year is a factor over the principal that is calculated as

lim
n→∞

(
1+

r
n

)n
= er.
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For instance, a 5% interest rate means r = 0.05 and er ≈ 1.051, i.e., a 5.1% APR. If you return the
money after, say, 10 years instead, the factor is e10r ≈ 1.649, i.e., a 64.9/10 ≈ 6.5% APR. And so
on. The longer the return period the higher the APR (with an exponential increase). This is the
reason why banks are so fond of lending mortgages.

It is not our concern here to discuss the fairness of financial practices, but to prove that the
above limit exists, as well as its irrational nature.

C.1 Existence
The way we are going to prove the existence of e as a genuine real number is by proving that its
defining sequence is monotonically increasing and bounded from above.

Proposition C.1.1 The sequence {an}∞
n=1 defined by

an =

(
1+

1
n

)n

is monotonically increasing

Proof. Let us apply the binomial formula to an,

an =

(
1+

1
n

)n

=
n

∑
k=0

(
n
k

)(
1
n

)k

=
n

∑
k=0

n!
(n− k)!k!nk = 2+

n

∑
k=2

n!
(n− k)!k!nk = 2+

n

∑
k=2

Ak(n)
k!

,

where

Ak(n) =
n!

(n− k)!nk =
n(n−1)(n−2) · · ·(n− k+1)

nk =

(
1− 1

n

)(
1− 2

n

)
· · ·
(

1− k−1
n

)
.

If we do the same with an+1,

an+1 = 2+
n+1

∑
k=2

Ak(n+1)
k!

, Ak(n+1) =
(

1− 1
n+1

)(
1− 2

n+1

)
· · ·
(

1− k−1
n+1

)
.

Now, it is clear that for any j ∈ N

j
n+1

<
j
n

⇒ 1− j
n+1

> 1− j
n
,

therefore Ak(n+1)> Ak(n) for all k. Also An(n)> 0. Accordingly,

an+1 = 2+
n+1

∑
k=2

Ak(n+1)
k!

> 2+
n

∑
k=2

Ak(n+1)
k!

> 2+
n

∑
k=2

Ak(n)
k!

= an,

which proofs the claim. ■

To proceed we are going to need two trivial observations. The first one is that n! ⩾ 2n−1 for all
n ∈ N (the equality holding only for n ⩽ 2). This is clear because

n! = 2 ·3 · · ·(n−1)n︸ ︷︷ ︸
n−1 factors

, 2n−1 = 2 ·2 · · ·2 ·2︸ ︷︷ ︸
n−1 factors

,

and every factor of n! is larger than (or, in the case of 2, equal to) 2. An immediate consequence is
that

1
n!

⩽
1

2n−1 , n > 2
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(the equality holding only for n ⩽ 2).
The second observation is that Ak(n)< 1 for every 2 ⩽ k ⩽ n, the reason being that every factor

forming Ak(n) is strictly smaller than 1.
With these two observations we can prove the second proposition:

Proposition C.1.2

an =

(
1+

1
n

)n

< 3.

Proof. As we have just seen,

an = 2+
n

∑
k=2

Ak(n)
k!

< 2+
n

∑
k=2

1
k!

< 2+
n

∑
k=2

1
2k−1 = 2+

n−1

∑
k=1

1
2k = 2+

1
2 −

1
2n

1− 1
2

= 3− 1
2n−1 ,

from which an < 3 for all n ∈ N. ■

C.2 Irrationality
Before we consider the rational or irrational nature of e we are going to prove its most famous—and
computationally efficient—representation.

Theorem C.2.1

e =
∞

∑
n=0

1
n!
.

Proof. Establishing the convergence of this series is straightforward. As a matter of fact, in the
proof of Proposition C.1.2 we have shown that

an =

(
1+

1
n

)n

<
n

∑
k=0

1
k!

< 3,

from which convergence follows immediately. Now, taking m ∈ N fixed, for every n > m we have

an = 2+
n

∑
k=2

Ak(n)
k!

> 2+
m

∑
k=2

Ak(n)
k!

because Ak(n)> 0 for every 2 ⩽ k ⩽ n. Hence the bracketing

2+
m

∑
k=2

Ak(n)
k!

< an <
n

∑
k=0

1
k!

holds true for every n > m. On the other hand, since

lim
n→∞

Ak(n) = 1, k ⩾ 2,

taking limits in the bracketing we get
m

∑
k=0

1
k!

⩽ e ⩽
∞

∑
k=0

1
k!
.

This new braketing holds for every m ∈ N, therefore

e =
∞

∑
k=0

1
k!
. ■
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The proof the e is irrational makes use of this representation, and it’s a proof by contradiction.
But before we get into it we are going to obtain a bracketing of e that both provides an excellent
approximation to calculate e as well as paves the way to prove its irrationality.

Lemma C.2.2

xn < e < xn +
1

n!n
, xn ≡

n

∑
k=0

1
k!
.

Proof. As all terms in the series defining e are positive, the first inequality, xn < e is straightforward.
As for the second,

e = xn +
1

(n+1)!
+

1
(n+2)!

+
1

(n+3)!
+ · · ·

= xn +
1

(n+1)!

[
1+

1
n+2

+
1

(n+2)(n+3)
+

1
(n+2)(n+3)(n+4)

+ · · ·
]

< xn +
1

(n+1)!

[
1+

1
n+1

+
1

(n+1)2 +
1

(n+1)3 + · · ·
]
= xn +

1
(n+1)!

1
1− 1

n+1

= xn +
1

(n+1)!
n+1

n
= xn +

1
n!n

.

■

This bracketing states that the error we make approximating e by xn is smaller than 1/n!n—
quite a small number for not too large values of n. For instance, if we take n = 9, the error is smaller
than 3×10−7, and indeed

x9 =
98641
36288

= 2.7182815255 . . . , e = 2.7182818284 . . .

And here comes the irrationality proof, due to Fourier:

Theorem C.2.3 — Fourier, 1815. e is irrational.

Proof. Suppose otherwise that e = p/q, an irreducible fraction with q > 1 (e is not an integer).
Then,

xq < e < xq +
1

q!q
⇒ q!qxq < (q−1)!p < q!qxq +1.

But q!qxq = N ∈ N, and also (q−1)!p ∈ N, and yet N < (q−1)!p < N +1, which is impossible
(there is no natural number between two consecutive natural numbers). Hence the rationality
assumption for e leads to a contradiction. ■



D. Solutions to exercises

D.1 The Real Line

Problem 1.1
(a) First of all, if 0 < a < b, then 0 <

√
a <

√
b (for suppose it were false and

√
b ⩽

√
a; then

squaring we would have b ⩽ a, which we know is false). Now, multiplying this last inequality
by

√
a > 0 we get(√

a
)2

<
√

a
√

b ⇔ a <
√

ab.

For the second inequality, we start off from the fact that
(√

a−
√

b
)2

> 0 and then expand the

binomial to obtain a−2
√

ab+b > 0. Adding 2
√

ab to the inequality we get a+b > 2
√

ab,
and finally multiplying by 1/2 we obtain

a+b
2

>
√

ab.

The last inequality is obtained by adding b to a < b to obtain

a+b < b+b = 2b ⇔ a+b
2

< b.

(b) Since 0 < a < b and c > 0, then ac < bc. Now we add ab to the inequality and obtain
ab+ac < ab+bc. Factoring out the common factor in each side of it,

a(b+ c)< b(a+ c) ⇔ a
b
<

a+ c
b+ c

because dividing by a > 0 or b > 0 does not change the inequality.

Problem 1.2 Proving this amounts to proving two statements: (i) that |a+b|= |a|+ |b| implies
ab ⩾ 0, and (ii) that ab ⩾ 0 implies |a+b|= |a|+ |b|.
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Let us start with (i). If we square the expression we get |a+b|2 = (|a|+ |b|)2. But |a+b|2 =
(a+b)2. Now expanding both binomials we obtain

a2 +2ab+b2 = |a|2 +2|ab|+ |b|2,

and cancelling common terms in both sides we end up with 2ab = 2|ab|⩾ 0.
As for (ii), ab ⩾ 0 means that a and b have both the same sign. Suppose a ⩾ 0 and b ⩾ 0. Then

|a+b| = a+b = |a|+ |b|. Suppose now that a ⩽ 0 and b ⩽ 0. Then we can write a = −|a| and
b =−|b|, and therefore

|a+b|=
∣∣−|a|− |b|

∣∣= ∣∣− (|a|+ |b|)
∣∣= |a|+ |b|.

Problem 1.3
(a) Suppose x ⩾ y. Then max{x,y}= x and |x− y|= x− y, so

x+ y+ |x− y|
2

=
x+ y+ x− y

2
=

2x
2

= x.

Suppose now that x < y. Then max{x,y}= y and |x− y|= y− x, so

x+ y+ |x− y|
2

=
x+ y+ y− x

2
=

2y
2

= y.

In both cases the two sides of the equality yield the same result.

(b) Suppose x ⩾ y. Then min{x,y}= y and |x− y|= x− y, so

x+ y−|x− y|
2

=
x+ y− x+ y

2
=

2y
2

= y.

Suppose now that x < y. Then max{x,y}= x and |x− y|= y− x, so

x+ y−|x− y|
2

=
x+ y− y+ x

2
=

2x
2

= x.

Again, whichever the case, both sides of the equality yield the same result.

Problem 1.4 Clearly ϕ(x) = max{x,0}, so using the formulas from the previous exercise

ϕ(x) =
x+ |x|

2
.

Problem 1.5
(a) n2 −n = n(n−1), which is even because it is the product of two consecutive numbers —one

of which must be even.

(b) n3 −n = n(n2 −1) = (n−1)n(n+1), hence must be a multiple of 3 because it is the product
of three consecutive numbers —one of which must be a multiple of 3—, but is also a multiple
of 2 because in every three consequtive numbers at least one is even —and possibly two.
Thus it is a multiple of both, 2 and 3, therefore is a multiple of 6.

(c) Odd numbers are written as n = 2k − 1, with k ∈ N. Hence n2 − 1 = (2k − 1)2 − 1 =
4k2 −4k+1−1 = 4k2 −4k = 4k(k−1). It is clearly a multiple of 4, but since one of the
other two factors must be even, it is a multiple of 8.

Problem 1.6
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(a) Let us check that the identity holds for n = 1. The left-hand side is clearly a−b. As for the
right-hand side,

1

∑
k=1

a1−kbk−1 = a0b0 = 1,

so the right-hand side is also a−b.
Now let us assume that for a particular n the formula holds. Then

an = bn +(a−b)
n

∑
k=1

an−kbk−1.

Multiplying this equation by a we get

an+1 = abn +(a−b)
n

∑
k=1

a ·an−kbk−1 = abn +(a−b)
n

∑
k=1

an+1−kbk−1.

Let us substract bn+1 from both side of the equation:

an+1 −bn+1 = abn −bn+1 +(a−b)
n

∑
k=1

an+1−kbk−1.

In the first two terms of the right-hand side bn is a common factor, so we can write

an+1 −bn+1 = bn(a−b)+(a−b)
n

∑
k=1

an+1−kbk−1,

and now (a−b) is a common factor of both term in the right-hand side, so

an+1 −bn+1 = (a−b)

[
bn +

n

∑
k=1

an+1−kbk−1

]
= (a−b)

n+1

∑
k=1

an+1−kbk−1,

and we are done, because we have just proven that the formula is also valid for the next
natural number n+1.

(b) For n = 1 we get n5 −n = 1−1 = 0, which is trivially a multiple of 5. Now, assuming n5 −n
is a multiple of 5, we can expand

(n+1)5−(n+1) = n5+5n4+10n3+10n2+5n+�1−n−�1= (n5−n)+5(n4+2n3+2n2+n).

The first term of this sum is a multiple of 5 by assumption, and the second one is obviously a
multiple of 5 because of the factor 5 in front of it. Therefore (n+1)5 − (n+1) will also be a
multiple of 5.

(c) For n = 1 we have 1+ x ⩾ 1+ x, which is obviously true. Let us assume that for a certain
n it holds (1+ x)n ⩾ 1+nx. Since x ⩾ −1, we know that 1+ x ⩾ 0, so if we multiply the
inequality by (1+ x) we obtain

(1+ x)n+1 ⩾ (1+ x)(1+nx) = 1+ x+nx+nx2 = 1+(n+1)x+nx2.

Now, nx2 ⩾ 0 for any x ∈ R and n ∈ N, so 1+(n+1)x+nx2 ⩾ 1+(n+1)x. Therefore

(1+ x)n+1 ⩾ 1+(n+1)x.

Problem 1.7 In all cases, the first case we must check is n = 2, since the inequalities are valid for
n > 1.
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(a) For n = 2 the left-hand side is 2! = 2 and the right-hand side is (3/2)2 = 9/4 = 2.25, so the
inequality is true. Now let us prove that

n! <
(

n+1
2

)n

⇒ (n+1)! <
(

n+2
2

)n+1

.

To that purpose, we multiply the inequality by n+1 and get

(n+1)! <
(n+1)n+1

2n = 2
(

n+1
2

)n+1

.

Then, using the hint,

(n+1)! < 2
(

n+1
2

)n+1

<

(
1+

1
n+1

)n+1(n+1
2

)n+1

.

But (
1+

1
n+1

)n+1

=

(
n+2
n+1

)n+1

,

so

(n+1)! < 2
(

n+1
2

)n+1

<

(
n+2
n+1

)n+1(n+1
2

)n+1

=

(
n+2

2

)n+1

,

which proves the inequality we were looking for.

(b) Let us first prove that (2n+2)! > (n+2)n(n+2)!, or equivalently that

(2n+2)!
(n+2)!

> (n+2)n.

To do that we use the definition of factorial and cancel all common factors in the fraction:

(2n+2)!
(n+2)!

=
(2n+2)(2n+1)2n · · ·(n+3)

((((((((((((
(n+2)(n+1)n · · ·3 ·2 ·1

((((((((((((
(n+2)(n+1)n · · ·3 ·2 ·1

= (2n+2)(2n+1) · · ·(n+3).

If we now replace all factors by n+2, which is smaller than any of them, we get the lower
bound

(2n+2)!
(n+2)!

> (n+2)(n+2) · · ·(n+2)︸ ︷︷ ︸
n times

= (n+2)n,

which is the equality we wanted to prove.
Let us now prove 2! ·4! · · ·(2n)! >

[
(n+1)!

]n using induction. Take n = 2 —the first value
for which the inequality is supposed to work. The left-hand side is 2! ·4! = 2 ·24 = 48, while
the right-hand side is (3!)2 = 62 = 36, so the inequality holds for n = 2.
Assume now that 2! ·4! · · ·(2n)! >

[
(n+1)!

]n holds, multiply both sides by (2n+2)! and
use the inequality just proven:

2! ·4! · · ·(2n)!(2n+2)! >
[
(n+1)!

]n
(2n+2)! >

[
(n+1)!

]n
(n+2)n(n+2)!

=
[
(n+1)!(n+2)

]n
(n+2)! =

[
(n+2)!

]n
(n+2)! =

[
(n+2)!

]n+1
,

and so the inequality also holds for n+1.
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(c) Take n = 2. The left-hand side is 1+1/
√

2 ≈ 1.7, whereas the right-hand side is
√

2 ≈ 1.4.
Hence the inequality holds for the first value of n. Assume now that

1+
1√
2
+ · · ·+ 1√

n
>
√

n

and add 1/
√

n+1 to both sides of the inequality. We end up with

1+
1√
2
+ · · ·+ 1√

n+1
>
√

n+
1√

n+1
=

√
n
√

n+1+1√
n+1

=

√
n(n+1)+1√

n+1
.

Now, n(n+1)> n2, therefore

1+
1√
2
+ · · ·+ 1√

n+1
>

√
n2 +1√
n+1

=
n+1√
n+1

=
√

n+1

and the inequality is proven.
Notice that in this case there is a simpler way to obtain the inequality without using induction.
All we need to do to find a lower bound to the sum in the left-hand side is to replace every
term by the smallest one, namely 1/

√
n. If there are two or more terms in the sum (i.e. if

n > 1) then we obtain a strict lower bound with this operation. So

1+
1√
2
+ · · ·+ 1√

n
>

1√
n
+ · · ·+ 1√

n︸ ︷︷ ︸
n times

=
n√
n
=
√

n.

Problem 1.8
(a) 1+

√
2 and 1−

√
2 are clearly irrational numbers (their decimal expressions have the same

decimal part than
√

2), but if we add them up we obtain 2, which is a rational number.

(b) If we multiply
√

2 by itself we obtain 2.

(c) Consider the number a =
√

2
√

2
, and let us compute

a
√

2 =

(√
2
√

2
)√

2

=
(√

2
)√2·

√
2
=
(√

2
)2

= 2.

Therefore, either a ∈ Q —in which case x = y =
√

2 is the example we are seeking— or
a /∈Q —in which case x = a and y =

√
2 is that example.

Problem 1.9
(a) Suppose that

√
2+

√
3 = r ∈Q. If we square both sides,(√

2+
√

3
)2

= r2 ⇔ 2+3+2
√

2
√

3 = r2 ⇔
√

6 =
r2 −5

2
.

The right-hand side in the last expression is a rational number, so
√

6 must be a rational
number. Suppose there is an irreducible fraction p/q such that

√
6= p/q. Squaring, 6q2 = p2,

so p must be even, i.e., p = 2k. Substituting 6q2 = 4k2, which simplifies to 3q2 = 2k2. Thus
q must be even too, but that is not possible because q and p do not have common factors.
Hence

√
6 /∈Q and therefore

√
2+

√
3 /∈Q.

(b) Suppose
√

n = k
√

r = p/q, an irreducible fraction. Squaring this equation rk2q2 = p2. But
this is impossible because r does not contain any square factor whereas all factors in the
right-hand side are squared. Hence

√
n /∈Q.
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(c) Suppose
√

n−1+
√

n+1 = r ∈Q. Squaring

n−1+n+1+2
√

n−1
√

n+1 = r2 ⇔
√

n2 −1 =
r2 −2n

2
.

The right-hand side is a rational number, but the left-hand side cannot be because n2 −1 is
not a perfect square (two consecutive numbers cannot be both perfect squares, and n2 is).
Thus

√
n−1+

√
n+1 /∈Q.

Problem 1.10 All we need to do is to expand the binomials in the left-hand side of the equation:(
x+ |x|

2

)2

+

(
x−|x|

2

)2

=
1
4
[
(x+ |x|)2 +(x−|x|)2]= 1

4
[x2 + |x|2 +���2x|x|+ x2 + |x|2 −���2x|x| ]

=
1
�4
�4x2 = x2.

Problem 1.11
(i) Since |z|⩽ a is the same as −a ⩽ z ⩽ a,

|x−3|⩽ 8 ⇔ −8 ⩽ x−3 ⩽ 8 ⇔ 3−8 ⩽ x ⩽ 3+8 ⇔ −5 ⩽ x ⩽ 11.

Hence A = [−5,11].

(ii) On the one hand

|x−2|< 1
2

⇔ −1
2
< x−2 <

1
2

⇔ 3
2
< x <

5
2
.

On the other hand 0 < |x−2| holds if, and only if, x ̸= 2. Therefore B =
(3

2 ,2
)
∪
(
2, 5

2

)
.

(iii) We can factor out x2 −5x+6 = (x−2)(x−3), therefore C = {x ∈ R : (x−2)(x−3)⩾ 0}.
So C contains those x for which both factors are either nonnegative or nonpositive, i.e., x ⩾ 3
and x ⩽ 2. Hence C = (−∞,2]∪ [3,∞).

(iv) D contains those x for which an odd numbers of the three factors in the inequality are negative,
i.e. x <−3 and 0 < x < 5. Thus D = (−∞,−3)∪ (0,5).

(v) Factoring out x2 +8x+7 = (x+1)(x+7) we can rewrite

E =

{
x ∈ R :

2(x+4)
(x+1)(x+7)

> 0
}
.

Thus either all factors in the fraction must be positive or one positive and the other two
negatives. This holds for x >−1 and −7 < x <−4, hence E = (−7,−4)∪ (−1,∞).

(vi) Since

4
x
< x ⇔ 0 < x− 4

x
⇔ 0 <

x2 −4
x

⇔ 0 <
(x−2)(x+2)

x
,

F will contain those x for which either all three factors in the fraction are positive or one is
positive and two negatives, i.e., 2 < x and −2 < x < 0. Hence F = (−2,0)∪ (2,∞).

(vii) The inequality 4x < 2x+1 is equivalent to 2x < 1, i.e., x < 1
2 . The inequality 2x+1 ⩽ 3x+2

is equivalent to 0 ⩽ x+1, i.e., −1 ⩽ x. Hence G = [−1, 1
2).

(viii) |x2−2x|< 1 means −1 < x2−2x < 1. The inequality −1 < x2−2x means 0 < x2−2x+1 =
(x−1)2, which only holds for x ̸= 1. On the other hand, the inequality x2 −2x < 1 means
x2 − 2x− 1 < 0, which holds for all x within the two roots of x2 − 2x− 1 = 0. These two
roots are 1+

√
2 > 0 and 1−

√
2 < 0. Therefore H = (1−

√
2,1)∪ (1,1+

√
2).
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(ix) The equation

|x−1||x+2|= 10 ⇔ |(x−1)(x+2)|= 10 ⇔ |x2 + x−2|= 10

is actually two in one, namely

x2 + x−2 = 10, x2 + x−2 =−10.

The solutions of the first one are the solutions of x2 + x−12 = 0, i.e., x =−4 and x = 3. On
the other hand, the second equation becomes x2 + x+ 8 = 0, which has no real solutions.
Thus I = {−4}∪{3}.

(x) The inequality |x− 1|+ |x+ 2| > 1 has to be discussed in three regions: (a) x ⩾ 1, (b)
−2 ⩽ x < 1, and (c) x ⩽−2.
(a) x ⩾ 1. The inequality becomes x−1+ x+2 > 1 because the numbers within the absolute
values are both nonnegatives. This is equivalent to 2x+ 1 > 1, i.e., x > 0. Since we are
assuming that x ⩾ 1, all numbers in this region satisfy the inequality.
(b) −2 ⩽ x < 1. The inequality becomes 1−x+x+2 > 1 since x−1 < 0 but x+2 ⩾ 0. This
inequality turns out to be 3 > 1, which is obviously true, so all numbers in this region satisfy
the inequality.
(c) x < −2. The inequality becomes 1− x− x− 2 > 1 since both x− 1 < 0 and x+ 2 < 0.
This inequality becomes −2x− 1 > 1, i.e., 2+ 2x < 0 or x < −1. But we are in a region
where x <−2, so all numbers in this region satisfy x <−1.
Consequently J = R.

Problem 1.12
(i) x(0) = a, x(1) = b, x(1/2) = (a+b)/2.

(ii) B = (a,b).

(iii) C = (−∞,a).

(iv) D = (b,∞).

Problem 1.13
(i) supA = 3 ̸= maxA; infA =−1 = minA.

(ii) supB = 3 = maxB; infB =−1 = minB.

(iii) supC = 3 = maxC; infC = 2 ̸= minC.

(iv) Writing (n2 +1)/n as n+1/n is clear that supD = ∞; infD = 2 = minD.

(v) The two roots of the parabola are x = 3 and x = 1/3. Since the coefficient of x2 is positive,
the parabola is negative between the two roots. Hence E = (1/3,3) and supE = 3 ̸= maxE;
infE = 1/3 ̸= minE.

(vi) F contains those numbers for which an odd number of factors are negative. Thus F =
(a,b)∪ (c,d) and supF = d ̸= maxF ; infF = a ̸= minF .

(vii) supG = 1
2 +

1
5 = 7

10 = maxG; infG = 0 ̸= minG.

(viii) We can express H = H+∪H−, where H+ = {1+1/m : m ∈N} and H− = {−1+1/m : m ∈
N}. Since all numbers in H− are smaller than all numbers in H+, supH = supH+ = 2 =
maxH, whereas infH = infH− =−1 ̸= minH.
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D.2 Real Functions
Problem 2.1

(i) We can factor out the denominator as x2 −5x+6 = (x−2)(x−3); therefore, the domain is
R−{2,3}.

(ii) There are two conditions for f (x) to exist: 1− x2 ⩾ 0 and x2 −1 ⩾ 0. Together they imply
1− x2 = 0. Therefore the domain is just the set {−1,1}.

(iii) There are two conditions to be met for x to be in the domain: first, 1− x2 ⩾ 0; second,
x ̸=

√
1− x2. The first condition implies x2 ⩽ 1, or equivalently, −1 ⩽ x ⩽ 1. The second

condition is not fulfilled if x =
√

1− x2. Squaring this equation we obtain x2 = 1−x2, which
is equivalent to x2 = 1/2. The two solutions of this equation are x =±1/

√
2, but of them

two, only the positive one is a solution of the original equation x =
√

1− x2. Thus the domain
is [−1,1/

√
2)∪ (1/

√
2,1].

(iv) The two coditions to be met for x to be in the domain are 4− x2 ⩾ 0 and 1−
√

4− x2 ⩾ 0.
The first one reads x2 ⩽ 4, i.e., −2 ⩽ x ⩽ 2. The second one implies

√
4− x2 ⩽ 1. Both sides

of this inequality are positive, so we can square it to obtain 4− x2 ⩽ 1, i.e., x2 ⩾ 3. This
holds either if x ⩾

√
3 or x ⩽−

√
3. Therefore, the domain is [−2,−

√
3]∪ [

√
3,2].

(v) The denominator vanishes if logx = 1, i.e., if x = e. Since the logarithm requires x > 0, the
domain is (0,e)∪ (e,∞).

(vi) The condition to be met now is x− x2 > 0. We can factor x− x2 = x(1− x), so the roots
of the parabola are x = 0 and x = 1. Since the coefficient of x2 is negative, the parabola is
positive provided 0 < x < 1. The domain is then (0,1).

(vii) Three conditions need to be met: first, x > 0 because x is the argument of a logarithm; second,
logx ̸= 0 because it is the denominator; and third, 5− x ⩾ 0 because it is the argument of a
square root. The second condition implies x ̸= 1, whereas the third one implies x ⩽ 5. Thus
the domain is (0,1)∪ (1,5].

(viii) The first requirement is x > 0 for the logarithm to be meaningful. The second one is
−1 ⩽ logx ⩽ 1 because the domain of the arcsin is the interval [−1,1]. Since logx is
monotonically increasing, this inequality is equivalent to e−1 ⩽ x ⩽ e, so the domain is the
interval [e−1,e].

Problem 2.2
(a) We know that f (−x) =− f (x) and g(−x) =−g(x). Then

( f +g)(−x) = f (−x)+g(−x) =− f (x)−g(−x) =−( f +g)(x),

so f +g is odd. Now,

( f g)(−x) = f (−x)g(−x) = [− f (x)][−g(x)] = f (x)g(x) = ( f g)(x),

so f g is even. Finally,

( f ◦g)(−x) = f
(
g(−x)

)
= f
(
−g(x)

)
=− f

(
g(x)

)
=−( f ◦g)(x).

Thus f ◦g is odd.

(b) Now f (−x) = f (x) and g(−x) =−g(x). Then

( f +g)(−x) = f (−x)+g(−x) = f (x)−g(−x),

so f +g is neither even nor odd. As for the product,

( f g)(−x) = f (−x)g(−x) = f (x)[−g(x)] =− f (x)g(x) =−( f g)(x),
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so f g is odd. Finally,

( f ◦g)(−x) = f
(
g(−x)

)
= f
(
−g(x)

)
= f
(
g(x)

)
= ( f ◦g)(x).

Thus f ◦g is even.

Problem 2.3 (i)

f (−x) =
−x

(−x)2 +1
=− f (x).

The function is odd.

(ii)

f (−x) =
(−x)2 − (−x)
(−x)2 +1

=
x2 + x
x2 +1

̸=± f (x),

so the function is neither.

(iii)

f (−x) =
sin(−x)
−x

=
−sinx
−x

=
sinx

x
= f (x).

The function is even.

(iv)

f (−x) = cos
(
(−x)3)sin

(
(−x)2)e−(−x)4

= cos(−x3)sin(x2)e−x4
= cos(x3)sin(x2)e−x4

= f (x).

The function is even.

(v)

f (−x) =
1√

(−x)2 +1− (−x)
=

1√
x2 +1+ x

,

so the function is neither.

(vi) This function is the logarithm of the function in the previous item, so it seems that it has no
defined parity because

f (−x) = log
(√

x2 +1+ x
)
.

However,

√
x2 +1+ x =

(√
x2 +1+ x

)(√
x2 +1− x

)
√

x2 +1− x
=

x2 +1− x2
√

x2 +1− x
=

1√
x2 +1− x

,

so

f (−x) = log
(√

x2 +1+ x
)
= log

(
1√

x2 +1− x

)
=− log

(√
x2 +1− x

)
=− f (x).

The function is odd.



188 Chapter D. Solutions to exercises

Problem 2.4 The equation defining the inverse function is ( f ◦ f−1)(x) = ( f−1 ◦ f )(x) = x. If the
function is to be its own inverse it must satisfy the equation ( f ◦ f )(x) = x. In other words,

( f ◦ f )(x) =
a f (x)+b
c f (x)+d

=
a
(ax+b

cx+d

)
+b

c
(ax+b

cx+d

)
+d

=
a(ax+b)+b(cx+d)
c(ax+b)+d(cx+d)

=
(a2 +bc)x+(a+d)b
(a+d)cx+(bc+d2)

= x.

For the last two expressions to be the same we must have

(a+d)c = (a+d)b = 0,

a2 = d2.

There are two ways in which the top equations can be fulfilled. The first one is c = b = 0. Since the
second equation implies a =±d, the two resulting functions are f1(x) = x and f2(x) =−x. The
second possibility is that a+d = 0, or d =−a. Then all three equations hold. This corresponds to
the function

f (x) =
ax+b
cx−a

,

whose only constraint is that c and a cannot be both zero.

Problem 2.5 The statement of the problem is that f (x), understood as a mapping f :R−{−1/2} 7→
R−{1/2}, is bijective. A simple way to see that the domain of f is R−{−1/2}, that it can be
inverted in its domain, and that the domain of f−1 is R−{1/2}.

That the domain is R−{−1/2} is obvious because x=−1/2 is the only zero of the denominator.
That f can be inverted is a matter of solving x as a function of y in the equation

y =
x+3
1+2x

⇒ y(1+2x) = x+3 ⇒ y−3 = x(1−2y) ⇒ x =
y−3

1−2y
.

The inverse function is then

f−1(x) =
x−3
1−2x

and its domain is clearly R−{1/2}.

Problem 2.6
(a) An easy way to check for injectivity is to determine whether the equation y = f (x) has a

unique solution for those y for which it can be solved.
(i) For every y ∈ R,

y = 7x−4 ⇒ x =
y+4

7
.

So there is a unique solution no matter y, which means that the function is injective.

(ii) Only if −1 ⩽ y ⩽ 1 the equation

y = sin(7x−4)

can have a solution. On the other hand, two points x1 and x2 such that 7x2 − 4 =
7x1 −4+2nπ , with n ∈ Z, are both solutions of the same y. Clearly x2 = x1 +2nπ/7.
Therefore there are infinitely many solutions for each −1 ⩽ y ⩽ 1, which means that
the function is not injective.



D.2 Real Functions 189

(iii) For any y ∈ R,

y = (x+1)3 +2 ⇒ x = (y−2)1/3 −1,

so the solution is unique and the function is injective.

(iv) Take y so that

y =
x+2
x+1

.

Then

y(x+1) = x+2 ⇒ y−2 = x(1− y).

Thus, provided y ̸= 1, we obtain

x =
y−2
1− y

and the solution is unique. The function is injective.

(v) Take y and solve for y = x2 −3x+2, or x2 −3x+2− y = 0. Then

x =
3±
√

9+4(y−2)
2

=
3±

√
4y+1
2

.

The equation has a solution only if y ⩾ −1/4. But for all y > −1/4 there are two
different solutions. Therefore the function is not injective.

(vi) Consider the equation

y =
x

x2 +1
.

If y = 0 the only solution is x = 0. If y ̸= 0 it can be transformed into

y(x2 +1) = x ⇒ yx2 − x+ y = 0.

The solutions of this quadratic equation are

x =
1±
√

1−4y2

2y
.

There is solution only if y2 ⩽ 1/4, i.e., −1/2 ⩽ y ⩽ 1/2, but for every −1/2 < y < 1/2
there are two different solutions for the same y, hence the function is not injective.

(vii) For every y > 0,

y = e−x ⇒ logy =−x ⇒ x =− logy.

The solution is unique and the function is injective.

(viii) For every y ∈ R,

y = log(x+1) ⇒ ey = x+1 ⇒ x = ey −1.

The solution is unique and the function is injective.
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(b) The solutions of the equation y = x2 −3x+2 are (see previous item)

x =
3±

√
4y+1
2

.

Clearly one solution is larger than 3/2 and the other is smaller than 3/2. Therefore, if we
limit the domain to those x larger than 3/2 only one solution survives and the function
becomes injective.

(c) Take two values 1 < x1 < x2 and calculate the difference

f (x1)− f (x2) =
x1

x2
1 +1

− x2

x2
2 +1

=
x1(x2

2 +1)− x2(x2
1 +1)

(x2
1 +1)(x2

2 +1)
=

(x2 − x1)(x1x2 −1)
(x2

1 +1)(x2
2 +1)

> 0.

So f (x) is monotonically decreasing for x > 1 and therefore injective.
Now, since the solution of y = f (x) is (see previous item)

x =
1±
√

1−4y2

2y
,

for y =
√

2/3,

x =
1±
√

1−8/9
2
√

2/3
=

3±1
2
√

2
=


√

2,

1√
2
.

Since the domain of the function is (1,∞), only the top solution is in the domain; thus
f−1(

√
2/3) =

√
2.

(d)
(i) There is a unique solution for every y ∈ R, therefore the function is surjective, hence

bijective.

(ii) Not surjective because the range is [−1,1].

(iii) Surjective and bijective.

(iv) Not surjective because y = 1 is not in the range of the function.

(v) Not surjective because the range is [−1/4,∞).

(vi) Not surjective because the range is [−1/2,1/2].

(vii) Not surjective because the range is (0,∞).

(viii) Surjective and bijective.

Problem 2.7
(i) Let us denote θ1 = arctan 1

2 , θ2 = arctan 1
3 , and θ = θ1 +θ2. Firts of all, 0 < θ1,2 < π/4, so

0 < θ < π/2. Now,

tanθ = tan(θ1 +θ2) =
tanθ1 + tanθ2

1− tanθ1 tanθ2
=

1
2 +

1
3

1− 1
6

=
5/6
5/6

= 1.

Therefore θ = π/4.

(ii) Now θ1 = arctan2 and θ2 = arctan3, and π/4 < tanθ1,2 < π/2, so π/2 < tanθ < π . Then

tanθ = tan(θ1 +θ2) =
tanθ1 + tanθ2

1− tanθ1 tanθ2
=

2+3
1−6

=
5
−5

=−1.

Therefore θ = 3π/4.
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(iii) Denote θ1 = arctan 1
2 , θ2 = arctan 1

5 , θ3 = arctan 1
8 , and θ = θ1 +θ2 +θ3. Since 0 < tanθi <

π/4 then 0 < tanθ < 3π/4. Accordingly tanθ > 0 if 0 < θ < π/2 and tanθ < 0 if π/2 <
θ < 3π/4.
First of all we need to work out a formula for tan(θ1 +θ2 +θ3). For the sake of simplicity
we will denote τi = tanθi and τi j = tan(θi +θ j). Thus,

tan(θ1 +θ2 +θ3) =
τ12 + τ3

1− τ12τ3
=

τ1+τ2
1−τ1τ2

+ τ3

1− τ1+τ2
1−τ1τ2

τ3
=

τ1 + τ2 + τ3 − τ1τ2τ3

1− τ1τ2 − τ2τ3 − τ3τ1
.

The formula is

tanθ =
tanθ1 + tanθ2 + tanθ3 − tanθ1 tanθ2 tanθ3

1− tanθ1 tanθ2 − tanθ2 tanθ3 − tanθ3 tanθ1
.

substituting,

tanθ =
1
2 +

1
5 +

1
8 −

1
80

1− 1
10 −

1
40 −

1
16

=
40+16+10−1
80−8−2−5

=
65
65

= 1.

Thus θ = π/4.

Problem 2.8
(i) Denote θ = arccosx, so that cosθ = x. Then

f (x) = sinθ =
√

1− cos2 θ =
√

1− x2.

(ii) Denote θ = arcsinx, so that sinθ = x. Then,

f (x) = sin(2θ) = 2sinθ cosθ = 2sinθ

√
1− sin2

θ = 2x
√

1− x2.

(iii) Denote θ = arccosx, so that cosθ = x. Then

f (x) = tanθ =
sinθ

cosθ
=

√
1− cos2 θ

cosθ
=

√
1− x2

x
.

(iv) Denote θ = arctanx, so that tanθ = x. Now,

tan2
θ =

sin2
θ

cos2 θ
=

1
cos2 θ

−1,

so

cosθ =
1√

1+ tan2 θ
.

And since sinθ = cosθ tanθ ,

sinθ =
tanθ√

1+ tan2 θ
.

Then

f (x) = sin(2θ) = 2sinθ cosθ =
2tanθ

1+ tan2 θ
=

2x
1+ x2 .

(v) Denote θ = arctanx, so that tanθ = x. Then

f (x) = cos(2θ) = cos2
θ − sin2

θ =
1− tan2 θ

1+ tan2 θ
=

1− x2

1+ x2 .
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(vi) Since 4logx = log(x4), then f (x) = elog(x4) = x4.

Problem 2.9 If we take logarithms in the first of these equations we obtain

y logx = x logy.

The second equation is y = 3x, so substituting for y in the previous equation we end up with

3x logx = x log(3x) = x log3+ x logx.

Since x > 0 (i.e., x ̸= 0) we can cancel one factor x from the equation,

3 logx = log3+ logx ⇒ 2logx = log3 ⇒ logx =
1
2

log3 ⇒ logx = log
√

3,

therefore x =
√

3.

Problem 2.10 Use GeoGebra to help you with this exercise.

Problem 2.11 Here are some hints to help you plot these functions:
(i) Start off with the plot of g(x) = x2; function f (x) = g(x+2)−1, so shift the plot two units

to the left and one unit down.

(ii) Start off with the plot of g(x) =
√

x and then tranform it into that of h(x) =
√
−x by reflecting

it on the Y axis. Then f (x) = h(x−4), so shift this plot four units to the right.

(iii) Start off from the plots of g1(x) = x2 and g2(x) = 1/x. Near x = 0 g1 is negligible with
respect to g2 —which diverges to ±∞ at x = 0. Far from x = 0 it is g2 that is negligible with
respect to g1, which grows indefinitely. So f (x) is close to g2(x) as x ‘moves’ toward 0, and
close to g1(x) as x goes far awat from x = 0. Sketch the plot of f (x) using this information.

(iv) Start off with the plot of g(x) = x2 and shift it up one unit to get that of h(x) = x2 +1. Then
f (x) = 1/h(x). Since h(x) > 1 for all x ̸= 0 and h(0) = 1, then f (x) < 1 for all x ̸= 0 and
f (0) = 1. Besides, h(x) grows indefinitely as x goes away from the origin, so f (x) has to
approach 0.

(v) g(x) = x− x2 = x(1− x), so g(x)> 0 if 0 < x < 1 and g(x)< 0 if x < 0 or x > 1. Therefore

f (x) =

{
x2, if 0 ⩽ x ⩽ 1,
x, otherwise.

(vi) ex is monotonically increasing and croses 1 at x = 0. Therefore

f (x) =

{
ex −1, if x ⩾ 0,
1− ex, if x < 0.

All that needs to be done is to reflect the graph of ex −1 (equal to that of ex but shifted down
one unit) for x < 0 on the X axis.

(vii) If x ⩾ 0 then |x|− x = 0, but if x < 0 then |x|− x =−2x. So

f (x) =

{
0, if x ⩾ 0,
√
−2x, if x < 0.

(viii) ⌊x⌋ is the smallest integer not larger than x. So for instance, ⌊3.14⌋ = 3, ⌊0.5⌋ = 0, but
⌊−1.58⌋=−2. So the function f (x) is going to be piecewise constant, equal to 1/n for some
integer n, in given intervals. All we need to do is to determine those intervals. Of course,
f (x) is only defined if x ̸= 0 and if ⌊1

x⌋ ≠ 0.
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Let n be an integer and let us try to figure out where⌊
1
x

⌋
= n.

By definition

n ⩽
1
x
< n+1. (D.1)

As we have mentioned above, f (x) will not be defined if n = 0. This means all x such that

0 ⩽
1
x
< 1.

The left inequality implies x > 0. The right inequality implies x > 1. Therefore the domain
of f is (−∞,0)∪ (0,1].
Consider first x ∈ (0,1]. Then, according to (D.1) n > 0. From the left inequality x ⩽ 1/n,
and from the right one x > 1/(n+1). Thus

f (x) =
1
n

for all x ∈
(

1
n+1

,
1
n

]
, n ∈ N.

In other words, f (x) = 1 for x ∈ (1/2,1], f (x) = 1/2 for x ∈ (1/3,1/2], f (x) = 1/3 for
x ∈ (1/4,1/3], etc. This covers the plot of f (x) within the interval (0,1]. By the way, the
function gets closer and closer to 0 as x approaches 0.
Consider now the interval (−∞,0). Then n in (D.1) must be negative. Then the left inequality
again implies x ⩽ 1/n and the right one x > 1/(n+1). The result is the same:

f (x) =
1
n

for all x ∈
(

1
n+1

,
1
n

]
, n ∈ −N.

So we have f (x) = −1 if x ∈ (−∞,−1], f (x) = −1/2 if x ∈ (−1,−1/2], f (x) = −1/3 if
x ∈ (−1/2,−1/3], etc. This covers the whole interval (−∞,0).

(ix) Function g(x) = x2 −1 < 0 if −1 < x < 1 and g(x)> 0 otherwise, so

f (x) =

{
1− x2, if −1 < x < 1,
x2 −1, otherwise.

All that one has to do is to reflect the portion of the graph of x2 −1 in the interval (−1,1) on
the X axis.

(x) Plot g(x) = ex. The plot of g(−x) is just the mirror image with respect to the Y axis. And
that of −g(−x) is a new reflection with respect to the X axis. Shift the whole plot one unit
upward and you will get the plot of f (x) =−g(−x)+1 = 1− e−x.

(xi) The function is defined only if |x|⩾ 1. Besides, it is an even function, so it will be symmetric
with respect to the Y axis. Let us then focus on the positive interval [1,∞). Notice that
f (x) = log(x−1)+ log(x+1). These are two graphs of logx, the first one shifted one unit
to the right and the second one shifted one unit to the left. Since logx grows very slowly
but diverges at x = 0, near the point x = 1 function log(x− 1) will diverge and log(x+ 1)
will then be negligible. In oher words, f (x)≈ log(x−1). On the other hand, when x is large
x±1 ≈ x, so f (x)≈ 2logx. Plot f (x) using this information.
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(xii) As x grows far away from the origin (positive or negative) 1/x becomes very small, so
sin(1/x) approaches 1/x, and therefore f (x) approaches 1. On the other hand, sin(1/x)
oscillates wildly as x gets near the origin, but x modulates the amplitude (making it smaller
the closer to the origin).

Problem 2.12
(a) Since coshx = (ex + e−x)/2, sinhx = (ex − e−x)/2,

cosh(−x) =
e−x + ex

2
= coshx, sinh(−x) =

e−x − ex

2
=−sinhx.

(b) First identity:

cosh2 x− sinh2 x =
1
4
(
e2x + e−2x +2

)
− 1

4
(
e2x + e−2x −2

)
= 1.

Second identity:

2sinhxcoshx =
1
2
(
ex − e−x)(ex + e−x)= 1

2
(
e2x −1+1− e−2x)= sinh(2x).
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D.3 Sequences

Problem 3.1
(a) If lim

n→∞
xn = 0 then it is a 0 ·∞ indeterminacy and the result will depend on the sequences

involved. For instance, if xn = 1/n and yn = n, then xnyn = 1 is a convergent series. Or if
yn = n2 instead, then xnyn = n diverges. Or if xn = (−1)n/n and yn = n then xnyn = (−1)n

which is neither convergent nor divergent.
However, if lim

n→∞
xn = a ̸= 0, then we are certain that xnyn will diverge. To prove that suppose

that a > 0 (if a < 0 the argument is analogous). Take some 0 < ε < a and chose C > 0
arbitrarily large. For sufficently large n we will have at the same time a− ε < xn < a+ ε and
C < yn. Thus 0 < (a− ε)C < xnyn, and it is clear that (a− ε)C can be made arbitrarily large
by suitably choosing C.

(b) There will be an index N ∈ N such that the sequence is constant for all n > N. To prove it
just choose a very small ε > 0. If the limit of the sequence is ℓ, then ℓ− ε < xn < ℓ+ ε for
all n > N. But xn ∈ Z, so the only way that thisn inequality can hold for very small ε is that
ℓ ∈ Z and that xn = ℓ for all n > N.

(c) By definition, if we take some ε > 0 there will be an N ∈N such that ℓ−ε < xn < ℓ+ε for all
n > N (ℓ is the limit). Then the sequence is bounded for n > N. There remain {x1,x2, · · · ,xN}
outside that interval. But there is a finite number of these numbers, so one of them is the
largest (say x j) and another one is the smallest (say xk). Define a = min{xk, ℓ− ε} and
b = max{x j, ℓ+ ε}. Then for all n ∈ N we have a ⩽ xn ⩽ b, which proves that the sequence
is bounded.

Problem 3.2
(i) Let us compute a few terms of the sequence:{

0,
1
2
,
3
4
,
7
8
,
15
16

, . . .

}
.

The pattern is clearly

an =
2n −1

2n = 1−2−n.

Clearly this holds for a0 = 1−1 = 0, and if we introduce this formula in the recurrence we
obtain

an+1 =
an +1

2
=

1−2−n +1
2

=
2−2−n

2
= 1−2−(n+1).

This proves the guessed formula by induction.
The limit of the sequence an is clearly 1.

(ii) Define an = logc bn, where c is the base of the logarithm —to be specified. If we take logc in
both sides of the equation we obtain

logc bn+1 = logc

(√
2bn

)
=

1
2
(logc 2+ logc bn) ⇔ an+1 =

logc 2+an

2
,

and obviously a0 = logc b0 = logc 1 = 0. Now, if we take c = 2 (binary logarithms) then
log2 2 = 1 and recurrence we obtain is

an+1 =
an +1

2
, a0 = 0,
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exactly the same as in item (a). The solution will therefore be the same, and

bn = 2an = 21−2−n
.

The limit of bn is clearly 2.

Problem 3.3
(i) Applying Corollary 3.4.4 to Stolz’s theorem, instead of calculating the limit of n

√
an we will

calculate the limit of an/an−1. Thus we want to obtain the limit

lim
n→∞

an +bn

an−1 +bn−1 = ℓ.

Suppose a = b. Then

ℓ= lim
n→∞

2an

2an−1 = a.

Suppose that a > b. Then

ℓ= lim
n→∞

an
(
1+ bn

an

)
an−1

(
1+ bn−1

an−1

) = a lim
n→∞

1+
(b

a

)n

1+
(b

a

)n−1 = a
1
1
= a.

By symmetry the limit will be b if a < b.
Summarising all cases in a single expression, ℓ= max{a,b}.

(ii) Since

lim
n→∞

n
√

a+ n
√

b
2

= 1

the limit we want to calculate is an indeterminacy 1∞. Hence

lim
n→∞

(
n
√

a+ n
√

b
2

)n

= ec,

where

c = lim
n→∞

n

(
n
√

a+ n
√

b
2

−1

)
= lim

n→∞
n

n
√

a+ n
√

b−2
2

=
1
2

lim
n→∞

n
(

n
√

a−1+ n
√

b−1
)
.

So we need to calculate

ℓ(a) = lim
n→∞

n
(

n
√

a−1
)

and then c = 1
2 [ℓ(a)+ ℓ(b)]. But

ℓ(a) = lim
n→∞

a1/n −1
1/n

= lim
n→∞

e(loga/n)−1
1/n

= lim
n→∞

e(loga/n)−1
loga/n

loga,

where we have first used the identity ax = ex loga and then multiplied and divided by loga.
Denoting εn = loga/n

ℓ(a) = loga lim
n→∞

eεn −1
εn

,
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and since εn −→
n→∞

0 and we have the equivalence eεn −1 ∼ εn we conclude ℓ(a) = loga.
Thus

c =
1
2
(loga+ logb) =

1
2

log(ab) = log
√

ab

and finally

lim
n→∞

(
n
√

a+ n
√

b
2

)n

= elog
√

ab =
√

ab.

(iii) Using the identity x2−y2 = (x−y)(x+y) in the form x−y = (x2−y2)/(x+y) (equivalently,
multiplying and dividing by the conjugate of x− y),

lim
n→∞

n
(√

n2 +1−n
)
= lim

n→∞
n

(√
n2 +1

)2
−n2

√
n2 +1+n

= lim
n→∞

n��n2 +1−��n2
√

n2 +1+n
= lim

n→∞

n√
n2 +1+n

.

Now,

√
n2 +1 =

√
n2

(
1+

1
n2

)
= n

√
1+

1
n2 ,

so

lim
n→∞

n√
n2 +1+n

= lim
n→∞

�n

�n
√

1+ 1
n2 + �n ·1

= lim
n→∞

1√
1+ 1

n2 +1
=

1
2
.

(iv) This time we need to use the identity x4 − y4 = (x− y)(x3 + x2y+ xy2 + y3) as x − y =
(x4 − y4)/(x3 + x2y+ xy2 + y3). Thus, if we denote

ℓ= lim
n→∞

√
n
(

4
√

n2 +1−
√

n+1
)
,

then

ℓ= lim
n→∞

√
n

n2 +1− (n+1)2

(n2 +1)3/4 +(n2 +1)1/2(n+1)1/2 +(n2 +1)1/4(n+1)+(n+1)3/2 .

But n2 +1− (n+1)2 =��n2 + �1−��n2 −2n− �1 =−2n, and

(n2 +1)3/4 = n3/2
(

1+
1
n2

)3/4

∼ n3/2,

(n2 +1)1/2(n+1)1/2 = n
(

1+
1
n2

)1/2

n1/2
(

1+
1
n

)1/2

∼ n3/2,

(n2 +1)1/4(n+1) = n1/2
(

1+
1
n2

)1/4

n
(

1+
1
n

)
∼ n3/2,

(n+1)3/2 = n3/2
(

1+
1
n

)3/2

∼ n3/2,

so the denominator is ∼ 4n3/2. Accordingly,

ℓ= lim
n→∞

−2n
√

n
4n3/2 = lim

n→∞

−2n3/2

4n3/2 =−1
2
.
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(v) Factoring out the largest term of the numerator and of the denominator,

lim
n→∞

2n+1 +3n+1

2n +3n = lim
n→∞

3n+1
[
1+(2/3)n+1

]
3n [1+(2/3)n]

= lim
n→∞

3
1+(2/3)n+1

1+(2/3)n = 3.

(vi) This is a 1∞ indeterminacy, so

ℓ= lim
n→∞

(
n2 +1
n2 −3n

) n2−1
2n

= ec,

where

c = lim
n→∞

n2 −1
2n

(
n2 +1

n2 −3n
−1
)
= lim

n→∞

n2 −1
2n

·�
�n2 +1−��n2 +3n

n2 −3n
= lim

n→∞

n2 −1
n2 −3n

· 1+3n
2n

=
3
2
.

Thus ℓ= e3/2.

Problem 3.4
(i) Since sinnπ = 0 for every n ∈ N the sequence is identically 0, therefore the limit is 0.

(ii) We rewrite the expression as

ℓ= lim
n→∞

n
(

e
1
n − esin 1

n

)
1−nsin(1/n)

= lim
n→∞

e
1
n − esin 1

n

1
n − sin 1

n

= lim
n→∞

esin 1
n · e

1
n−sin 1

n −1
1
n − sin 1

n

.

If we now denote εn =
1
n − sin 1

n −−−−→
n→∞

0, then

ℓ= lim
n→∞

esin 1
n · eεn −1

εn
= 1,

because eεn −1 ∼ εn.

(iii) We can rewrite

ℓ= lim
n→∞

n
n
√

n!
= lim

n→∞

n

√
nn

n!
,

and now apply Corollary 3.4.4 to Stolz’s theorem to calculate the limit of an/an−1 instead of
the limit of n

√
an. Thus

ℓ= lim
n→∞

nn

n!
· (n−1)!
(n−1)n−1 .

But n! = n · (n−1)!, so

ℓ= lim
n→∞

nn

n(n−1)n−1 = lim
n→∞

nn−1

(n−1)n−1 = lim
n→∞

(
n

n−1

)n−1

= lim
n→∞

(
n−1+1

n−1

)n−1

= lim
n→∞

(
1+

1
n−1

)n−1

= e.

Alternatively, we can use the equivalence n! ∼ (2πn)1/2nne−n and subtitute to obtain

ℓ= lim
n→∞

n

(n!)1/n = lim
n→∞

n(
(2πn)1/2nne−n

)1/n = lim
n→∞

n
(2πn)1/2nne−1 = lim

n→∞

e
(2πn)1/2n = e,

given that

lim
n→∞

(2πn)1/2n = lim
n→∞

(
√

2π)1/n ( n
√

n
)1/2

= 1.
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(iv)

lim
n→∞

n−3/n = lim
n→∞

(
n
√

n
)−3

= 1.

(v) The limit is 0 because 2n ≪ n!; nevertheless we will prove the same limit in an alternative
way, just for the sake of illustration. Let us expand

0 <
2n

n!
=

n times︷ ︸︸ ︷
2 ·2 · · ·2 ·2 ·2

n · (n−1) · · ·3 ·2 ·1
=

2
n
· 2

n−1
· · · 2

3
· 2

2︸︷︷︸
=1

· 2
1︸︷︷︸
=2

.

Now, among all the fractions appearing in this expression (excluding the factors 1 and 2) the
largest one is 2/3. Therefore we obtain an upper bound if we replace all fractions by this
one, i.e.,

0 <
2n

n!
<

(
2
3

)n−2

2.

Since the rightmost side of this inequality goes to 0 as n → ∞, by the sandwich rule

lim
n→∞

2n

n!
= 0.

(vi) Likewise, this limit is 0 because n2 ≪ 2n. But there is an alternative way to prove this. For
that, we apply Stolz’s theorem (the denominator is a monotonically increasing function that
diverges to ∞) and calculate

lim
n→∞

n2 − (n−1)2

2n −2n−1 = lim
n→∞

2n−1
2n−1(2−1)

= lim
n→∞

2n−1
2n−1 .

And now apply Stolz’s theorem again and calculate

lim
n→∞

2n−1− (2n−3)
2n−1 −2n−2 = lim

n→∞

2
2n−2(2−1)

= lim
n→∞

2
2n−2 = 0.

Therefore

lim
n→∞

n2

2n = 0.

(vii)

lim
n→∞

nn−1

(n−1)n = lim
n→∞

nn

n(n−1)n = lim
n→∞

1
n
·
(

n
n−1

)n

= 0 · e = 0.

(viii) Applying Stolz’s theorem

ℓ= lim
n→∞

1+2
√

2+3 3
√

3+ · · ·+n n
√

n
n2

(notice that the denominator is monotonically increasing and divergent) can be obtained as

ℓ= lim
n→∞

n n
√

n
n2 − (n−1)2 = lim

n→∞

n n
√

n
2n−1

= lim
n→∞

n
2n−1

· n
√

n =
1
2
·1 =

1
2
.

Problem 3.5
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(i) This is a 1∞ indeterminacy, thus

ℓ= lim
n→∞

(
cos

b
n
+asin

b
n

)n

= ec,

where

c = lim
n→∞

n
(

cos
b
n
+asin

b
n
−1
)
= lim

n→∞
n
(

cos
b
n
−1
)
+a lim

n→∞
nsin

b
n
.

But 1− cos b
n ∼ b2

2n2 and sin b
n ∼ b

n , thus

c = lim
n→∞

n
(
− b2

2n2

)
+a lim

n→∞
n

b
n
= 0+ab = ab.

Therefore ℓ= eab.

(ii) Here is another 1∞ indeterminacy, so

ℓ= lim
n→∞

un

√
a−bun

a+bun
= ec,

where

c = lim
n→∞

1
un

(
a−bun

a+bun
−1
)
= lim

n→∞

1
un

· �a−bun − �a−bun

a+bun
= lim

n→∞

−2bun

un(a+bun)

= lim
n→∞

−2b
a+bun

=−2b
a
.

Therefore ℓ= e−2b/a.

Problem 3.6 We solve all these limits using Stolz’s theorem.
(i) The denominator is logn, a monotonically increasin sequence that diverges. Thus, if we call

the limit ℓ,

ℓ= lim
n→∞

sin(π/n)
logn− log(n−1)

= lim
n→∞

sin(π/n)
log
( n

n−1

) = lim
n→∞

sin(π/n)
log
(n−1+1

n−1

) = lim
n→∞

sin(π/n)
log
(
1+ 1

n−1

)
= lim

n→∞

π/n
1/(n−1)

= π lim
n→∞

n−1
n

= π.

(ii) If we denote the limit by ℓ, then

logℓ= lim
n→∞

log

(
n

∏
k=1

(2k−1)1/n2

)
= lim

n→∞

n

∑
k=1

log
(
(2k−1)1/n2

)
= lim

n→∞

n

∑
k=1

1
n2 log(2k−1)

= lim
n→∞

n
∑

k=1
log(2k−1)

n2 .

Now we apply Stolz’s theorem and compute

logℓ= lim
n→∞

log(2n−1)
n2 − (n−1)2 = lim

n→∞

log(2n−1)
2n−1

= 0.

Therefore ℓ= 1.
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(iii) Taking the n2 out of the sum

ℓ= lim
n→∞

n

∑
k=1

k2

n2 sin
1
k
= lim

n→∞

n
∑

k=1
k2 sin 1

k

n2 ,

thus applying Stolz’s theorem

ℓ= lim
n→∞

n2 sin 1
n

n2 − (n−1)2 = lim
n→∞

n2 1
n

2n−1
= lim

n→∞

n
2n−1

=
1
2
,

where we have used sin 1
n ∼ 1

n .

Problem 3.7 If we denote ℓ the limit we want to calculate and apply Stolz’s theorem (the denomi-
nator, log(n+1), is a monotonically and divergent sequence) we get

ℓ= lim
n→∞

an/n
log(n+1)− logn

= lim
n→∞

an

n log
(n+1

n

) = lim
n→∞

an

n log
(
1+ 1

n

) = lim
n→∞

an

n 1
n

= lim
n→∞

an = a,

using the equivalence log
(
1+ 1

n

)
∼ 1

n .

Problem 3.8 The smallest term in the sum is 1√
n2+3n

(the one with the largest denominator) and the

largest term is 1√
n2+1

(the one with the smallest denominator). Since there are 3n terms in the sum

3n√
n2 +3n

<
3n

∑
k=1

1√
n2 + k

<
3n√

n2 +1
.

For the two bounding sequences we have

lim
n→∞

3n√
n2 +3n

= 3, lim
n→∞

3n√
n2 +1

= 3,

therefore applying the sandwich rule we conclude

lim
n→∞

3n

∑
k=1

1√
n2 + k

= 3.

Problem 3.9

(a) lim
n→∞

an

n
= lim

n→∞

an −n+n
n

= lim
n→∞

an −n
n

+1 = 1 because
an −n

n
∼ ℓ

n
.

(b) lim
n→∞

n log
(an

n

)
= lim

n→∞
n log

(
1+

an −n
n

)
= lim

n→∞
n · an −n

n
= lim

n→∞
(an − n) = ℓ, where we

have used the equivalence log(1+ εn)∼ εn for any sequence εn −→
n→∞

0.

Problem 3.10 Assume that

lim
n→∞

n2

√
an

n

a1a2 · · ·an
= x

Then

logx = lim
n→∞

1
n2

(
n logan −

n

∑
k=1

logak

)
.
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Since n2 is a monotonically increasing, divergent sequence we can apply Stolz’s theorem with
bn = n2 and

an = n logan −
n

∑
k=1

logak,

and calculate instead

logx = lim
n→∞

an −an−1

bn −bn−1
.

On the one hand n2 − (n−1)2 = n2 −n2 +2n−1 = 2n−1. On the other hand,

an −an−1 = n logan −
n

∑
k=1

logak − (n−1) logan−1 +
n−1

∑
k=1

logak = n logan − (n−1) logan−1 − logan

= (n−1) logan − (n−1) logan−1 = (n−1) log
(

an

an−1

)
.

Therefore

logx = lim
n→∞

n−1
2n−1

log
(

an

an−1

)
=

logℓ
2

= log
√
ℓ ⇒ x =

√
ℓ.

Problem 3.11
(i) We can write the sequence as xn+1 =

√
2xn, with x0 = 1. In order to know whether the

sequence is monotonically increasing or decreasing we need to assess the sign of

xn+1 − xn =
√

2xn − xn =
2xn − x2

n√
2xn + xn

=
(2− xn)xn√

2xn + xn
.

(We have used the identity x− y = (x2 − y2)/(x+ y).) The sequence is clearly posivite,
because x0 = 1 > 0 and xn+1 =

√
2xn > 0 whenever xn > 0. Thus the sign of xn+1 − xn will

be the sign of the factor 2− xn.
We are going to prove now that xn < 2 for all n ∈ N. First, x0 = 1 < 2; second, if xn < 2
then xn+1 =

√
2xn <

√
2 ·2 = 2. Hence it is proven by induction. But with this we have

simultaneously proven

xn < 2, xn+1 − xn > 0,

so the sequence increases monotonically and is bounded from above —hence converges.
The limit can be obtained by taking limits in the recurrence equation:

lim
n→∞

xn+1 = lim
n→∞

√
2xn,

and if we denote lim
n→∞

xn = x, this equation becomes

x =
√

2x ⇒ x2 = 2x ⇒ x(x−2) = 0.

Of the two solutions of this equation, x = 0 and x = 2, the latter has to be the solution because
the sequence begins at x0 = 1 and increases.
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(ii) We describe de sequence as xn+1 =
√

2+ xn, with x0 = 0, and proceed as in (i):

xn+1 − xn =
√

2+ xn − xn =
2+ xn − x2

n√
2+ xn + xn

.

The equation x2 − x−2 = 0 has two roots, namely x =−1 and x = 2, and therefore 2+ xn −
x2

n = (xn +1)(2− xn). Thus,

xn+1 − xn =
(xn +1)(2− xn)√

2+ xn + xn
.

The sign of xn+1 − xn is the sign of 2− xn —because, as in (i), xn > 0 for all n ∈ N.
Let us now prove —using induction— that xn < 2 for all n ∈ N. Clearly x0 = 0 < 2, and if
xn < 2 then xn+1 =

√
2+ xn <

√
2+2 = 2. So we have just proven that

xn < 2, xn+1 − xn > 0,

and thefore the sequence converges. Denoting lim
n→∞

xn = x and taking limits in the recurrence
equation

lim
n→∞

xn+1 = lim
n→∞

√
2+ xn ⇒ x =

√
2+ x ⇒ x2 = 2+x ⇒ x2 −x−2 = 0,

whose roots are x =−1 and x = 2. Of them, the latter is the limit because the whole sequence
is positive.

(iii) The difference of two consecutive terms is

un+1 −un = 3+
un

2
−un = 3− un

2
=

6−un

2
,

so its sign will depend on whether un < 6 or un > 6. Let us prove by induction that it is the
former. To begin with u0 = 0 < 6. Now let us assume that un < 6. Then

un+1 = 3+
un

2
< 3+

6
2
= 3+3 = 6,

so un < 6 implies un+1 < 6, and this completes the proof. Then we can conclude that
un+1 −un > 0, hence the sequence is monotonically increasing. On the other hand 6 is an
upper bound, so it is convergent. To calculate the limit we need to take limits in both sides of
the recurrence equation. If we denote lim

n→∞
un = ℓ, then

ℓ= 3+
ℓ

2
⇒ ℓ= 6.

(iv) In this case u1 = 3 and un+1 = 3+2un > 2un. In particular this implies u2 > 2u1 = 2 ·3; also
u3 > 2u2 = 22 ·3; u4 > 2u3 = 23 ·3; etc. In general

un > 2n−1 ·3.

But 2n−1 −→
n→∞

∞, so lim
n→∞

un = ∞.

(v) We calculate the difference

un+1 −un =
u3

n +6
7

−un =
u3

n −7un +6
7

.

But x3 −7x+6 = (x−1)(x2 + x−6) = (x−1)(x−2)(x+3), therefore

un+1 −un =
1
7
(un −1)(un −2)(un +3).
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(a) Since u0 = 1/2 we have 0 < u0 < 1, so let us try to prove by induction that the whole
sequence is in (0,1). Assume 0 < un < 1. Then

0 < u3
n < 1 ⇒ 0 <

u3
n +6
7

<
1+6

7
= 1,

therefore 0 < un+1 < 1. And since the whole sequence is in (0,1) we have

un −1 < 0, un −2 < 0, un +3 > 0,

and therefore un is monotonically increasing and bounded from above by 1 —hence
convergent. We can calculate the limit, ℓ, by solving the equation

ℓ=
ℓ3 +6

7
⇒ ℓ3 −7ℓ+6 = 0.

There are three solutions, namely ℓ=−3, 1, and 2. Of those three the limit must be 1
because 0 < un < 1, u0 = 1/2, and un increases monotonically.

(b) Since u0 = 3/2 we have 1 < u0 < 2, so let us try to prove by induction that the whole
sequence is in (1,2). Assume 1 < un < 2. Then

1 < u3
n < 8 ⇒ 1+7

7
<

u3
n +6
7

<
8+6

7
⇒ 1 <

u3
n +6
7

< 2,

therefore 1 < un+1 < 2. And since the whole sequence is in (1,2) we have

un −1 > 0, un −2 < 0, un +3 > 0,

and therefore un is monotonically decreasing and bounded from below by 1 —hence
convergent. Again the limit can only be ℓ=−3, 0, and 1. Of those three the limit must
be 1 because 1 < un < 2, u0 = 3/2, and un decreases monotonically.

(c) Since u0 = 3 we have 2 < u0, so let us try to prove by induction that the whole sequence
is bounded from below by 2. Assume un > 2. Then

u3
n > 8 ⇒ u3

n +6
7

>
8+6

7
= 2,

therefore un+1 > 2. This completes the proof. Now,

un −1 > 0, un −2 > 0, un +3 > 0,

and therefore un is monotonically increasing —but there is no upper bound that we
know of. Suppose there is such an upper bound —even though we do not know which
one—; it that case the sequence would have a limit. But the limit can only be ℓ=−3,
1, or 2. And neither of them can be because u0 = 3 and the sequence is monotonically
increasing. Therefore there is no upper bound for this sequence —which means that it
diverges.

Problem 3.12
(a) Let us calculate the difference

an+1 −an =
√

1+3an −1−an =
1+3an − (1+an)

2
√

1+3an +1+an
=

�1+ �3an − �1−��2an −a2
n√

1+3an +1+an

=
an −a2

n√
1+3an +1+an

=
an(1−an)√

1+3an +1+an
.
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The sequence is an > 0. The reason is that a0 = 1/2> 0 and if an > 0 then an+1 =
√

1+3an−
1 >

√
1− 1 = 0. Accordingly both the denominator of the fraction and the first factor in

the numerator are positive. On the other hand, a0 = 1/2 < 1, and if an < 1 then an+1 =√
1+3an −1 <

√
1+3−1 = 2−1 = 1, so 1 is an upper bound for the sequence —which

means that the second factor in the numerator is also positive. Hence an+1 −an > 0 and the
sequence is monotonically increasing. Since is is also bounded from above —by 1— it has a
limit ℓ —to be determined.
If we now take limits in the recurrence equation we obtain

ℓ=
√

1+3ℓ−1 ⇒ ℓ+1 =
√

1+3ℓ ⇒ (ℓ+1)2 = 1+3ℓ

⇒ ℓ2 +��2ℓ+ �1 = �1+ �3ℓ ⇒ ℓ2 = ℓ.

The only solutions are ℓ= 0 and 1, but since a0 = 1/2 and an is monotonically increasing,
the limit must be ℓ= 1.

(b) Both the numerator and the denominator go to 0 as n → ∞, so we face a 0/0 indeterminacy.
Substituting the recurrence, and using the identity x− y = (x2 − y2)/(x+ y),

lim
n→∞

an+1 −1
an −1

= lim
n→∞

√
1+3an −2

an −1
= lim

n→∞

1+3an −4
(
√

1+3an +2)(an −1)

= lim
n→∞

3an −3
(
√

1+3an +2)(an −1)
= lim

n→∞

3����(an −1)
(
√

1+3an +2)����(an −1)

=
3√

1+3+2
=

3
4
.

Problem 3.13
(a) We need to compute the product (bn+1−bn)(bn−bn−1) and prove that it is negative. In order

to do that a good strategy is to write down this expression as a function of bn alone. The term
bn+1 is directly provided by the recurrence equation

bn+1 = 1− bn

2
.

On the other hand, the same recurrence implies

bn = 1− bn−1

2
⇒ bn−1 = 2(1−bn).

Therefore

(bn+1−bn)(bn−bn−1)=

(
1− bn

2
−bn

)
(bn−2+2bn)=

2−3bn

2
(3bn−2)=−(3bn −2)2

2
.

The last expression is always negative unless bn = 2/3. So as long as bn ̸= 2/3 the sequence
keeps alternating. On the other hand, if bn = 2/3 then

bn+1 = 1− bn

2
= 1− 1

3
=

2
3
,

so the rest of the sequence remains fixed at 2/3.

(b) If lim
n→∞

bn = ℓ then, taking limits in the recurrence equation we obtain

ℓ= 1− ℓ

2
⇒ ℓ=

2
3
.
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(c) Substituting ℓ= 2/3,

bn+1 −
2
3
= 1− bn

2
− 2

3
=

1
3
− bn

2
=

1
2

(
2
3
−bn

)
,

factoring out a 1/2 factor. Taking absolute values in both sides of the obtained equation we
get to the desired result.

(d) If
∣∣bn − 2

3

∣∣= 1
2

∣∣bn−1 − 2
3

∣∣, then, setting n = 1 we obtain∣∣∣∣b1 −
2
3

∣∣∣∣= 1
2

∣∣∣∣b0 −
2
3

∣∣∣∣= 1
2
· 2

3
.

Setting n = 2,∣∣∣∣b2 −
2
3

∣∣∣∣= 1
2

∣∣∣∣b1 −
2
3

∣∣∣∣= 1
2
· 1

2
· 2

3
=

1
22 ·

2
3
.

Setting n = 3,∣∣∣∣b3 −
2
3

∣∣∣∣= 1
2

∣∣∣∣b2 −
2
3

∣∣∣∣= 1
2
· 1

22 ·
2
3
=

1
23 ·

2
3
.

And we can continue this way to obtain the general expression∣∣∣∣bn −
2
3

∣∣∣∣= 1
2n ·

2
3

valid for all n ∈ N. If we take limits,

lim
n→∞

∣∣∣∣bn −
2
3

∣∣∣∣= 2
3

lim
n→∞

1
2n = 0 ⇒ lim

n→∞

(
bn −

2
3

)
= 0 ⇒ lim

n→∞
bn =

2
3
.

Problem 3.14
(a) Clearly x1 = 1 > 0. Now, if we assume xn > 0 then also 1+xn > 0 and 1+2xn > 0; therefore

xn+1 =
xn(1+ xn)

1+2xn
> 0,

and the results is proven by induction.

(b) Let us calculate

xn+1 − xn =
xn(1+ xn)

1+2xn
− xn =

��xn +��x
2
n −��xn − �2x2

n

1+2xn
=− x2

n

1+2xn
< 0

because the denominator is positive and x2
n > 0. Hence the sequence decreases monotonically.

(c) Denoning ℓ the limit of xn and taking limits in the recurrence we obtain

ℓ=
ℓ(1+ ℓ)

1+2ℓ
⇒ ℓ(1+2ℓ)= ℓ+ℓ2 ⇒ �ℓ+�2ℓ2 = �ℓ+��ℓ

2 ⇒ ℓ= 0.
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D.4 Series
Problem 4.1

(i) Converges according to the root test:

lim
n→∞

n
√

an = lim
n→∞

n+1
2n−1

=
1
2
< 1.

(ii) Converges because 1
(3n−1)2 ∼ 1

9n2 and
∞

∑
n=1

1
n2 < ∞.

(iii) Converges because 1√
2n4+1

∼ 1√
2n2 and

∞

∑
n=1

1
n2 < ∞.

(iv) Diverges because 1√
n(n+1)

∼ 1
n and

∞

∑
n=1

1
n = ∞.

(v) Since |sinn|⩽ 1 we can write

|sinn|
n2 +n

<
1

n2 +n
.

Since 1
n2+n ∼ 1

n2 and
∞

∑
n=1

1
n2 < ∞ then

∞

∑
n=1

1
n2 +n

< ∞ ⇒
∞

∑
n=1

|sinn|
n2 +n

< ∞

by the comparison test.

(vi) Converges because sin
( 1

n2

)
∼ 1

n2 and
∞

∑
n=1

1
n2 < ∞.

(vii) Diverges because arcsin
(

1√
n

)
∼ 1√

n = 1
n1/2 and

∞

∑
n=1

1
n1/2 = ∞.

(viii) Converges according to the root test:

lim
n→∞

n
√

an = lim
n→∞

n
√

3n−1√
2

=
1√
2
< 1.

Alternatively,

∞

∑
n=1

3n−1
(
√

2)n
= 3

∞

∑
n=1

n
(

1√
2

)n

−
∞

∑
n=1

(
1√
2

)n

.

The first series is arithmetic-geometric and the second is geometric, both with argument
1√
2
< 1.

(ix) Coverges according to the quotient test:

lim
n→∞

an+1

an
= lim

n→∞

(n+1)n+1

3n+1(n+1)!
· 3nn!

nn .

But n!
(n+1)! =

1
n+1 and 3n

3n+1 =
1
3 , so

lim
n→∞

an+1

an
= lim

n→∞

(n+1)n+1

3(n+1)nn =
1
3

lim
n→∞

(n+1)n

nn =
1
3

lim
n→∞

(
1+

1
n

)n

=
e
3
< 1.

(x) Converges according to the root test:

lim
n→∞

n
√

an = lim
n→∞

(
n
√

n−1
)
= 0 < 1.
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(xi) Converges according to the root test:

lim
n→∞

n
√

an =
1
3

lim
n→∞

(
1+

1
n

)n

=
e
3
< 1.

(xii) Converges according to the root test:

lim
n→∞

n
√

an = lim
n→∞

1
logn

= 0 < 1.

(xiii) Converges according to the root test:

lim
n→∞

n
√

an = lim
n→∞

n
√

n2

logn
= 0 < 1.

(xiv) If we rewrite

√
n2 +1−n =

��n2 +1−��n2
√

n2 +1+n
=

1√
n2 +1+n

∼ 1
2n

,

we easily conclude that the series diverges because
∞

∑
n=1

1
n = ∞.

(xv) logn is an ever increasing function of n, so eventually logn > 2. Then nlogn > n2 and
therefore

1
nlogn <

1
n2 .

Since
∞

∑
n=1

1
n2 < ∞ we conclude that the series converges by the comparison test.

(xvi) Let us apply Cauchy’s condensation test: the convergence of the series will be equivalent to
that of

∞

∑
k=1

2k

(log2k)
log2k =

∞

∑
k=1

2k

(k log2)k log2 =
∞

∑
k=1

1
kk log2

(
2

(log2)log2

)k

︸ ︷︷ ︸
=ck

.

If we apply the root test,

lim
k→∞

k
√

ck = lim
k→∞

1
klog2

(
2

(log2)log2

)
= 0,

so the series converges.

(xvii) Since

lim
n→∞

n
√

n = 1,

then

1
n n
√

n
∼ 1

n
.

Therefore the series diverges because
∞

∑
n=1

1
n = ∞.
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(xviii) Since

lim
n→∞

(
n

n−1

)n

= lim
n→∞

(
1+

1
n−1

)n

= e,

the series diverges (in any convergent series the general term must tend to zero).

Problem 4.2 Reducing the general term to a unique fraction,

a
2n−1

− b
2n+1

=
2(a−b)n+a+b

4n2 −1
∼


2(a−b)

n
, if a ̸= b,

a+b
n2 , if a = b.

Clearly the series converges if, and only if, a = b.
Now, in the case a = b, the series is

S =
∞

∑
n=1

(
a

2n−1
− a

2n+1

)
=

∞

∑
n=1

(un −un+1), un =
a

2n−1
.

Then

S = u1 − lim
n→∞

un = a.

Problem 4.3
(i) Applying the root test,

lim
n→∞

n
√

an = lim
n→∞

n
√

n(1+a)e−a = (1+a)e−a.

But ea > 1+a for all a ̸= 0, so (1+a)e−a < 1 for all a ̸= 0 and the series converges. For
a = 0 we have (1+a)e−a = 1 and the series becomes

∞

∑
n=1

n = ∞.

(ii) Using the quotient test,

lim
n→∞

an

an−1
= lim

n→∞

nn

ann!
· an−1(n−1)!
(n−1)n−1 =

1
a

lim
n→∞

(
n

n−1

)n−1

=
e
a
,

so the series converges for a > e and diverges for a < e. What happens for a = e must be
decided with a different argument. But using Stirling,

nn

enn!
∼ nn

en
√

2πnnne−n
∼ 1√

2π
· 1

n1/2 ,

so the series diverges for a = e because
∞

∑
n=1

1
nα = ∞ for any α ⩽ 1.

(iii) It seems we might use the quotient test, but

lim
n→∞

an

an−1
= lim

n→∞

n!en

nn+a ·
(n−1)n−1+a

(n−1)!en−1 = e lim
n→∞

(
n−1

n

)n−1+a

= e lim
n→∞

(
1− 1

n

)n+a−1

= ee−1 = 1,

so it does not decide in this case. Let us use Stirling instead,

n!en

nn+a ∼
√

2πnnne−nen

nn+a =

√
2πn
na =

√
2π

1
na−1/2 ,

so the series converges for a−1/2 > 1 (i.e. a > 3/2) and diverges otherwise.
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(iv) First of all, the series converges trivially for a = 0, because all terms are zero in this case.
For a > 0 we have

an =
an

(1+a)(1+a2) · · ·(1+an)
> 0,

so we can try the quotien test. This amounts to computing the limit

lim
n→∞

an+1

an
=

an+1

(1+a)(1+a2) · · ·(1+an)(1+an+1)

(1+a)(1+a2) · · ·(1+an)

an

= lim
n→∞

a
(1+an+1)

=


a, if a < 1,
1
2 , if a = 1,
0, if a > 1.

Whichever the case, this limit is always smaller than 1, hence the series coverges for any
a ⩾ 0.

Problem 4.4
(i) The series does not converge conditionally because logn < n, so 1/ logn > 1/n, and the

harmonic series diverges. Thus

∞

∑
n=2

1
logn

= ∞

by the comparison test.
It does converge conditionally though, as the Leibniz’s test proves: 1/ logn is a monotonically
decreasing sequence that tends to zero.

(ii) Let us first expand

sin
(

nπ +
1
n

)
= sinnπ︸ ︷︷ ︸

=0

cos
1
n
+ cosnπ︸ ︷︷ ︸

=(−1)n

sin
1
n
= (−1)n sin

1
n
.

Thus this is an alternating series of general term sin(1/n). It is not absolutely convergent
because sin(1/n) ∼ 1/n and the harmonic series diverges. It is conditionally convergent
though, because sin(1/n) is monotonically decreasing toward zero (Leibniz’s test).

(iii) Since (
arctan

1
n

)2

∼ 1
n2 ,

the series converges absolutely.

(iv) Since

lim
n→∞

arctann =
π

2
̸= 0

the series does not converge (not even conditionally).

(v) We can write

√
n2 −1−n =

(√
n2 −1−n

)(√
n2 −1+n

)
√

n2 −1+n
=

n2 −1−n2
√

n2 −1+n
=

−1√
n2 −1+n

,
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so

∞

∑
n=1

(−1)n
(√

n2 −1−n
)
=

∞

∑
n=1

(−1)n+1
√

n2 −1+n
.

Now,

1√
n2 −1+n

∼ 1
2n

,

hence the series does not converge absolutely, but it does conditionally because the general
term (without sign) is monotonically decreasing toward zero (Leibniz’s test).

(vi) Let us rewrite

∞

∑
n=1

(−1)n log
(

n
n+1

)
=

∞

∑
n=1

(−1)n+1 log
(

n+1
n

)
=

∞

∑
n=1

(−1)n+1 log
(

1+
1
n

)
.

As

log
(

1+
1
n

)
∼ 1

n

the series does not converge absolutely, but it does conditionally because the general term
(without sign) is monotonically decreasing toward zero (Leibniz’s test).

(vii) We know that 1− cosεn ∼ ε2
n/2 for any vanishing sequence εn. Then,

1− cos
1
n
∼ 1

2n2

and the series converges absolutely.

(viii) First of all,

en + e−n ∼ en ⇒ log(en + e−n)∼ log(en) = n.

Therefore

1
log(en + e−n)

∼ 1
n

and the series does not converge absolutely because the harmonic series diverges. It doe
conditionally though, because the general term (without sign) is monotonically decreasing
toward zero (Leibniz’s test).

Problem 4.5 There are only three types of series of which we know the sum: geometric, arithmetic-
geometric, and telescoping series. So the point of this exercise is to identify these three types of
series within the proposed ones.

(i) We can write

3n+1 −2n−3

4n = 3
3n

4n −
1
8

2n

4n = 3
(

3
4

)n

− 1
8

(
1
2

)n

.

Therefore

∞

∑
n=0

3n+1 −2n−3

4n = 3
∞

∑
n=0

(
3
4

)n

− 1
8

∞

∑
n=0

(
1
2

)n

= 3
1

1−3/4
− 1

8
1

1−1/2
= 12− 1

4
=

47
4
.
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(ii) This is an arithmetic-geometric series of argument 1/2, so

∞

∑
n=1

n
2n =

1/2
(1−1/2)2 = 2.

(iii) This one is the sum of an arithmetic-geometric and a plain geometric series of argument 1/3,
so

∞

∑
n=0

4n+1
3n = 4

∞

∑
n=0

n
(

1
3

)n

+
∞

∑
n=0

(
1
3

)n

= 4
1/3

(1−1/3)2 +
1

1−1/3
= 3+

3
2
=

9
2
.

Notice that in the arithmetic-geometric series
∞

∑
n=0

nxn =
∞

∑
n=1

nxn because the n = 0 term is
zero.

(iv) If we denote un =
√

n−
√

n+1, then

√
n+2−2

√
n+1+

√
n =

√
n−

√
n+1−

(√
n+1−

√
n+2

)
= un −un+1.

Thus,
∞

∑
n=1

(√
n+2−2

√
n+1+

√
n
)
= u1 − lim

n→∞
un.

Since u1 = 1−
√

2 and

lim
n→∞

un = lim
n→∞

(√
n−

√
n+1

)
= lim

n→∞

−1
√

n+
√

n+1
= 0,

the sum
∞

∑
n=1

(√
n+2−2

√
n+1+

√
n
)
= 1−

√
2.

(v) We can split
√

n+1−
√

n√
n(n+1)

=
����√

n+1√
n����(n+1)

− ��
√

n√
�n(n+1)

=
1√
n
− 1√

n+1
= un−un+1, un =

1√
n
.

Thus
∞

∑
n=1

√
n+1−

√
n√

n(n+1)
= u1 − lim

n→∞
un = 1.

(vi) Splitting

log
[

n(n+2)
(n+1)2

]
= log

(
n

n+1

)
+ log

(
n+2
n+1

)
= log

(
n

n+1

)
− log

(
n+1
n+2

)
= un−un+1,

where we can identify

un = log
(

n
n+1

)
,

we obtain
∞

∑
n=1

log
[

n(n+2)
(n+1)2

]
= u1 − lim

n→∞
un =− log2.
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(vii) We can split the terms of the series into even and odd:

∞

∑
n=0

x⌊
n
2 ⌋y⌊

n+1
2 ⌋ =

∞

∑
k=0

x⌊
2k
2 ⌋y⌊

2k+1
2 ⌋+

∞

∑
k=0

x⌊
2k+1

2 ⌋y⌊
2k+2

2 ⌋ =
∞

∑
k=0

xkyk +
∞

∑
k=0

xkyk+1

=
∞

∑
k=0

(xy)k + y
∞

∑
k=0

(xy)k = (1+ y)
∞

∑
k=0

(xy)k.

Since |xy|< 1, then

∞

∑
k=0

(xy)k =
1

1− xy
.

Therefore

∞

∑
n=0

x⌊
n
2 ⌋y⌊

n+1
2 ⌋ =

1+ y
1− xy

.

(viii) If we give values to n and evaluate cos(2πn/3) we observe a repetitive pattern:

n 0 1 2 3 4 5 6 7 8 · · ·
cos(2πn/3) 1 −1/2 −1/2 1 −1/2 −1/2 1 −1/2 −1/2 · · ·

If n = 3k then cos(2πn/3) = 1, otherwise cos(2πn/3) =−1/2. Therefore

S =
∞

∑
n=0

1
2n cos

2πn
3

=−1
2

∞

∑
n=0

1
2n +

3
2

∞

∑
k=0

1
23k =−1

2

∞

∑
n=0

1
2n +

3
2

∞

∑
k=0

1
8k ,

where we have summed up for all n as if cos(2πn/3) = −1/2 always, and then we have
corrected for the multiples of 3 so that the contribution of each one is 1(= −1/2+ 3/2).
Then

S =−1
2

1
1− 1

2

+
3
2

1
1− 1

8

=−1+
12
7

=
5
7
.

Problem 4.6 The denominator factorises as n(n+1)(n+2), and the elementary fractions expansion
yields

1
n3 +3n2 +2n

=
1
2

(
1
n
− 2

n+1
+

1
n+2

)
=

1
2

(
1
n
− 1

n+1
− 1

n+1
+

1
n+2

)
=

1
2

(
1
n
− 1

n+1

)
︸ ︷︷ ︸

=un

− 1
2

(
1

n+1
− 1

n+2

)
︸ ︷︷ ︸

=un+1

.

Since

lim
n→∞

un = lim
n→∞

1
2

(
1
n
− 1

n+1

)
= 0,

then

∞

∑
n=1

1
n3 +3n2 +2n

= u1 =
1
2

(
1− 1

2

)
=

1
4
.
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Problem 4.7 Let rn be the radius of the circle Cn. The diagonal of Qn, the inscribed square will be
2rn, therefore its side will be

√
2rn. This side is the diameter of Cn+1, the circle inscribed in Qn,

therefore

rn+1 =
rn√

2
, r0 = r,

and the areas of Cn+1 and Cn will be related by

An+1 = πr2
n+1 = π

r2
n

2
=

An

2
, A0 = πr2.

Solving this iterative equation is very easy, because applying successively the iteration,

A1 =
πr2

2
, A2 =

πr2

4
, A3 =

πr2

8
, · · · An =

πr2

2n , · · ·

Thus,
∞

∑
n=0

An = πr2
∞

∑
n=0

1
2n = πr2

∞

∑
n=0

(
1
2

)n

= πr2 1
1−1/2

= 2πr2.

Problem 4.8 Taking the logarithm of the sequence

logan =
1
2

log2+
1
4

log2+
1
8

log2+ · · ·+ 1
2n log2 =

(
1
2
+

1
4
+

1
8
+ · · ·+ 1

2n

)
log2,

therefore

lim
n→∞

logan = log2
∞

∑
n=1

1
2n = log2

∞

∑
n=1

(
1
2

)n

= log2
1
2

1− 1
2

= log2,

which implies lim
n→∞

an = 2.

Problem 4.9
(a) The series can be written as

∞

∑
n=0

bn

10n = b0 +
∞

∑
n=1

bn

10n ,

so we will prove the convergence of the series on the right-hand side. The reason to separate
out the term b0 is because its nature is different from the rest of the coefficientes bn.
Now, this is a series of nonnegative terms and bn ⩽ 9 for all n ∈ N, so

∞

∑
n=1

bn

10n ⩽
∞

∑
n=1

9
10n = 9

∞

∑
n=1

(
1

10

)n

= 9 · 1/10
1−1/10

= 1.

The series converges by the comparison test. Not just that: its maximum value is 1, and it is
reached when all bn = 9.

(b) Take any real number, say π = 3.141592653 . . . . Its decimal expression is an integer num-
ber followed by a decimal point and an infinite sequence of digits (numbers in the set
{0,1,2, . . . ,9}). The meaning of this positional expression is this:

π = 3+1×0.1+4×0.01+1×0.001+5×0.0001+ · · ·= 3+
1
10

+
4

102 +
1

103 +
5

104 + · · ·

In other words, the decimal expression of any real number is a series of the form of the
one we are discussing. The fact that the series converges means that this representation is
meaningful, and not just a formal description of the number. As a matter of fact, the proof
that the series starting in n = 1 can be at most 1 means that the decimal part of the real
number is always in the interval [0,1], as it should.
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(c) This question is asking for the value of the real number 9.999999 . . . Written as a series,

9.999999 · · ·=
∞

∑
n=0

9
10n = 9 · 1

1−1/10
= 10.

So 9.999999 · · ·= 10.

(d) Now we have to calculate the number 1.21212121 . . . :

1.21212121 . . .=
∞

∑
n=0

bn

10n =
∞

∑
k=0

b2k

102k +
∞

∑
k=0

b2k+1

102k+1 =
∞

∑
k=0

1
102k +

∞

∑
k=0

2
102k+1

=
∞

∑
k=0

(
1

100

)k

+
2
10

∞

∑
k=0

(
1

100

)k

=

(
1+

1
5

)
1

1−1/100
=

6
5
· 100

99
=

120
99

.

In other words, 1.21212121 · · · = 120/99, a rational number (its decimal expression is
periodic).

Problem 4.10
(a) The location of the points λn is illustrated in the following figure, which proves graphically

the result:

(b) Since λn > (2n−1)π/2, then λ−2
n < 4/π2(2n−1)2. But

4
π2(2n−1)2 ∼ 1

π2
1
n2 ,

∞

∑
n=1

1
n2 < ∞,

so the series
∞

∑
n=1

λ−2
n < ∞ by the comparison test.

Problem 4.11
(a) The inequality xy ⩽ (x2 + y2)/2 implies

√
anbn =

√
an
√

bn ⩽
an +bn

2
.
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The series

∞

∑
n=1

an +bn

2
=

1
2

(
∞

∑
n=1

an +
∞

∑
n=1

bn

)
< ∞

because the two series of the right-hand side converge. Therefore the series
∞

∑
n=1

√
anbn < ∞

by the comparison test.

(b) If we take bn = 1/n2, the result is a straightforward application of the previous result because
∞

∑
n=1

n−2 < ∞.

Problem 4.12
(a) Let Uk denote the set of positive integers with exactly k digits, none of which is zero. Clearly,

∞

∑
n=1

1
un

=
∞

∑
k=1

∑
u∈Uk

1
u
,

which amounts to nothing but performing the sum grouping those terms corresponding to
integers with the same number of digits. The advantage of doing this is that we know that the
smallest integer in Uk will have all its digits equal to 1, and its largest all its digits equal to 9.
Now, the smallest integer in Uk satisfies

minUk = 111 · · ·1︸ ︷︷ ︸
k digits

> 100 · · ·0︸ ︷︷ ︸
k−1 zeros

= 10k−1,

therefore u > 10k−1 for all u ∈ Uk and

1
u
<

1
10k−1 .

As there are 9k integers in Uk (each of the k digits can be anything between 1 and 9), then

∑
u∈Uk

1
u
< ∑

u∈Uk

1
10k−1 =

9k

10k−1 = 9
(

9
10

)k−1

.

Hence

∞

∑
n=1

1
un

< 9
∞

∑
k=1

(
9

10

)k−1

= 9
∞

∑
k=0

(
9
10

)k

= 9
1

1−9/10
= 90.

(b) We know that

∞

∑
n=1

1
n
=

∞

∑
n=1

1
un︸ ︷︷ ︸

integers with no zeros

+
∞

∑
n=1

1
wn︸ ︷︷ ︸

integers with zeros

.

But the series of the left-hand side is the divergent harmonic series, and we have proven that
the first series of the right-hand side is convergent, so the second one must be divergent.

Problem 4.13
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(a) If we write 2 ·4 ·6 · · ·(2n) = (2 ·1)(2 ·2)(2 ·3) · · ·(2 ·n) we see that there are n factors 2 in
the product, and the remaining factors form the product 1 ·2 ·3 · · ·n = n!, hence the result.
As for the product 1 ·3 ·5 · · ·(2n−1), we need to realise that

(2n)! = 1 ·2 ·3 ·4 ·5 ·6 · · ·(2n−1) · (2n) = 1 ·3 ·5 · · ·(2n−1) ·2 ·4 ·6 · · ·(2n);

hence

1 ·3 ·5 · · ·(2n−1) =
(2n)!

2 ·4 ·6 · · ·(2n)
=

(2n)!
n!2n .

(b) On the one hand,

2 ·4 ·6 · · ·(2n) = n!2n ∼
√

2πne−nnn2n =
√

2πne−n(2n)n,

and on the other hand,

1 ·3 ·5 · · ·(2n−1) =
(2n)!
n!2n ∼

√
4πne−2n(2n)2n
√

2πne−n(2n)n
=
√

2e−n(2n)n.

(c) Let us calculate a few terms:

S2 =− log
1
2
+ log

2
3
= log

(
22

1 ·3

)
,

S4 =− log
1
2
+ log

2
3
− log

3
4
+

4
5
= log

(
22 ·42

1 ·32 ·5

)
,

S6 =− log
1
2
+ log

2
3
− log

3
4
+

4
5
− log

5
6
+ log

6
7
= log

(
22 ·42 ·62

1 ·32 ·52 ·7

)
,

so the pattern seems to hold. Let us prove the result by induction. Assume

S2k = log
(

22 ·44 ·62 · · ·(2k)2

1 ·35 ·52 · · ·(2k−1)2(2k+1)

)
.

We must prove that

S2(k+1) = log
(

22 ·44 ·62 · · ·(2k)2(2k+2)2

1 ·35 ·52 · · ·(2k−1)2(2k+1)2(2k+3)

)
.

In order to do it we notice that

S2(k+1) =S2k − log
(

2k+1
2k+2

)
+ log

(
2k+2
2k+3

)
= log

(
22 ·44 ·62 · · ·(2k)2

1 ·35 ·52 · · ·(2k−1)2(2k+1)

)
+ log

(
(2k+2)2

(2k+1)(2k+3)

)
= log

(
22 ·44 ·62 · · ·(2k)2(2k+2)2

1 ·35 ·52 · · ·(2k−1)2(2k+1)2(2k+3)

)
,

which is what we wanted to prove.

(d) We have

22 ·44 ·62 · · ·(2k)2 ∼ 2πke−2k(2k)2k, 1 ·35 ·52 · · ·(2k−1)2 ∼ 2e−2k(2k)2k,

therefore

22 ·44 ·62 · · ·(2k)2

1 ·35 ·52 · · ·(2k−1)2(2k+1)
∼ �2πk���e−2k

�
��

(2k)2k

�2���e−2k
���
(2k)2k

= πk,
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so

S2k ∼ log
(

πk
2k+1

)
and therefore

lim
k→∞

S2k = log
(

π

2

)
.

{S2k}∞
k=1 is a subsequence of {Sk}∞

k=1. Since the latter converges the limit of the former must
be the same. Hence

lim
k→∞

Sk =
∞

∑
n=1

(−1)n log
(

n
n+1

)
= log

(
π

2

)
.

Problem 4.14
(a) Following the hint, we can rewrite the general term of the series as

an = α0un +α1un+1 +α2un+2 = α0un +(α0 +α1)un+1 −α0un+1 − (α0 +α1)un+2

=
[
α0un +(α0 +α1)un+1

]
−
[
α0un+1 +(α0 +α1)un+2

]
=Un −Un+1,

where Un ≡ α0un +(α0 +α1)un+1. Thus

∞

∑
n=1

(α0un +α1un+1 +α2un+2) = α0u1 +(α0 +α1)u2 − lim
n→∞

[
α0un +(α0 +α1)un+1

]
.

(b) Expanding the rational expression into elementary fractions we find

2n+1
n(n+1)(n+2)

=
1
2

(
1
n
+

2
n+1

− 3
n+2

)
,

so α0 = 1, α1 = 2, α2 =−3 and un = 1/n. Therefore

∞

∑
n=1

2n+1
n(n+1)(n+2)

=
1
2
(u1 +3u2 −0) =

5
4
.

(c) In the general case we can rewrite the general term as

an =α0un +α1un+1 +α2un+2 + · · ·+αk−1un+k−1 +αkun+k

=α0un +( α0 +α1)un+1 +α2un+2 + · · ·+αk−1un+k−1 +αkun+k

− α0un+1

=α0un +(α0 +α1)un+1 +( α0 +α1 +α2)un+2 + · · ·+αk−1un+k−1 +αkun+k

−α0un+1 − (α0 +α1)un+2

= · · ·=
=α0un +(α0 +α1)un+1 +(α0 +α1 +α2)un+2 + · · ·+( α0 + · · ·+αk−2 +αk−1)un+k−1 +αkun+k

−α0un+1 − (α0 +α1)un+2 −·· ·− (α0 +α1 + · · ·+αk−2)un+k−1 ,

and since αkun+k =−(α0 + · · ·+αk−2 +αk−1)un+k, we finally have an =Un −Un+1, where

Un = α0un+(α0+α1)un+1+(α0+α1+α2)un+2+ · · ·+(α0+ · · ·+αk−2+αk−1)un+k−1.
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D.5 Limit of a Function
Problem 5.1

(i) We use the identity xn−an = (x−a)(xn−1+xn−2a+xn−3a2+ · · ·+xan−2+an−1) and obtain

lim
x→a

xn −an

x−a
= lim

x→a

����(x−a)(xn−1 + xn−2a+ xn−3a2 + · · ·+ xan−2 +an−1)

���x−a
= nan−1.

(ii) We use the identity x−a = (
√

x−
√

a)(
√

x+
√

a) and get

lim
x→a

√
x−

√
a

x−a
= lim

x→a
�����√

x−
√

a

������
(
√

x−
√

a) (
√

x+
√

a)
=

1
2
√

a
.

(iii) Here we need to use two identities. Since 64 = 82 = 43,

x−64 =
(√

x−8
)(√

x+8
)
, x−64 =

(
3
√

x−4
)( 3

√
x2 +4 3

√
x+16

)
.

Then,

lim
x→64

√
x−8

3
√

x−4
= lim

x→64

����(x−64)
(

3
√

x2 +4 3
√

x+16
)

����(x−64) (
√

x+8)

(iv) We can rewrite

1−
√

1− x2 =

(
1−

√
1− x2

)(
1+

√
1− x2

)
1+

√
1− x2

=
1− (1− x2)

1+
√

1− x2
=

x2

1+
√

1− x2
.

Therefore

lim
x→0

1−
√

1− x2

x2 = lim
x→0

��x2

��x2
(

1+
√

1− x2
) = lim

x→0

1
1+

√
1− x2

=
1
2
.

(v) We can rewrite

1
(1− x)3 −1 =

1− (1− x)3

(1− x)3 =
1− (1−3x+3x2 − x3)

(1− x)3 =
3x−3x2 + x3

(1− x)3 =
x(3−3x+ x2)

(1− x)3 .

Thus

lim
x→0

1
(1−x)3 −1

x
= lim

x→0
�x(3−3x+ x2)

�x(1− x)3 = lim
x→0

3−3x+ x2

(1− x)3 = 3.

(vi) We can rewrite

1√
x−1

=

√
x+1

(
√

x−1)(
√

x+1)
=

√
x+1

x−1
.

Therefore

lim
x→1

(
1√

x−1
− 2

x−1

)
= lim

x→1

(√
x+1

x−1
− 2

x−1

)
= lim

x→1

√
x+1−2
x−1

= lim
x→1

√
x−1

x−1

= lim
x→1

���x−1
(
√

x+1)����(x−1)
= lim

x→1

1√
x+1

=
1
2
.

Problem 5.2
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(i) If x → 0 we know that sin2x3 ∼ 2x3, so

lim
x→0

(sin2x3)2

x6 = lim
x→0

4��x6

��x6
= 4.

(ii) We can divide numerator and denominator by x:

ℓ= lim
x→0

tanx2

x +2
1+ x

= lim
x→0

x tanx2

x2 +2
1+ x

.

Now,

lim
x→0

tanx2

x2 = lim
x→0

1
cosx2

sinx2

x2 = 1 ⇒ lim
x→0

x
tanx2

x2 = 0.

Thus ℓ= 2.

(iii) Expanding sin(x+a) = sinxcosa+ cosxsina,

ℓ= lim
x→0

sin(x+a)− sina
x

= lim
x→0

sinxcosa− sina(1− cosx)
x

= cosa lim
x→0

sinx
x

− sina lim
x→0

1− cosx
x

= cosa lim
x→0

�x

�x
− sina lim

x→0

x2/2
x︸ ︷︷ ︸

=0

= cosa,

since sinx ∼ x and 1− cosx ∼ x2/2 when x → 0.

(iv) This limit is an indeterminacy 1∞, therefore

ℓ= lim
x→0

(1+ x)1/x = ec, c = lim
x→0

1
x
(1+ x−1) = lim

x→0
�x

�x
= 1.

Thus ℓ= e.

(v) Since log(1−2x)∼−2x and sinx ∼ x when x → 0,

lim
x→0

log(1−2x)
sinx

= lim
x→0

−2�x

�x
=−2.

(vi) This limit is an indeterminacy 1∞, therefore

ℓ= lim
x→0

(1+ sinx)2/x = ec, c = lim
x→0

2
x
(1+ sinx−1) = lim

x→0

2sinx
x

= 2.

Thus ℓ= e2.

(vii) We can factor out esinx in the numerator to obtain

ℓ= lim
x→0

ex − esinx

x− sinx
= lim

x→0
esinx ex−sinx −1

x− sinx
= lim

x→0

ex−sinx −1
x− sinx

,

because lim
x→0

esinx = 1. Now x− sinx → 0 as x → 0, therefore ex−sinx −1 ∼ x− sinx, so

ℓ= lim
x→0

����x− sinx
����x− sinx

= 1.
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(viii) We can rewrite

tanx− sinx
x3 =

sinx
cosx − sinx

x3 =
sinx

x
· 1− cosx

x2 · 1
cosx

.

But sinx ∼ x and 1− cosx ∼ x2/2 as x → 0, so

lim
x→0

tanx− sinx
x3 = lim

x→0
�x

�x
· lim

x→0

��x2/2

��x2
· lim

x→0

1
cosx

= 1 · 1
2
·1 =

1
2
.

(ix) First of all,

lim
x→0

x
sinx

= 1, lim
x→0

sinx
sinx− x

= lim
x→0

sinx
x

sinx
x −1

= ∞,

so the limit is an indeterminacy 1∞. Thus,

ℓ= lim
x→0

( x
sinx

) sinx
sinx−x

= ec, c= lim
x→0

sinx
sinx− x

( x
sinx

−1
)
= lim

x→0

sinx
sinx− x

· x− sinx
sinx

=−1.

Therefore ℓ= 1/e.

(x) Another indeterminacy 1∞, so

lim
x→0

(cosx)1/x2
= ec, c = lim

x→0

1
x2 (cosx−1) = lim

x→0

−��x2/2

��x2
=−1/2.

Therefore ℓ= 1/
√

e.

(xi) The best strategy here is to change the variable to t = x−π , so that x → π becomes t → 0.
Then

sin(x/2) = sin(π/2+ t/2) = sin(π/2)︸ ︷︷ ︸
=1

cos(t/2)+ cos(π/2)︸ ︷︷ ︸
=0

sin(t/2) = cos(t/2).

Then

lim
x→π

1− sin(x/2)
(x−π)2 = lim

t→0

1− cos(t/2)
t2 = lim

t→0

��t2/8

��t2
=

1
8
,

where we have made use of the equivalence, valid for t → 0,

1− cos(t/2)∼ (t/2)2

2
=

t2

8
.

(xii) We first need to manipulate a little this expression. For that purpose we substract and add 1
to the numerator to write

ℓ= lim
x→0

ax −bx

x
= lim

x→0

ax −1−bx +1
x

= lim
x→0

ax −1
x

− lim
x→0

bx −1
x

.

We can calculate separately

ℓa = lim
x→0

ax −1
x

.

Whatever result is yields, the other limit will be the same replacing a by b. But first of all we
must realise that ax = ex loga, so that ax −1 ∼ ex loga −1 ∼ x loga when x → 0. Then

ℓa = lim
x→0

ex loga −1
x

= lim
x→0

�x loga

�x
= loga.

Therefore ℓ= loga− logb = log(a/b).
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Problem 5.3
(i) On the one hand, as x → ∞,

x3 +4x−7 = x3
(

1+
4
x2 −

7
x3

)
∼ x3.

On the other hand,

7x2 −
√

2x6 + x5 = 7x2 − x3

√
2+

1
x
= x3

(
7
x
−
√

2+
1
x

)
∼−

√
2x3.

Therefore

lim
x→∞

x3 +4x−7
7x2 −

√
2x6 + x5

= lim
x→∞

��x3

−
√

2��x3
=− 1√

2
.

(ii) On the one hand, as x → ∞,

x+ sinx3 = x
(

1+
sinx3

x

)
∼ x

because |sinx3|⩽ 1 for all x ∈ R. On the other hand,

5x+6 ∼ 5x.

Therefore

lim
x→∞

x+ sinx3

5x+6
= lim

x→∞

�x
5�x

=
1
5
.

(iii) As x → ∞,√
x+
√

x+
√

x =
√

x

√
1+

1
x

√
x+

√
x =

√
x

√
1+

√
1
x
+

1
x3/2 ∼

√
x,

thus

lim
x→∞

√
x√

x+
√

x+
√

x
= lim

x→∞

�
�
√

x

�
�
√

x
= 1.

(iv) This is an indeterminacy ∞−∞, so we must transform

√
x2 +4x− x =

(√
x2 +4x− x

)(√
x2 +4x+ x

)
√

x2 +4x+ x
=

x2 +4x− x2
√

x2 +4x+ x
=

4x√
x2 +4x+ x

.

Now, as x → ∞,

√
x2 +4x+ x = x

(√
1+

4
x
+1

)
∼ 2x,

therefore

lim
x→∞

(√
x2 +4x− x

)
= lim

x→∞

4x√
x2 +4x+ x

= lim
x→∞

4�x
2�x

= 2.
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(v) To begin with, ex −1 ∼ ex as x → ∞, so

lim
x→∞

ex

ex −1
= lim

x→∞

��ex

��ex = 1.

Now, since lim
x→−∞

ex = 0,

lim
x→−∞

ex

ex −1
= 0.

(vi) When the sign of x is not defined —as in this case that we need to calculate the two limits
when x →±∞— we can write

√
4x2 +1 = 2|x|

√
1+

1
4x2 .

So as x →±∞√
4x2 +1 ∼ 2|x|.

Then,

lim
x→∞

x−2
4x2 +1

= lim
x→±∞

�x
2�x

=
1
2
, lim

x→−∞

x−2
4x2 +1

= lim
x→±∞

�x
−2�x

=−1
2
.

(vii) We can express tanhx in different ways. Each one will be more suitable to calculate one
specific limit. Thus, multiplying or dividing numerator and denominator by ex,

tanhx =
sinhx
coshx

=
ex − e−x

ex + e−x =
e2x −1
e2x +1

=
1− e−2x

1+ e−2x .

So

lim
x→∞

tanhx = lim
x→∞

e2x −1
e2x +1

= lim
x→∞

��e2x

��e2x
= 1,

and

lim
x→−∞

tanhx = lim
x→−∞

1− e−2x

1+ e−2x = lim
x→−∞

−���e−2x

���e−2x =−1,

(viii) We can rewrite

ex

sinhx
=

2ex

ex − e−x =
2e2x

e2x −1
=

2
1− e−2x ,

so,

lim
x→∞

ex

sinhx
= lim

x→∞

2e2x

e2x −1
= lim

x→∞

2��e2x

��e2x
= 2,

and

lim
x→−∞

ex

sinhx
= lim

x→−∞

2
1− e−2x = lim

x→−∞

2
−e−2x = 0.
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(ix) We are facing here an indeterminacy 1∞, therefore

lim
x→±∞

(
2x+7
2x−6

)√
4x2+x−3

= ec,

where

c = lim
x→±∞

√
4x2 + x−3

(
2x+7
2x−6

−1
)
= lim

x→±∞

13
√

4x2 + x−3
2x−6

.

But
√

4x2 + x−3 ∼ 2|x| as x →±∞, we have

lim
x→∞

13
√

4x2 + x−3
2x−6

= lim
x→∞

26�x
2�x

= 13, lim
x→−∞

13
√

4x2 + x−3
2x−6

= lim
x→−∞

−26�x
2�x

=−13.

Problem 5.4
(i) If x is a positive number close to 0 we have ⌊x⌋= 0. If it is negative, ⌊x⌋=−1. Therefore

lim
x→0+

(
1
x

)⌊x⌋
= lim

x→0+

(
1
x

)0

= lim
x→0+

1 = 1,

and

lim
x→0−

(
1
x

)⌊x⌋
= lim

x→0−

(
1
x

)−1

= lim
x→0−

x = 0.

(ii) We will change the variable x to t = 1/x:

lim
x→0+

e1/x = lim
t→+∞

et = ∞, lim
x→0−

e1/x = lim
t→−∞

et = 0.

(iii) We will change the variable x to t = 1/x:

lim
x→0+

1− e1/x

1+ e1/x = lim
t→+∞

1− et

1+ et = lim
t→+∞

−��et

��et =−1,

and

lim
x→0−

1− e1/x

1+ e1/x = lim
t→−∞

1− et

1+ et = 1.
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D.6 Continuity

Problem 6.1
(a) The function g(x) = |x| is a continuous function and | f (x)|= (g◦ f )(x) is continuous because

the composition of continuous functions is a continuous function.
As for the reciprocal, take

f (x) =

{
1, x ⩾ 0,
−1, x < 0.

It is clearly a discontinuous function, however | f (x)|= 1 everywhere, which is continuous.
This example illustrates that from the fact that | f (x)| is continuous one cannot conclude that
f (x) itself is continuous.

(b) We are talking here about a function f : R 7→Q that is continuous. One such function would
necessarily be constant. Let us see why. Suppose that f (x1) = q1 and f (x2) = q2 ̸= q1. Since
the function is continuous it must take all intermediate values between q1 and q2 within the
interval [x1,x2]. But between any two rational numbers there are infinitely many irrational
numbers, so there must exist x ∈ (x1,x2) such that f (x) is irrational. This is a contradiction
and therefore q2 ̸= q1 is not possible.

Problem 6.2
(a) The information that the function is surjective means that x0 and x1 in [0,1] such that f (x0)= 0

and f (x1) = 1. Now, consider the interval [x0,x1] (or [x1,x0], depending on which one is
bigger). The function g(x) = f (x)− x is continuous (the sum of two continuous functions)
and satisfies

g(x0) =−x0, g(x1) = 1− x1.

If x0 = 0 then c = 0 is the point we are looking for. If x1 = 1 then c = 1 is that point. If
none of these two things happen then g(x0)< 0 and g(x1)> 0 and we can apply Bolzano’s
theorem: there must exist c ∈ (0,1) such that g(c) = 0 —which is equivalent to f (c) = c.
Whichever the case, we can conclude that there exists c ∈ [0,1] such that f (c) = c.

(b) Consider the number

µ =
1
n

n

∑
k=1

f (xk).

We can obtain a lower bound to µ by replacing in this expression all the f (xk) by the smallest
one. Thus,

µ ⩾ min
k=1,...,n

f (xk).

Likewise, we can obtain an upper bound replacing them by the largest one:

µ ⩽ max
k=1,...,n

f (xk).

So µ is a value intermediate between two values that the function f takes in the interval [a,b],
therefore, since it is continuous, there must be a number c ∈ [a,b] at which f (c) = µ .

Problem 6.3 Since f is a rational function, all that it is required for it to be continuous is that the
denominator does not vanish within the specified set.
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(a) In this case the denominator must never vanish. If λ = 0 the function f (x) = 1 and trivially
continuous in R. Consider now λ ̸= 0. Since in this case the denominator is a quadratic
polinomial, the requirement that it never vanishes can be rephrase as its two roots being
complex. The condition for that is that the discriminant is negative, so

4λ
2 −4λ < 0 ⇔ λ (λ −1)< 0.

This holds if each factor has a different sign, i.e., if 0 < λ < 1. Therefore the function is
continuous in R provided λ ∈ [0,1).

(b) Any of the values of λ found in the previous item make the function continuous in R —hence
also in [0,1]—, so we just have to check what happens if λ < 0 or if λ ⩾ 1. In any of these
two cases the denominator will have two real roots, so the key point is that none of them lies
within the interval [0,1] where we want f (x) to be continuous.
By solving the quadratic equation we find the two roots as

x1 =
λ +

√
λ (λ −1)
λ

= 1+
√

1−λ−1, x2 =
λ −

√
λ (λ −1)
λ

= 1−
√

1−λ−1.

If λ = 1 both x1 = x2 = 1 and so f is not continuous at x = 1. Thus λ ̸= 1 is required. In
this case x1 > 1, so it will always be outside the interval [0,1]. We can ignore it. On the
contrary, x2 < 1, so it will be also ouside the interval provided x2 < 0. This condition implies√

1−λ−1 > 1, which can only hold if λ < 0.
Summarising, f (x) will be continuous in [0,1] provided λ < 1.

Problem 6.4
(i) Numerator and denominator are continuous functions in R, so this function will be continuous

except when the denominator vanishes. It does when x2 −8x+12 = (x−6)(x−2) = 0, so f
is continuous in R−{2,6}.

(ii) The function is the sum of a plynomial (continuous in R) and the function e3/x. The
exponential is continuous everywhere and the function 3/x too, except for x = 0. Besides,

lim
x→0+

e3/x = ∞,

so f is continous in R−{0}.

(iii) Polynomials are continuous in R and so the tangent except when its argument is an odd
multiple of π/2. This means the points

3x+2 = nπ +
π

2
⇒ x =

nπ −2
3

+
π

6
, n ∈ Z.

f is continuous except at these infinitely many points.

(iv) The polynomial is continuous in R, so f is continuous wherever the argument of the square
root is not negative. This means x2 −5x+6 = (x−3)(x−2)⩾ 0, which happens for x ⩾ 3
or x ⩽ 2. Thus f is continuous in (−∞,2]∪ [3,∞).

(v) arcsinx is only defined for x ∈ [−1,1], but in this region it is continuous because is the inverse
of a continuous function. Thus f is continuous in [−1,1].

(vi) The polynomials are continuous everywhere, so the only requirement is that the argument of
the logarithm is positive, i.e., 8x−3 > 0. Hence f is continuous in (3/8,∞).

(vii) This function represents the decimal part of x and is clearly discontinuous at the integers.
Thus f is continuous in R−Z.
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(viii) The polynomial and the sine function are both continuous everywhere, and so is 1/x except
at x = 0. Function f is defined at x = 0 though, so we must check the definition of continuity
at this specific point. Since |x2 sin(1/x)|⩽ x2 and x2 → 0 as x → 0, then

lim
x→0

f (x) = 0 = f (0)

and f is continuous in R.

(ix) For x > 0 the function is continuous except for x = (2n− 1)π/2, n ∈ N. For x < 0 the
function is always continuous. We must compute the two one-sided limits at x = 0 to check
for continuity at that point. Now,

lim
x→0+

f (x) = lim
x→0+

tanx√
x

= lim
x→0+

x√
x
= lim

x→0+

√
x = 0.

And on the other side,

lim
x→0−

e1/x = lim
t→−∞

et = 0.

Thus,

lim
x→0

f (x) = 0 = f (0),

so f is continuous in R−{(2n−1)π/2 : n ∈ N}.

(x) As close as we like to a rational number there is always an irrational number. As close as we
like to an irrational number there is always a rational number. So, f is discontinuous at every
x ̸= 0. At x = 0 function f (x) is continuous though. The reason is that | f (x)|= |x| → 0 as
x → 0, so

lim
x→0

f (x) = 0 = f (0).

(xi) Each piece of this piecwise function separately is a continuous function, so we just need to
check what happens at the joints. Thus,

lim
x→1+

f (x) = lim
x→1+

(x−1)3 = 0, lim
x→1−

f (x) = lim
x→1−

(|x|− x) = 0,

so

lim
x→1

f (x) = 0 = f (1).

And

lim
x→−1−

f (x) = lim
x→−1+

(|x|− x) = 2, lim
x→−1+

f (x) = lim
x→−1−

sin(πx) = 0,

so f (x) is continuous in R−{−1}.

(xii) The two polynomials defining the function for |x|⩾ 1 are continuous function. In (−1,1) the
function is defined as sgnx+1, which is continuous except at x = 0. We now need to check
the two joints. Thus,

lim
x→1+

f (x) = lim
x→1+

2x = 2, lim
x→1−

f (x) = lim
x→1−

(sgnx+1) = 2,

so

lim
x→1

f (x) = 2 = f (1).
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And

lim
x→−1−

f (x) = lim
x→−1+

(sgnx+1) = 0, lim
x→−1+

f (x) = lim
x→−1−

(x+1)2 = 0,

so

lim
x→−1

f (x) = 0 = f (−1).

Summarising, f (x) is continuous in R−{0}.

(xiii) Each of the three pieces of this piecewise function is continuous (a polynomial or the absolute
value of a polynomial), so we need to check just the joints. Thus,

lim
x→2+

f (x) = lim
x→2+

(4x−5) = 3, lim
x→2−

f (x) = lim
x→2−

|x2 −1|= 3,

so

lim
x→2

f (x) = 3 = f (2).

And

lim
x→−2−

f (x) = lim
x→−2+

|x2 −1|= 3, lim
x→−2+

f (x) = lim
x→−2−

x2 = 4,

so f (x) is continuous in R−{−2}.

(xiv) The functions defining f (x) for |x|> 1 are both polynomials —hence continuous. Within
|x|⩽ 1 it is defined as g(x) = x−⌊x⌋. Now, g(x) = x+1 for all −1 ⩽ x < 0, g(x) = x for all
0 ⩽ x < 1, and g(1) = 0. Thus function f (x) can be redefined as

f (x) =


(x−1)2, x ⩾ 1,
x, 0 ⩽ x < 1,
x+1, x < 0.

All three pieces are continuous (polynomials), so we must look at the joints. So,

lim
x→1+

f (x) = lim
x→1+

(x−1)2 = 0, lim
x→1−

f (x) = lim
x→1−

x = 1,

and

lim
x→0+

f (x) = lim
x→0+

x = 0, lim
x→0−

f (x) = lim
x→0−

(x+1) = 1.

Therefore the f (x) is continuous in R−{0,1}.

Problem 6.5
(i) Denoting f (x) = x2−18x+2, a continuous function in R, we have f (−1) = 21, f (1) =−15,

so Bolzano’s theorem guarantees at least one zero in [−1,1].

(ii) Denoting f (x) = x− sinx−1, a continuous function in R, we have f (0) =−1 and f (π) =
π −1 > 0, so Bolzano’s theorem guarantees at least one zero in [0,π].

(iii) Since ex > 0, we know that ex +1 > 0, so the equation cannot have any solution in R.

(iv) Since −1 ⩽ cosx ⩽ 1 for all x ∈ R, the equation cosx =−2 cannot have any solution in R.

(v) f (x) > 0 for all −2 ⩽ x < 0 and f (x) < 0 for all 0 ⩽ x ⩽ 2. If f (x) where continuous
this would imply that f (0) = 0. But the function is not continuous at x = 0 ( f (0−) = 2,
f (0+) =−2), so there is no solution to the equation f (x) = 0 in [−2,2].
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(vi) Denoting

f (x) =
x3

4
− sin(πx)+3− 7

3
=

x3

4
− sin(πx)+

2
3
,

f (−2) =−4/3 and f (2) = 8/3, so Bolzano’s theorem guarantees at least one zero in [−2,2].

(vii) Clearly |sinx|− sinx ⩽ 2, so the equation |sinx|− sinx = 3 cannot have any solution in R.

Problem 6.6 If f (x) = a2n+1x2n+1 + a2nx2n + · · ·+ a1x+ a0 then, as x → ±∞ we have f (x) ∼
a2n+1x2n+1. Therefore the signs of f (x) for large positive x and large negative x are opposite, so we
can apply Bolzano and conclude that f (x) must be zero at least at one point in R.
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D.7 Derivatives
Problem 7.1

(i)

h′(x) =
f (x) f ′(x)+g(x)g′(x)√

f (x)2 +g(x)2
.

(ii)

h′(x) =
1

1+
(

f (x)
g(x)

)2 ·
f ′(x)g(x)− f (x)g′(x)

g(x)2 =
f (x)g′(x)− f ′(x)g(x)

f (x)2 +g(x)2 .

(iii)

h′(x) = f ′
(
g(x)

)
g′(x)e f (x)+ f

(
g(x)

)
f ′(x)e f (x) =

[
f ′
(
g(x)

)
g′(x)+ f

(
g(x)

)
f ′(x)

]
e f (x).

(iv) First of all h(x) = log
(
g(x)

)
+ log

(
sin f (x)

)
, so

h′(x) =
g′(x)
g(x)

+
f ′(x)cos f (x)

sin f (x)
=

g′(x)
g(x)

+ f ′(x)cot f (x).

(v) We first write f (x)g(x) = exp
{

g(x) log f (x)
}

. Then

h′(x) =
[

g′(x) log f (x)+
g(x) f ′(x)

f (x)

]
exp
{

g(x) log f (x)
}

=

[
g′(x) log f (x)+

g(x) f ′(x)
f (x)

]
f (x)g(x)

= f (x)g(x)g′(x) log f (x)+g(x) f ′(x) f (x)g(x)−1.

(vi)

h′(x) =− 1[
log
(

f (x)+g(x)2
)]2 · f ′(x)+2g(x)g′(x)

f (x)+g(x)2 .

Problem 7.2 In both items we are asked to figure out a function g(x) such that

f (x) =


1, |x|⩽ 1,
0, |x|⩾ 2,
g(x), 1 < x < 2,
g(−x), −2 < x <−1,

is the requested function.
(a) For f (x) to be continuous we need g(x) to be continuous and fulfill the two conditions

g(1) = 1, g(2) = 0. The simplest such function is the straight line g(x) = ax+b, for which
these two conditions imply{

a+b = 1,
2a+b = 0,

⇔ a =−1, b = 2.

Thus g(x) =−x+2.
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(b) Since the derivative of f for |x| < 1 and |x| > 2 is 0, now we need g(x) to satisfy also
g′(1) = g′(2) = 0. These are four equations, so the simplests function would be a polynomial
with four unknown coefficients, namely g(x) = ax3 +bx2 + cx+d. But we can determine
the polynomial more precisely given the information we have. For instance, the fact that
g(1) = 0 means that g(x) = (x− 1)q(x), with q(x) is a second degree polynomial. Given
this expression, g′(x) = q(x)+ (x− 1)q′(x), so 0 = g′(1) = q(1), and this implies q(x) =
(x−1)r(x), with r(x) a lineal polynomial. In other words,

g(x) = (x−1)2(ax+b), g′(x) = 2(x−1)(ax+b)+a(x−1)2.

We can now impose the constraints g(2) = 1, g′(2) = 0, and this leads to{
2a+b = 1,
2(2a+b)+a = 0,

⇔

{
2a+b = 1,
5a+2b = 0,

⇔

{
a =−2,
b = 5.

Thus g(x) = (x−1)2(5−2x).
There is a simpler way to achieve the same result though. It amounts to finding a continuous
and differentiable function with a local maximum and a local minimum. One such function
is cos2 a(x−b). This function reaches a maximum at x = b, where it is 1, and a minimum at
a(x−b) = π/2, where it is 0. If we want the maximum to be at x = 1 then we must choose
b = 1. If we want the minimum to be at x = 2 we must choose a(2−1) = π/2, i.e., a = π/2.
Thus g(x) = cos2 π

2 (x−1).

Problem 7.3
(i) f ′(x) =− c

x2 , therefore

x f ′+ f =−c
x
+

c
x
= 0.

(ii) f ′(x) = tanx+ x(1+ tan2 x), therefore

x f ′− f − f 2 = x tanx+ x2 − x2 tan2 x− x tanx− x2 tan2 x = x2.

(iii) f ′(x) = 3c1 cos3x−3c2 sin3x and f ′′(x) =−9c1 sin3x−9c2 cos3x, therefore

f ′′+9 f =−9c1 sin3x−9c2 cos3x+9(c1 sin3x+ c2 cos3x) = 0.

(iv) f ′(x) = 3c1e3x −3c2e−3x and f ′′(x) = 9c1e3x +9c2e−3x, therefore

f ′′−9 f = 9c1e3x +9c2e−3x −9(c1e3x + c2e−3x) = 0.

(v) f ′(x) = 2c1e2x +5c2e5x and f ′′(x) = 4c1e2x +25c2e5x, therefore

f ′′−7 f ′+10 f = 4c1e2x +25c2e5x −7(2c1e2x +5c2e5x)+10(c1e2x + c2e5x)

= (4−14+10)e2x +(25−35+10)e5x = 0.

(vi) f ′(x) =
c1ex − e−x

c1ex + e−x and

f ′′(x) =
(c1ex + e−x)2 − (c1ex − e−x)2

(c1ex + e−x)2 = 1−
(

c1ex − e−x

c1ex + e−x

)2

,

therefore

f ′′− ( f ′)2 = 1−
(

c1ex − e−x

c1ex + e−x

)2

+

(
c1ex − e−x

c1ex + e−x

)2

= 0.
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Problem 7.4

(i) Differentiating f (x) = arctanx+ arctan
1
x

,

1
1+ x2 +

1

1+
1
x2

(
− 1

x2

)
=

1
1+ x2 −

1
x2 +1

= 0.

Therefore f (x) = c, a constant. To find out which constant we must evaluate f (x) at any
point x > 0, say x = 1. Then f (1) = c = arctan1+ arctan1 = 2π/4 = π/2.

(ii) Differentiating f (x) = arctan
1+ x
1− x

− arctanx,

f ′(x) =
1

1+
(

1+ x
1− x

)2
1− x+1+ x
(1− x)2 − 1

1+ x2 =
2

(1− x)2 +(1+ x)2 −
1

1+ x2

=
2

1−2x+ x2 +1+2x+ x2 −
1

1+ x2 =
2

2+2x2 −
1

1+ x2 = 0.

Therefore f (x) = c, a constant. To find out which constant we must evaluate f (x) at any
point x < 1, say x = 0. Then f (0) = c = arctan1+ arctan0 = π/4.

(iii) Differentiating f (x) = 2arctanx+ arcsin
2x

1+ x2 ,

f ′(x) =
2

1+ x2 +
1√

1−
(

2x
1+ x2

)2

2(1+ x2)−2x ·2x
(1+ x2)2

=
2

1+ x2 +
1+ x2√

(1+ x2)2 −4x2

2(1− x2)

(1+ x2)2 =
2

1+ x2 +
2(1− x2)

(1+ x2)
√
(1− x2)2

=
(∗)

2
1+ x2 +

2(1− x2)

(1+ x2)(x2 −1)
=

2
1+ x2 −

2
1+ x2 = 0,

where in (*) we have used the fact that x ⩾ 1 implies that
√
(1− x2)2 = x2−1 ⩾ 0. Therefore

f (x) = c, a constant. To find out which constant we must evaluate f (x) at any point x ⩾ 1,
say x = 1. Then f (1) = c = 2arctan1+ arcsin1 = 2π/4+π/2 = π .

Problem 7.5 If we calculate f ′(x) = 1+ 1
3(sinx)−2/3 cosx we observe that this function diverges

whenever sinx = 0, i.e., for x = nπ with n ∈ Z. Those are the points where the tangent straight line
is vertical.

Problem 7.6 Let us calculate the derivative on the left, f ′(0−) and on the right, f ′(0+). Since
f (0) = 0,

f ′(0−) = lim
x→0−

f (x)− f (0)
x

= lim
x→0−

1
1+ e1/x = lim

t→−∞

1
1+ et = 1,

f ′(0+) = lim
x→0+

f (x)− f (0)
x

= lim
x→0+

1
1+ e1/x = lim

t→∞

1
1+ et = 0.

So the slope of the tangent on the left is 1 —hence it forms an angle π/4 with the X axis— and that
on the right is 0 —hence it is parallel to the X axis. Thus the angle between both tangents is π/4.

Problem 7.7 The domain of this function requires that x+2 ⩾ 0 and −1 ⩽ x+2 ⩽ 1 be satisfied
simultaneously. This happens for x such that 0 ⩽ x+2 ⩽ 1, in other words, for x ∈ [−2,−1]. Within
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this domain the function is continuous because so are x+2,
√

x, and cosx —hence its inverse— in
their respective domains.

About differentiability,

f ′(x) =
arccos(x+2)

2
√

x+2
−

√
x+2√

1− (x+2)2
=

arccos(x+2)
2
√

x+2
−
√

x+2
−3−4x− x2 ,

which diverges when x =−2 and is defined only if x2 +4x+3 = (x+1)(x+3)< 0. This happens
for x ∈ (−3,−1), an interval that overlaps with the domain excluding the point x =−1. Thus the
derivative exits only for x ∈ (−2,−1).

Problem 7.8 Function f (x) will be differentiable if and only if αx2 − x+3 ⩾ 0 for all x ∈ R or
αx2 − x+3 ⩽ 0 for all x ∈ R. The reason is that in either of these two cases the parabola does not
cross the X axis or it just touches the axis at one point (it is only if the parabola crosses the axis that
its absolute value generates points with no derivative). The condition for this to happen is that the
discriminant of the parabola be ⩽ 0, i.e., 1−12α ⩽ 0. Thus α ⩾ 1/12.

Problem 7.9 Function f (x) is even, so it is enough to make sure that it is continuous and differen-
tiable at x = c. The function will be continuous at x = c if

a+bc2 =
1
c
.

On the other hand, for x ⩾ 0 the function is

f (x) =


a+bx2, 0 ⩽ x ⩽ c,

1
x
, x > c,

so its derivative will be

f ′(x) =


2bx, 0 ⩽ x < c,

− 1
x2 , x > c,

and therefore f (x) will be differentiable at x = c if

2bc =− 1
c2 ⇔ b =− 1

2c3 .

And from the previous equation we obtain

a =
1
c
−bc2 =

1
c
+

1
2c

=
3
2c

.

So for |x|< c the function is defined as

f (x) =
1
2c

(
3− x2

c2

)
.

Problem 7.10
(a) The two pieces defining this function are continuous and differentiable within their respective

sets, so the only critical point is x = 1. Let us first check the continuity at this point. So

lim
x→1+

f (x) = lim
x→1+

1
x
= 1, lim

x→1−
f (x) = lim

x→1−

3− x2

2
= 1,
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hence

lim
x→1

f (x) = 1 = f (1),

which proves that the function is continuous also at this point. As for differentiability,

f ′(1+) = lim
x→1+

f (x)− f (1)
x−1

= lim
x→1+

1
x −1
x−1

= lim
x→1+

1− x
x(x−1)

=−1,

f ′(1−) = lim
x→1−

f (x)− f (1)
x−1

= lim
x→1−

3−x2

2 −1
x−1

= lim
x→1−

1− x2

2(x−1)
= lim

x→1−

(1− x)(1+ x)
2(x−1)

= lim
x→1−

−(1+ x)
2

=−1,

so f is differentiable at this point and f ′(1) = −1. Summarising, f is continuous and
differentiable in R.

(b) Given that f is differentiable in R, there must exist c ∈ (0,2) such that

f (2)− f (0) = f ′(c)(2−0) ⇔ 1
2
− 3

2
= 2 f ′(c) ⇔ −1

2
= f ′(c).

We do not know whether c is in (0,1) or in [1,2), so we have to check both. We have

f ′(x) =


−x, x < 1,

− 1
x2 , x ⩾ 1.

Assuming 0 < c < 1, the equation becomes

−1
2
=−c ⇒ c =

1
2
.

Assuming 1 ⩽ c < 2, the equation becomes

−1
2
=− 1

c2 ⇒ c =
√

2.

Problem 7.11 The derivative is

f ′(x) =− 2
3x1/3 ,

so f is not differentiable at x = 0. This is the hypothesis that is not met.

Problem 7.12
(i) Assume that a ⩽ x1 < x2 < · · · < xk−1 < xk ⩽ b are the k points where f vanishes in [a,b].

In any of the k−1 intervals [x j,x j+1], with j = 1,2, . . . ,k−1, we can apply Rolle’s theorem
and conclude that there must be at least a point in each of them where f ′ vanishes. This
means that f ′ vanishes at least k−1 times in (a,b) —hence in [a,b].

(ii) We can recursively apply the previous result and obtain

f vanishes n+1 times in [a,b] ⇒ f ′ vanishes n times in [a,b]

f ′ vanishes n times in [a,b] ⇒ f ′′ vanishes n−1 times in [a,b]

f ′′ vanishes n−1 times in [a,b] ⇒ f ′′′ vanishes n−2 times in [a,b]
...

f (n−1) vanishes 2 times in [a,b] ⇒ f (n) vanishes 1 time in [a,b].
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Problem 7.13 Let us consider the function f (x) = x2/3 in the interval [26,27]. By the mean value
theorem

272/3 −262/3 =
2

3c1/3 , 26<c<27,

so

262/3 = 9− 2
3c1/3 , 26<c<27.

Approximating c ≈ 27 we obtain

262/3 ≈ 9− 2
9
=

79
9

= 8.777777 . . .

The exact value is 8.776382955 . . .
Taking now g(x) = logx in [1,3/2] we can write

log(3/2) =
1
c

(
3
2
−1
)
=

1
2c

, 1 < c <
3
2
.

From this we conclude

1
3
< log(3/2)<

1
2

⇔ 0.3333333 · · ·< log(3/2)< 0.5.

The exact vale is 0.405465108 . . .

Problem 7.14
(i) We can obtain the limit

ℓ= lim
x→0

ex − sinx−1
x2

by applying l’Hôpital’s rule twice, as

ℓ= lim
x→0

ex + sinx
2

=
1
2
.

(ii) We can obtain the limit

ℓ= lim
x→0

log |sin7x|
log |x|

by applying l’Hôpital’s rule as

ℓ= lim
x→0

7cos7xsinx
sin7xcosx

= lim
x→0

7cos7x
cosx

lim
x→0

sinx
sin7x

= 7 lim
x→0

sinx
sin7x

,

and then again,

ℓ= 7 lim
x→0

cosx
7cos7x

= 1.

(iii) Writing the limit as

ℓ= lim
x→1+

log(x−1)
1

logx
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it becomes a ∞/∞ indeterminacy, which we can sort out using l’Hôpital’s rule. Thus,

ℓ= lim
x→1+

1
x−1

− 1
x(logx)2

= lim
x→1+

−x(logx)2

x−1
=− lim

x→1+

(logx)2

x−1
.

And we can solve this 0/0 indeterminacy by applying l’Hôpital’s rule once more to obtain

− lim
x→1+

2logx
x

= 0.

Therefore ℓ= 0.

(iv) This limit can be written as

ℓ= lim
x→∞

x1/x = lim
x→∞

elogx/x = exp
{

lim
x→∞

logx
x

}
.

This new limit can be obtain by applying l’Hôpital’s rule as

lim
x→∞

1
x
= 0,

therefore ℓ= 1.

(v) The limit

ℓ= lim
x→0

(1+ x)1+x −1− x− x2

x3

is a 0/0 indeterminacy, which can be solved by applying l’Hôpital’s rule three times. The
denominator becomes then 6. As for the numerator, (1− x− x2)′′′ = 0, so we have to take
three derivatives of g(x) = (1+ x)1+x = e(1+x) log(1+x). Thus,

g′(x) = g(x)
[

log(1+ x)+1
]
,

g′′(x) = g(x)
[

log(1+ x)+1
]2
+

g(x)
1+ x

,

g′′′(x) = g(x)
[

log(1+ x)+1
]3
+3g(x)

log(1+ x)+1
1+ x

− g(x)
(1+ x)2 .

Therefore

ℓ=
1
6

lim
x→0

{
g(x)

[
log(1+ x)+1

]3
+3g(x)

log(1+ x)+1
1+ x

− g(x)
(1+ x)2

}
=

1
2
.

(vi) We can change the variable x to t = 1/x. Then

ℓ= lim
x→∞

x
(

tan
2
x
− tan

1
x

)
= lim

t→0+

tan2t − tan t
t

.

We can solve this 0/0 indeterminacy by applying l’Hôpital’s rule to obtain

ℓ= lim
t→0+

(
2

cos2 2t
− 1

cos2 t

)
= 1.
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Problem 7.15 First of all, h(0) = 0 because if h(0) = c ̸= 0, then

lim
x→0

f (x) = lim
x→0

h(x)
x2 =±∞,

so f would not be continuous at x = 0.
Now, since the limit above is a 0/0 indeterminacy we can try to apply l’Hôpital’s rule and

calculate

lim
x→0

h′(x)
2x

.

As h is twice differentiable h′(x) → h′(0) as x → 0. For the same reason as above h′(0) = 0,
otherwise it would be ±∞ and

lim
x→0

h(x)
x2 =±∞,

again in contradiction with the fact that f is continuous at x = 0.
Finally, once stablished that h′(0) = 0 we can rewrite

lim
x→0

h′(x)
2x

=
1
2

lim
x→0

h′(x)−h′(0)
x

=
h′′(0)

2
.

This limit has to be 1 if f is to be continuous at x = 0, thus h′′(0) = 2.

Problem 7.16
(i) We can change the variable x to t = 1/x to tranform the limit

ℓ= lim
x→∞

x
[(

1+
1
x

)x

− e
]
= lim

t→0+

(1+ t)1/t − e
t

.

Since (1+ t)1/t → e as t → 0+ we face a 0/0 indeterminacy. Let us apply l’Hôpital’s rule
and calculate

ℓ= lim
t→0+

(1+ t)1/t
(

1
t(1+ t)

− log(1+ t)
t2

)
= e lim

t→0+

t − (1+ t) log(1+ t)
t2(1+ t)

= e lim
t→0+

t − (1+ t) log(1+ t)
t2 ,

another 0/0 indeterminacy that can be solved by applying l’Hôpital’s rule again twice. Doing
it once we get

ℓ=− e
2

lim
t→0+

log(1+ t)
t

,

and the second time we obtain

ℓ=− e
2

lim
t→0+

1
1+ t

=− e
2
.

(ii) Taking logarithms in the limit we can calculate it as

logℓ= lim
x→∞

[
x2 log

(
1+

1
x

)
− x
]
.

Now we change the variable x to t = 1/x and write

logℓ= lim
t→0+

log(1+ t)− t
t2 ,
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a 0/0 indeterminacy that can be solved by applying l’Hôpital’s. Thus,

logℓ= lim
t→0+

1
1+t −1

2t
=−1

2
lim

t→0+

t
t(1+ t)

=−1
2

lim
t→0+

1
1+ t

=−1
2
.

Therefore ℓ= 1/
√

e.

(iii) This is an indeterminacy 1∞ which can be calculated as

ℓ= lim
x→∞

(
21/x +181/x

2

)x

= ec, c = lim
x→∞

x

(
21/x +181/x

2
−1

)
.

Now we change the variable x to t = 1/x and write

c =
1
2

lim
t→0+

2t +18t −2
t

=
1
2

(
lim

t→0+

2t −1
t

+ lim
t→0+

18t −1
t

)
=

1
2

(
d
dt

2t
∣∣∣
t=0

+
d
dt

18t
∣∣∣
t=0

)
=

1
2
(log2+ log18) = log

√
36 = log6.

Therefore ℓ= 6.

(iv) This limit generalises the previous one. Again,

ℓ= lim
x→∞

(
1
p

p

∑
k=1

a1/x
k

)x

= ec, c = lim
x→∞

x

(
1
p

p

∑
k=1

a1/x
k −1

)
.

Now we change the variable x to t = 1/x and write

c =
1
p

lim
t→0+

∑k at
k − p
t

=
1
p

p

∑
k=1

lim
t→0+

at
k −1

t
=

1
p

p

∑
k=1

d
dt

at
k

∣∣∣
t=0

=
1
p

p

∑
k=1

logak

= log
[
(a1a2 · · ·ap)

1/p
]
.

Therefore ℓ= (a1a2 · · ·ap)
1/p.

Problem 7.17
(a) Suppose f (0) = c ̸= 0. Then

ℓ= lim
x→0

f (2x3)

5x3 =±∞,

in contradiction with the hypothesis. Thus f (0) = 0.

(b) Introduce the variable t = 2x3. Then t → 0 as x → 0. Thus,

1 = lim
t→0

f (t)
5t/2

=
2
5

lim
t→0

f (t)− f (0)
t

=
2
5

f ′(0),

hence f ′(0) = 5/2.

(c) Applying l’Hôpital’s rule, the limit

ℓ= lim
x→0

( f ◦ f )(2x)
f−1(3x)

can be obtained through the derivatives of the functions at the numerator and denominator.
But

d
dx

( f ◦ f )(2x) =
d
dx

f
(

f (2x)
)
= f ′

(
f (2x)

)
f ′(2x)2,

d
dx

f−1(3x) =
3

f ′
(

f−1(3x)
) ,
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and since f (0) = 0 also f−1(0) = 0. Then

ℓ= lim
x→0

2 f ′(2x) f ′
(

f (2x)
)

f ′
(

f−1(3x)
)

3
=

2 f ′(0) f ′
(

f (0)
)

f ′
(

f−1(0)
)

3
=

2 f ′(0)3

3

=
2
3
· 53

23 =
125
12

.

Problem 7.18 Since g(x)→ f−1(1) = 0 as x → 0, this limit is a 0/0 indeterminacy. Thus we can
apply l’Hôpital’s rule to calculate it as

ℓ= lim
x→0

(
ex + cosxe−sinx) f ′

(
f−1(x+1)

)
= 2 f ′(0).

All that remains is to compute f ′(0). We can do that evaluating the equation defining f (x) at x = 0.
This yields,

e− f (0) f ′(0) = 2 ⇒ f ′(0) = 2e,

since f (0) = 1. Thus ℓ= 4e.

Problem 7.19
(a) f is continuous in R because so are polynomials and the absolute value function. As for

differentiability, we can express f in a piecewise description as

f (x) =

{
4x3 − x4 −1, 0 < x < 4,
x4 −4x3 −1, otherwise,

separating out the cases where x3(x−4)< 0 from those where x3(x−4)⩾ 0. Both pieces
are differentiable (they are polynomials), so we must check the joints. Since

f ′(x) =

{
12x2 −4x3, 0 < x < 4,
4x3 −12x2, x < 0 or x > 4,

we have f ′(0−) = f ′(0+) = 0, so f is differentiable at x = 0, but f ′(4−) = −64, and
f ′(4+) = 64, so f is not differentiable at x = 4.
Summarising, f is continuous in R and differentiable in R−{4}.

(b) First of all we need to look where f ′(x) = 0. This means

4x2(3− x) = 0 ⇒ x = 0, x = 3.

If x < 0 but close to x = 0 then f ′(x) = 4x2(x− 3) < 0; if x > 0 but close to x = 0 then
f ′(x) = 4x2(3− x) > 0. Therefore f has a local minimum at x = 0. On the other hand, if
x < 3 then f ′(x) = 4x2(3− x)> 0 and if x > 3 then f ′(x) = 4x2(3− x)< 0, so f has a local
maximum at x = 3.
But this is not the whole story because f is not differentiable at x = 4 —hence x = 4 cannot
be a solution to f ′(x) = 0. We need to check this point separately. Now, f (4) =−1, but for
any x ̸= 4 near x = 4 we have f (x) = |x3(x−4)|−1 >−1, so x = 4 is a local minimum.
Finally, −1 is the smallest value that f (x) can take, and f (0) = f (4) =−1, so both, at x = 0
and at x = 4, function f (x) reaches its absolute minimum. There is no absolute maximum
though, because the function grows indefinitely as x →±∞.

(c) f (0) =−1 and f (1) = 2, so Bolzano’s theorem guarantees that there is at least one solution
to f (x) = 0 in (0,1). On the other hand, in (0,1) we have f ′(x) = 4x2(3− x) > 0 so the
function is monotonically increasing. Therefore the solution is unique.
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Problem 7.20
(a) The amount of material is proportional to the surface of the can, which is given by the formula

S = 2πr2 +2πrh. But cans have all the same volume V = πr2h, so h =V/πr2 and thefore

S = 2π

(
r2 +

V
πr

)
.

Minimising the surface amounts to minimising the function

f (r) = r2 +
V
πr

.

This is a differentiable function for all r > 0, so the minimum is reached at a solution of

f ′(r) = 2r− V
πr2 = 0 ⇒ r3 =

V
2π

⇒ r =
(

V
2π

)1/3

and

h =
V

πr2 =

(
4V
π

)1/3

.

(b) Lead is proportional to the surface. If the side of the square base is a and the height h, then
the surface will be S = a2 +4ah. The volume constraint, 32 = a2h, implies h = 32/a2, so

S = a2 +
128

a
= f (a).

Now,

f ′(a) = 2a− 128
a2 ⇒ a3 = 64 ⇒ a = 4, h = 2.

(c) We can eliminate y = 20− x, so the function to maximise is

f (x) = x2(20− x)3.

Now,

f ′(x) = 2x(20−x)3−3x2(20−x)2 = x(20−x)2(40−2x−3x) = 5x(20−x)2(8−x) = 0.

The two solutions x = 0, x = 20 clearly minimise the function. The maximum is then x = 8
and y = 12.

(d) If x is half the horizontal side of the rectangle, then

y = b

√
1− x2

a2

is half the vertical side. Then the area of the rectangle is

A = 4xy = 4bx

√
1− x2

a2 .

Maximising this area is tantamount to maximising

f (x) =
A2

16b2 = x2 − x4

a2 ,

which means solving the equation

f ′(x) = 2x− 4x3

a2 = 2x
(

1− 2x2

a2

)
= 0.

One solution is x = 0 —which is obviously not the right one— and the other two solutions
are x =±a/

√
2. Clearly the one that maximises the area has to be x = a/

√
2.



D.7 Derivatives 241

(e) The picture illustrates how to construct the described triangle:

We can select an arbitrary point on the parabola, (x0,6− x2
0). The slope of the tangent at

that point will be m =−2x0 (obtained differentiating 6− x2), so the equation of the tangent
straight line will be

y = 6− x2
0 −2x0(x− x0) = 6+ x2

0 −2x0x.

Now, this straight line meets the Y axis at A(0,6+ x2
0), and the X axis at B

(
(6+ x2

0)/2x0,0
)
,

so the area of the triangle will be

A =
(6+ x2

0)
2

4x0
=

9
x0

+3x0 +
x3

0
4

= f (x0).

Minimising the area means solving

f ′(x0) =− 9
x2

0
+3+

3x2
0

4
=

3(x4
0 +4x2

0 −12)
4x2

0
=

3(x2
0 +6)(x2

0 −2)
4x2

0
= 0.

The only meaningful solution to this equation is x0 =
√

2.

(f) The area of the triangle at the base is a2
√

3/4, and that of the lateral rectangles 3ah, so the
total cost will be

C = 0.20×a2
√

3
4

+0.10×3ah = 0.10×
√

3
(

a2

2
+
√

3ah
)
.

Since 128 = ha2
√

3/4 we get
√

3ah = 512/a, so C = 0.10×
√

3 f (a), where

f (a) =
a2

2
+

512
a

.

The value of a minimising cost will be a solution of

f ′(a) = a− 512
a2 = 0 ⇒ a3 = 512 ⇒ a = 8.
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(g) For a given 0 ⩽ x ⩽ 2 the corresponding y on the circunference is given by

y =
√

1− (x−1)2 =
√

x(2− x).

Thus, the three points of the triangle are A(0,0), B
(

x,
√

x(2− x)
)

, C(x,0). The area of

the triangle will then be S = x
√

x(2− x)/2 = x3/2(2− x)1/2/2. So maximising this area is
tantamount to maximising

f (x) = 4S2 = x3(2− x) = 2x3 − x4.

The corresponding x will be a solution of

f ′(x) = 6x2 −4x3 = 2x2(3−2x) = 0.

The only meaningful solution is x = 3/2.

(h) Triangle similarity implies

y0 +β

x0 +α
=

β

x0
⇒ x0y0 +�

�βx0 =�
�βx0 +βα ⇒ β =

x0y0

α
.

(i) The length of segment AB is

ℓ=
√
(x0 +α)2 +(y0 +β )2 =

√
(x0 +α)2 +

(
y0 +

x0y0

α

)2
=

√
(x0 +α)2 +

y2
0

α2 (x0 +α)2

= (x0 +α)

√
1+

y2
0

α2 .

So minimising ℓ is tantamount to minimising

f (α) = ℓ2 = (x0 +α)2
(

1+
y2

0
α2

)
.

Differentiating

f ′(α) = 2(x0 +α)

(
1+

y2
0

α2

)
−2(x0 +α)2 y2

0
α3 = 2(x0 +α)

(
1+

�
�
�y2
0

α2 −
x0y2

0
α3 −

�
�
�y2
0

α2

)

= 2(x0 +α)

(
1−

x0y2
0

α3

)
= 0.

This equation has the solution

α =
(
x0y2

0
)1/3

, β =
x0y0

α
=
(
x2

0y0
)1/3

.

(ii) The sum of segments OA and OB is

f (α) = x0 +α + y0 +β = x0 + y0 +α +
x0y0

α
.

Differentiating

f ′(α) = 1− x0y0

α2 = 0 ⇒ α = (x0y0)
1/2, β =

x0y0

α
= (x0y0)

1/2 .
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(iii) The area of the triangle is

A =
1
2
(x0+α)(y0+β ) =

1
2
(x0+α)

(
y0 +

x0y0

α

)
=

y0

2
(x0 +α)2

α
=

y0

2

(
x2

0
α

+2x0 +α

)
.

Minimising the area implies minimising

f (α) =
2A
y0

=
x2

0
α

+2x0 +α.

Differentiating

f ′(α) =−
x2

0
α2 +1 = 0 ⇒ α = x0, β =

x0y0

α
= y0.

Problem 7.21
(a) For a = 1 the inequality becomes a trivial equality. For a > 1 take the function

f (x) = (1+ x)a −1−ax.

Differentiating,

f ′(x) = a(1+ x)a−1 −a = 0 ⇒ (1+ x)a−1 = 1 ⇒ x = 0,

so x = 0 is a local extremum. From the second derivative,

f ′′(x) = a(a−1)(1+ x)a−2 ⇒ f ′′(0) = a(a−1)> 0

we conclude that x = 0 is a minimum —the absolute minimum if x > −1—, therefore
f (x)⩾ f (0) = 0 for every x >−1. This means

(1+ x)a ⩾ 1+ax.

(b) Take the function

f (x) = ex −1− x.

Differentiating,

f ′(x) = ex −1 = 0 ⇒ x = 0,

so x = 0 is a local extremum. From the second derivative,

f ′′(x) = ex ⇒ f ′′(0) = 1 > 0,

we conclude that x = 0 is a minimum —which is absolute in this case because there is no
other one in R. Therefore f (x)⩾ f (0) = 0 for every x ∈ R, i.e.,

ex ⩾ 1+ x.

(c) Take the function

f (x) = log(1+ x)− x
1+ x

.

Differentiating,

f ′(x) =
1

1+ x
− 1

(1+ x)2 =
x

(1+ x)2 = 0 ⇒ x = 0,
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so x = 0 is a local extremum. From the second derivative,

f ′′(x) =− 1
(1+ x)2 +

2
(1+ x)3 =

1− x
(1+ x)3 ⇒ f ′′(0) = 1 > 0,

we conclude that x = 0 is a minimum —which is absolute in this case because there is no
other one when x >−1. Therefore f (x)⩾ f (0) = 0 for every x >−1. This proves the first
inequality. As for the second, take

g(x) = x− log(1+ x)

and differentiate:

g′(x) = 1− 1
1+ x

=
x

1+ x
= 0 ⇒ x = 0,

so x = 0 is a local extremum. From the second derivative,

f ′′(x) =
1

(1+ x)2 ⇒ f ′′(0) = 1 > 0,

we conclude that x = 0 is a minimum —again absolute—, so f (x) ⩾ f (0) = 0 for every
x >−1. This proves the second inequality.

Problem 7.22
(a) Take the function

f (x) =
logx

x
.

Differentiating,

f ′(x) =
1− logx

x2 = 0 ⇒ x = e.

From the second derivative,

f ′′(x) =
2logx−3

x3 ⇒ f ′′(e) =− 1
e3 < 0,

so x = e is the absolute maximum for x > 0. Thus f (x)< f (e) for all x > 0, x ̸= e, which
means

logx
x

<
1
e
.

(b) Multiplying the inequality by ex it becomes e logx < x, and taking exponentials

xe < ex.

Problem 7.23
(i) The polynomial f (x) = x7 +4x−3 ∼ x7 as x →±∞, so f (x)→ ∞ as x → ∞ and f (x)→−∞

as x → −∞. Thus f (x) = 0 at at least one point. What we need to know is to figure out
how many times f (x) bends up and down and from that determining the number of times it
crosses the X axis. Now,

f ′(x) = 7x6 +4 > 0

for all x ∈ R, therefore f (x) increases monotonically. The conclusion is that there is only
one solution.
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(ii) Similarly to the previous exercise, f (x) = x5 − 5x+ 6 ∼ x5 as x → ±∞, so f (x) → ∞ as
x → ∞ and f (x)→−∞ as x →−∞. Thus f (x) = 0 at at least one point. Now,

f ′(x) = 5x4 −5 = 0 ⇒ x =±1,

and from the second derivative

f ′′(x) = 20x3 ⇒ f ′′(1) = 20 > 0, f ′′(−1) =−20 < 0,

so we conclude that x=−1 is a local minimum and x= 1 a local maximum. But f (1) = 2> 0
and f (−1) = 10 > 0, so the local minimum is above the X axis. In conclusion, there is only
one solution.

(iii) f (x) = x4 −4x3 −1 ∼ x4 as x →±∞, so f (x)→ ∞ when x →±∞. It is not guaranteed that
there is even a single solution. From the derivative,

f ′(x) = 4x3 −12x2 = 4x2(x−3) = 0

we conclude that x = 0 and x = 3 may be extrema. f ′(x)< 0 around x = 0 (at both sides), so
it is an inflection point. However, close to x = 3 we have f ′(x)< 0 for x < 3 and f ′(x)> 0
for x > 3, so at x = 3 the polynomial reaches its absolute minimum f (3) =−28. Since this
value is below the X axis, f (x) has to cross it twice. Therefore there are two solutions to the
equation.

(iv) The function f (x) = 2x−1− sinx ∼ 2x as x →±∞, so f (x)→ ∞ as x → ∞ and f (x)→−∞

as x →−∞. Thus f (x) = 0 at at least one point. Now,

f ′(x) = 2− cosx > 0 for all x ∈ R,

so f (x) monotonically increases. Therefore there is only one solution.

(v) Let us first rewite the equation. Taking logarithms the equation becomes

f (x) = x logx− log2 = 0.

f (1) =− log2 < 0 and f (x)→ ∞ as x → ∞, so f (x) vanishes at one point at least. Now,

f ′(x) = logx+1,

which is f ′(x)< 0 for x < 1/e and f ′(x)> 0 for x > 1/e. In other words, f ′(x)> 0 in the
interval [1,∞), so f (x) monotonically increases in that interval. Therefore there is only one
solution.

(vi) Writing the equation

f (x) = x2 + logx = 0

we have f (1) = 1 > 0, and f (x) ∼ x2 as x → ±∞, so f (x) → ∞ as x → ±∞. There is no
guarantee that the equation has even a single solution in that interval. From the derivative,

f ′(x) = 2x+
1
x
=

2x2 +1
x

we conclude that f ′(x)> 0 in (1,∞), so f (x) increases monotonically. Therefore the equation
has no solution in that interval.
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D.8 Taylor Expansions
Problem 8.1

(i) There are two ways to solve these exercises. The first one amounts to applying Taylor’s
formula for Pn,a(x). For the case of f (x) = ex sinx we have

f (x) = ex sinx, f (0) = 0,

f ′(x) = ex(sinx+ cosx), f ′(0) = 1,

f ′′(x) = 2ex cosx, f ′′(0) = 2,

f ′′′(x) = 2ex(cosx− sinx), f ′′′(0) = 2,

f (4)(x) =−4ex sinx, f (4)(0) = 0,

f (5)(x) =−4ex(sinx+ cosx), f (5)(0) =−4,

thus

P5,0(x) = x+ x2 +
x3

3
− x5

30
.

The alternative way —the one we will follow here— amounts to relying upon known Taylor
expansions and operate with them. For instance in this case we know that when x → 0

ex = 1+ x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+o(x5), sinx = x− x3

6
+

x5

120
+o(x5),

therefore, multiplying the two expressions —and collecting any power higher than x5 as
o(x5)— we obtain

ex sinx =
[

1+ x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+o(x5)

][
x− x3

6
+

x5

120
+o(x5)

]
=

[
x− x3

6
+

x5

120
+o(x5)

]
+

[
x2 −

�
�
�x4

6
+o(x5)

]
+

[
x3

2
− x5

12
+o(x5)

]

+

[
�
�
�x4

6
+o(x5)

]
+

[
x5

24
+o(x5)

]
= x+ x2 +

(
1
2
− 1

6

)
x3 +

(
1

120
+

1
24

− 1
12

)
x5 +o(x5)

= x+ x2 +
x3

3
− x5

30
+o(x5),

and we get to the same result.

(ii) Now

e−x2
= 1−x2+

x4

2
+o(x5), cos2x= 1− (2x)2

2
+
(2x)4

24
+o(x5)= 1−2x2+

2
3

x4+o(x5),

so multiplying and collecting equal powers,

e−x2
cos2x =

[
1− x2 +

x4

2
+o(x5)

][
1−2x2 +

2
3

x4 +o(x5)

]
=1− (1+2)x2 +

(
1
2
+2+

2
3

)
x4 +o(x5)

=1−3x2 +
19
6

x4 +o(x5).
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Thus

P5,0(x) = 1−3x2 +
19
6

x4.

(iii) Using the trigonometric identity

sinθ cosφ =
1
2
[sin(θ +φ)+ sin(θ −φ)]

we can write

sinxcos2x =
1
2
(sin3x− sinx) .

Now, since for z → 0

sinz = z− z3

6
+

z5

120
+o(z5),

then

sinxcos2x =
1
2

(
3x− 9

2
x3 +

81
40

x5 − x+
x3

6
− x5

120

)
+o(x5)

(iv) In this case

ex = 1+x+
x2

2
+

x3

6
+

x4

24
+

x5

120
+o(x5), log(1−x)=−x− x2

2
− x3

3
− x4

4
− x5

5
+o(x5),

so

ex log(1− x) =− x
[

1+
x
2
+

x2

3
+

x3

4
+

x4

5
+o(x4)

][
1+ x+

x2

2
+

x3

6
+

x4

24
+o(x4)

]
=− x

[
1+
(

1+
1
2

)
x+
(

1
2
+

1
2
+

1
3

)
x2 +

(
1
6
+

1
4
+

1
3
+

1
4

)
x3

+

(
1

24
+

1
12

+
1
6
+

1
4
+

1
5

)
x4 +o(x4)

]
=− x− 3

2
x2 − 4

3
x3 − x4 − 89

120
x5 +o(x5).

Therefore

P5,0(x) =−x− 3
2

x2 − 4
3

x3 − x4 − 89
120

x5.

(v) Since sin2 x = (1− cos2x)/2,

sin2 x =
1
2

[
�1− �1+

(2x)2

2
− (2x)4

24
+o(x5)

]
= x2 − x4

3
+o(x5),

hence

P5,0(x) = x2 − x4

3
.
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(vi) We know that

1
1− z

=
∞

∑
n=0

zn = 1+ z+ z2 + · · · ,

therefore
1

1− x3 = 1+ x3 +o(x5),

which implies P5,0(x) = 1+ x3.

Problem 8.2 The Taylor polynomial P4,4(x) of P(x) = x4 −5x3 + x2 −3x+4 is obtained through

P(x) = x4 −5x3 + x2 −3x+4, P(4) =−56,

P′(x) = 4x3 −15x2 +2x−3, P′(4) = 21,

P′′(x) = 12x2 −30x+2, P′′(4) = 74,

P′′′(x) = 24x−30, P′′′(4) = 66,

P(4)(x) = 24, P(4)(4) = 24.

Hence

P(x) =−56+21(x−4)+37(x−4)2 +11(x−4)3 +(x−4)4.

Problem 8.3
(i) The polynomial must be expressed in powers of t = x+1, so if we write

1
x
=

1
t −1

=− 1
1− t

=−1− t − t2 −·· ·− tn + · · ·

we immediately obtain Pn,−1(x) =−1− (x+1)− (x+1)2 −·· ·− (x+1)n.

(ii) Since

e−2x = 1+(−2x)+
(−2x)2

2
+ · · ·+ (−2x)n−1

(n−1)!
+o(xn−1)

= 1−2x+2x2 + · · ·+(−1)n−1 2n−1

(n−1)!
xn−1 +o(xn−1)

then

xe−2x = x−2x2 +2x3 + · · ·+(−1)n−1 2n−1

(n−1)!
xn +o(xn).

Thus

Pn,0(x) = x−2x2 +2x3 + · · ·+(−1)n−1 2n−1

(n−1)!
xn.

(iii) We can expand (1+ ex)2 = 1+2ex + e2x, so

(1+ ex)2 =1+2
[

1+ x+
x2

2
+ · · ·+ xn

n!
+o(xn)

]
+

[
1+2x+

(2x)2

2
+ · · ·+ (2x)n

n!
+o(xn)

]
=4+4x+3x2 + · · ·+ 2+2n

n!
xn +o(xn),

from which

Pn,0(x) = 4+4x+3x2 + · · ·+ 2+2n

n!
xn.
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(iv) We must express the polynomial in powers of t = x−π , therefore sinx = sin(π + t) =−sin t,
and

sinx =−t +
t3

6
− t5

120
+ · · ·+(−1)n t2n−1

(2n−1)!
+o(t2n−1).

Thus

P2n,π(x) = P2n−1,π(x) =−(x−π)+
(x−π)3

6
− (x−π)5

120
+ · · ·+(−1)n (x−π)2n−1

(2n−1)!
.

Problem 8.4
(i) For x ̸= 0,

f ′(x) =
2
x3 e−1/x2

.

so Q1(t) = 2t3. Suppose now that f (n)(x) = Qn(1/x)e−1/x2
for x ̸= 0 and some n ∈ N.

Differentiating once more,

f (n+1) =

[
− 1

x2 Q′
n(1/x)+

2
x3 Qn(1/x)

]
e−1/x2

= Qn+1(1/x)e−1/x2
,

where Qn+1(t) =−t2Q′
n(t)+2t3Qn(t) is a polynomial if so is Qn(t). This proves the result

for all n ∈ N.

(ii) First of all,

f ′(0) = lim
x→0

f (x)− f (0)
x

= lim
x→0

1
x

e−1/x2
= lim

t→±∞
te−t2

= 0.

Suppose now that f (n)(0) = 0 for some n ∈ N. From (i),

f (n+1)(0) = lim
x→0

f (n)(x)− f (n)(0)
x

= lim
x→0

1
x

Qn(1/x)e−1/x2
= lim

t→±∞
tQn(t)e−t2

= 0.

This proves that f (n)(0) = 0 for all n ∈ N.

(iii) Since we have proven that f (n)(0) = 0 for every n ∈ N, this means that Pn,0(x) = 0 for every
n ∈ N. In other words, the best polynomial approximation to f (x) at x = 0 is just 0. The
conclusion we get from this fact is that the reminder of this function must be Rn,0(x) = f (x)
for any n ∈ N.
This is one example of a function that does not have a Taylor series which converges to it.

Problem 8.5
(i) Since sinx ∼ x when x → 0,

lim
x→0

sinx
xα

= lim
x→0

x
xα

= lim
x→0

x1−α = 0

because 1−α > 0.

(ii) Since log(1+ x2)∼ x2 when x → 0,

lim
x→0

log(1+ x2)

x
= lim

x→0

x2

x
= lim

x→0
x = 0.



250 Chapter D. Solutions to exercises

(iii) We need to calculate the limit

lim
x→∞

logx
x

.

Since this is an indeterminacy ∞

∞
we can apply l’Hôpital and calculate instead

lim
x→∞

1
x
= 0.

(iv) Since

lim
x→0

tanx− sinx
x2

is a 0
0 indeterminacy we can apply l’Hôpital and calculate instead

lim
x→0

1+ tan2 x− cosx
2x

.

And we apply l’Hôpital again because this is still a 0
0 indeterminacy:

lim
x→0

2tanx(1+ tan2 x)+ sinx
2

= 0.

Problem 8.6
(i) When x → 0 e have

ex = 1+ x+
x2

2
+o(x2), sinx = x+o(x2),

thus

lim
x→0

ex − sinx−1
x2 = lim

x→0

1+ x+ x2

2 +o(x2)− x−1
x2 = lim

x→0

x2

2 +o(x2)

x2

= lim
x→0

(
1
2
+o(1)

)
=

1
2
.

(ii) When x → 0

sinx = x− x3

6
+

x5

120
+o(x5),

so

lim
x→0

sinx− x+ x3

6
x5 = lim

x→0

x− x3

6 + x5

120 +o(x5)− x+ x3

6
x5 = lim

x→0

x5

120 +o(x5)

x5

= lim
x→0

(
1

120
+o(1)

)
=

1
120

.

(iii) When x → 0 the denominator sinx = x+ o(x). On the other hand, cosx = 1+ o(x) and√
1− x = 1− x

2 +o(x), so

lim
x→0

cosx−
√

1− x
sinx

= lim
x→0

1+o(x)−1+ x
2

x+o(x)
= lim

x→0

x
2 +o(x)
x+o(x)

= lim
x→0

1
2 +o(1)
1+o(1)

=
1
2
.
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(iv) When x → 0

tanx = x+
x3

3
+o(x3), sinx = x− x3

6
+o(x3),

so

lim
x→0

tanx− sinx
x3 = lim

x→0

x+ x3

3 +o(x3)− x+ x3

6
x3 = lim

x→0

x3

2 +o(x3)

x3 = lim
x→0

(
1
2
+o(1)

)
=

1
2
.

(v) When x → 0

cos3x = 1− 9
2

x2 +o(x2), sinx = x− x3

6
+o(x3),

so

lim
x→0

x− sinx
x(1− cos3x)

= lim
x→0

x3

6 +o(x3)

x
(9

2 x2 +o(x2)
) = lim

x→0

1
6 +o(1)
9
2 +o(1)

=
1
27

.

(vi) When x → 0

cosx = 1− x2

2
+o(x3), ex = 1+ x+

x2

2
+

x3

6
+o(x3),

so

lim
x→0

cosx+ ex − x−2
x3 = lim

x→0

1− x2

2 +o(x3)+1+ x+ x2

2 + x3

6 − x−2
x3 = lim

x→0

x3

6 +o(x3)

x3

= lim
x→0

(
1
6
+o(1)

)
=

1
6
.

(vii) First of all

lim
x→0

(
1
x
− 1

sinx

)
= lim

x→0

sinx− x
xsinx

.

Now, sinx = x+o(x2) when x → 0, so

lim
x→0

sinx− x
xsinx

= lim
x→0

o(x2)

x2 +o(x3)
= lim

x→0

o(1)
1+o(x)

= lim
x→0

o(1)
1+o(1)

= 0.

(Remember that o(xn) can be replaced by o(xm) when x → 0 if n > m.)

(viii) To begin with, since cotx = cosx/sinx,

lim
x→0

1
x

(
1
x
− cotx

)
= lim

x→0

sinx− xcosx
x2 sinx

.

Now,

sinx = x− x3

6
+o(x3) = x+o(x), xcosx = x

[
1− x2

2
+o(x2)

]
= x− x3

2
+o(x3),

hence

lim
x→0

sinx− xcosx
x2 sinx

= lim
x→0

x− x3

6 +o(x3)− x+ x3

2
x3 +o(x3)

= lim
x→0

x3

3 +o(x3)

x3 +o(x3)
= lim

x→0

1
3 +o(1)
1+o(1)

=
1
3
.
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(ix) We cannot apply Taylor when x → ∞, but we can rewrite the limit by changing the variable
to t = 1/x. Then

ℓ= lim
x→∞

x3/2
(√

x+1+
√

x−1−2
√

x
)
= lim

t→0+

√
1
t +1+

√
1
t −1− 2√

t

t3/2 ,

and multiplying numerator and denominator by
√

t,

ℓ= lim
t→0+

√
1+ t +

√
1− t −2

t2 .

Now we know that when t → 0

(1+ t)α = 1+αt +
α(α −1)

2
t2 +o(t2),

so setting α = 1/2,

√
1+ t = 1+

t
2
− t2

8
+o(t2),

√
1− t = 1− t

2
− t2

8
+o(t2).

Thus,

ℓ= lim
t→0+

1+ t
2 −

t2

8 +o(t2)+1− t
2 −

t2

8 −2
t2 = lim

t→0+

− t2

4 +o(t2)

t2 = lim
t→0+

(
−1

4
+o(1)

)
=−1

4
.

(x) Changing from x to t = 1/x,

ℓ= lim
x→∞

[
x− x2 log

(
1+

1
x

)]
= lim

t→0+

[
1
t
− log(1+ t)

t2

]
= lim

t→0+

t − log(1+ t)
t2 .

If we now write

log(1+ t) = t − t2

2
+o(t2) (t → 0),

then

ℓ= lim
t→0+

t − t + t2

2 +o(t2)

t2 = lim
t→0+

t2

2 +o(t2)

t2 = lim
t→0+

(
1
2
+o(1)

)
=

1
2
.

Problem 8.7 To begin with, when y → 0

log(1+ y) = y− y2

2
+o(y2).

In our case

y = f (x) =− x
2
− x2

4
+o(x2),

which clearly goes to 0 when x → 0. Then

y2 = f (x)2 =

[
− x

2
− x2

4
+o(x2)

][
− x

2
− x2

4
+o(x2)

]
=

x2

4
+o(x2),
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and o(y2) = o(x2) because y =− x
2 +o(x). Therefore

log[1+ f (x)] =
(
− x

2
− x2

4
+o(x2)

)
− 1

2

(
x2

4
+o(x2)

)
+o(x2) =− x

2
− 3

8
x2 +o(x2).

If we now substitute

lim
x→0

log[1+ f (x)]+ x
2

x2 = lim
x→0

− x
2 −

3
8 x2 +o(x2)+ x

2
x2 = lim

x→0

−3
8 x2 +o(x2)

x2

= lim
x→0

(
−3

8
+o(1)

)
=−3

8
.

Problem 8.8 From the definition,

f ′(0) = lim
x→0

f (x)− f (0)
x

= lim
x→0

1
x
− 1

ex −1
− 1

2
x

= lim
x→0

(2− x)(ex −1)−2x
2x2(ex −1)

.

Now, ex −1 = x+o(x) when x → 0. This means that the denominator is 2x2(ex −1) = 2x3 +o(x3)
when x → 0, and so we need to expand the numerator up to order o(x3). We need more terms of the
exponential:

ex −1 = x+
x2

2
+

x3

6
+o(x3).

Substituting in the numerator we have

(2− x)(ex −1)−2x = 2x+ x2 +
x3

3
+o(x3)− x2 − x3

2
+o(x3)−2x =−x3

6
+o(x3).

Then

f ′(0) = lim
x→0

− x3

6 +o(x3)

2x3 +o(x3)
= lim

x→0

−1
6 +o(1)

2+o(1)
=− 1

12
.

Problem 8.9
(i) The difficulty of this problem is that we don’t know beforehand to which order we need to do

the Taylor expansions of the functions involved in order to get the first nonzero term. It turns
out that the first order is the seventh. Thus we need the expansions for x → 0

tanx = x+
x3

3
+

2
15

x5 +
17
315

x7 +o(x7), sinx = x− x3

6
+

x5

120
− x7

5040
+o(x7).

Since sinx is the argument of tan(sinx) we will need to calculate the expansions of sin3 x,
sin5 x, and sin7 x. So,

sin2 x = sinx · sinx = x2 − x4

3
+

2
45

x6 +o(x7),

sin3 x = sin2 x · sinx = x3 − x5

2
+

13
120

x7 +o(x7),

sin5 x = sin2 x · sin3 x = x5 − 5
6

x7 +o(x7),

sin7 x = sin2 x · sin5 x = x7 +o(x7).
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Besides o(sin7 x) = o(x7). Likewise, tanx is the argument of sin(tanx), therefore

tan2 x = tanx · tanx = x2 +
2
3

x4 +
17
45

x6 +o(x7),

tan3 x = tan2 x · tanx = x3 + x5 +
11
15

x7 +o(x7),

tan5 x = tan2 x · tan3 x = x5 +
5
3

x7 +o(x7),

tan7 x = tan2 x · tan5 x = x7 +o(x7),

and o(tan7 x) = o(x7).
Then,

tan(sinx) =sinx+
1
3

sin3 x+
2

15
sin5 x+

17
315

sin7 x+o(x7),

=

(
x− x3

6
+

x5

120
− x7

5040
+o(x7)

)
+

1
3

(
x3 − x5

2
+

13
120

x7 +o(x7)

)
+

2
15

(
x5 − 5

6
x7 +o(x7)

)
+

17
315

(
x7 +o(x7)

)
+o(x7)

=x+
x3

6
− x5

40
− 107

5040
x7 +o(x7).

Similarly

sin(tanx) = tanx− 1
6

tan3 x+
1

120
tan5 x− 1

5040
tan7 x+o(x7),

=

(
x+

x3

3
+

2
15

x5 +
17

315
x7 +o(x7)

)
− 1

6

(
x3 + x5 +

11
15

x7 +o(x7)

)
+

1
120

(
x5 +

5
3

x7 +o(x7)

)
− 1

5040
(
x7 +o(x7)

)
+o(x7)

=x+
x3

6
− x5

40
− 55

1008
x7 +o(x7).

Accordingly, substracting these two expansions,

f (x) = tan(sinx)− sin(tanx) =
x7

30
+o(x7) (x → 0).

(ii) We can write

f (x) =
1

R2

[
1− (1+ z)−2] , z =

x
R
,

and use the expansion (1+ z)−2 = 1−2z+o(z). Then

(1+ z)−2 = 1−2
x
R
+o(x),

and

f (x) =
1

R2

[
1−1+2

x
R
+o(x)

]
= 2

x
R3 +o(x).
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(iii) We can rewrite the function as

f (x) = (1+ x)1/3(1− x)−1/3 − (1− x)1/3(1+ x)−1/3

and then use, when x → 0,

(1+ x)α = 1+αx+
α(α −1)

2
x2 +o(x2).

For α = 1/3 this leads to

(1+ x)1/3 = 1+
x
3
− x2

9
+o(x2), (1− x)1/3 = 1− x

3
− x2

9
+o(x2),

and for α =−1/3

(1+ x)−1/3 = 1− x
3
+

2
9

x2 +o(x2), (1− x)−1/3 = 1+
x
3
+

2
9

x2 +o(x2).

Multiplying,

(1+ x)1/3(1− x)−1/3 =

[
1+

x
3
− x2

9
+o(x2)

][
1+

x
3
+

2
9

x2 +o(x2)

]
=1+

2
3

x+
2
9

x2 +o(x2),

(1− x)1/3(1+ x)−1/3 =

[
1− x

3
− x2

9
+o(x2)

][
1− x

3
+

2
9

x2 +o(x2)

]
=1− 2

3
x+

2
9

x2 +o(x2),

and substracting,

f (x) =
4
3

x+o(x2).

Problem 8.10 First of all, as x → 0,

cosx = 1− x2

2
+

x4

24
− x6

720
+o(x7),

so

x2

2
− x4

24
+

x6

720
+o(x7) =

[
Ax2 +Bx4 +Cx6 +o(x7)

][
2− x2

2
+

x4

24
− x6

720
+o(x7)

]
= 2Ax2 +

(
2B− A

2

)
x4 +

(
2C− B

2
+

A
24

)
x6 +o(x7).

The two expansions coincide if

2A =
1
2
,

2B− A
2
=− 1

24
,

2C− B
2
+

A
24

=
1

720
,


⇒ A =

1
4
, B =

1
24

, C =
17

2880
.
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Problem 8.11
(i) Let f (x) = x− (a+bcosx)sinx = x−asinx−bsinxcosx = x−asinx− (b/2)sin2x. Up to

fourth order,

sinx = x− x3

6
+o(x4), sin2x = 2x− 4

3
x3 +o(x4),

therefore

f (x) = x−ax+
a
6

x3 −bx+
2b
3

x3 +o(x4) = (1−a−b)x+
a+4b

6
x3 +o(x4).

This function will be f (x) = o(x4) if and only if{
a+b = 1,
a+4b = 0,

⇒ a =
4
3
, b =−1

3
.

(ii) Both cotx and the rational function diverge when x → 0, so we can multiply by x and write
the equivalent equation

f (x) = xcotx− 1+ax2

1+bx2 = o(x5) (x → 0),

where neither of the two functions involved is singular at x = 0. Take first the rational
function. This is a product of two functions, namely

1+ax2

1+bx2 = (1+ax2)(1+bx2)−1.

But (1+ z)−1 = 1− z+ z2 − z3 +o(z3), (z → 0), therefore

(1+bx2)−1 = 1−bx2 +b2x4 −b3x6 +o(x6) = 1−bx2 +b2x4 +o(x5)

(we don’t need to keep powers higher than x5 in the expansion). Substituting

1+ax2

1+bx2 =
[
1−bx2 +b2x4 +o(x5)

]
+
[
ax2 −abx4 +o(x5)

]
= 1+(a−b)x2 −b(a−b)x4 +o(x5).

As for xcotx, we can also write it as the product of two functions

xcotx = x
cosx
sinx

= cosx
(

sinx
x

)−1

.

Now,

cosx = 1− x2

2
+

x4

24
+o(x5),

sinx
x

= 1− x2

6
+

x4

120
+o(x5) = 1− y,

where y = x2

6 − x4

120 +o(x5). Then(
sinx

x

)−1

= 1+ y+ y2 + y3 +o(y3) = 1+
[

x2

6
− x4

120
+o(x5)

]
+

[
x4

36
+o(x5)

]
+o(x5)

= 1+
x2

6
+

7
360

x4 +o(x5)
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(where we have taken into account that y3 +o(y3) ∝ x6 +o(x6) = o(x5)). Accordingly,

xcotx =
[

1− x2

2
+

x4

24
+o(x5)

][
1+

x2

6
+

7
360

x4 +o(x5)

]
= 1− x2

3
− x4

45
+o(x5)

and

f (x) =
[

1− x2

3
− x4

45
+o(x5)

]
−
[
1+(a−b)x2 −b(a−b)x4 +o(x5)

]
=

(
b−a− 1

3

)
x2 +

(
b(a−b)− 1

45

)
x4 +o(x5).

We will have f (x) = o(x5) if, and only if,{
b−a = 1

3 ,

b(a−b) = 1
45 ,

⇒ a =−2
5
, b =− 1

15
.

The interest of this exercise is to show that when x → 0,

cotx =
1− 2

5 x2

x− 1
15 x3

+o(x4),

which provides a reasonable approximation of cotx as a rational function near x = 0.

Problem 8.12 We can transform the expression into

ex(1+ cx+dx2) = 1+ax+bx2 +o(x4), (x → 0),

because o(x4)(1+cx+dx2)= o(x4)+o(x5)+o(x6)= o(x4). Using the expasion for the exponential

ex = 1+ x+
x2

2
+

x3

6
+

x4

24
+o(x4), (x → 0),

and multiplying we get

ex(1+cx+dx2) = 1+(1+c)x+
(

1
2
+ c+d

)
x2+

(
1
6
+

c
2
+d
)

x3+

(
1
24

+
c
6
+

d
2

)
x4+o(x4).

Comparing the two sides of the first equation we obtain

1+ c = a,
1
6
+

c
2
+d = 0,

1
2
+ c+d = b,

1
24

+
c
6
+

d
2
= 0.

The two equations on the right can be rewritten as
c+2d =−1

3
,

c+3d =−1
4
,

⇒ d =
1
12

, c =−1
2
,

and from these values we get a =
1
2

, b =
1
12

from the equations on the left. Hence

ex =
1+ x

2 +
x2

12

1− x
2 +

x2

12

+o(x4), (x → 0).
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Problem 8.13
(i) First of all we can write

√
1+n2 = n

√
1+

1
n2 = n

[
1+

1
2n2 +o

(
1
n2

)]
= n+

1
2n

+o
(

1
n

)
(n → ∞).

Let us denote εn =
π

2n +o
(1

n

)
. Then

sinπ

√
1+n2 = sin(πn+ εn) = (−1)n sinεn = (−1)n [εn +o(εn)] .

But o(εn) = o
(1

n

)
, so

sinπ

√
1+n2 = (−1)n π

2n
+o
(

1
n

)
= (−1)n π

2n
[1+o(1)] (n → ∞).

Thus

lim
n→∞

sinπ

√
1+n2 = 0.

(ii) From the previous result

sin2
π

√
1+n2 =

π2

4n2 [1+o(1)] (n → ∞);

in other words, sin2
π
√

1+n2 ∼ π2

4n2 when n → ∞. The convergence of the series follows

from the fact that
∞

∑
n=1

1
n2 < ∞.

Problem 8.14 Since sinx= x+o(x), then f (x)= 1+x4+o(x4), when x→ 0. Thus P4,0(x)= 1+x4.
Accordingly f has a local minimum at x = 0.

Problem 8.15
(i) Let us consider the function

f (x) =
1√

1+ x
.

The value we want to obtain is f (0.1). The Taylor expansion for this function near a = 0
follows from

f (x) = (1+ x)−1/2, f (0) = 1,

f ′(x) =−1
2
(1+ x)−3/2, f ′(0) =−1

2
,

f ′′(x) =
3
4
(1+ x)−5/2, f ′′(0) =

3
4
,

f ′′′(x) =−15
8
(1+ x)−7/2, f ′′′(0) =−15

8
,

f (4)(x) =
105
16

(1+ x)−9/2,

which implies

P3,0(x) = 1− x
2
+

3
8

x2 − 5
16

x3, R3,0(x) =
35

128

(
1√

1+θx

)9

x4, 0 < θ < 1.
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Now P3,0(0.1) = 0.9534375 and since
√

1+θx > 1 for every x > 0,

|R3,0(x)|<
35
128

x4 ⇒ |R3,0(0.1)|< 2.7×10−5.

Hence 1/
√

1.1 = 0.9534(3) —where the figure in brackets may be affected by the error.
(The exact value is 1/

√
1.1 = 0.953462589 . . . )

(ii) Consider the function f (x) = 3
√

27+ x =. Then 3
√

28 = f (1). To ontain the second degree
Taylor expansion around a = 0 we calculate

f (x) = (27+ x)1/3, f (0) = 3,

f ′(x) =
1
3
(27+ x)−2/3, f ′(0) =

1
27

,

f ′′(x) =−2
9
(27+ x)−5/3, f ′′(0) =− 2

2187
,

f ′′′(x) =
10
27

(27+ x)−8/3,

from which

P2,0(x) = 3+
x

27
− x2

2187
, R2,0(x) =

5
81

x3(
3
√

27+θx
)8 , 0 < θ < 1.

Now P2,0(1) = 3.03657979 and since 3
√

27+θx > 3
√

27 = 3 for every x > 0,

|R2,0(x)|<
5x3

531441
⇒ |R2,0(1)|<

5
531441

= 0.9408×10−5.

Hence 3
√

28 = 3.0365(8). (As a matter of fact 3
√

28 = 3.036588972 . . . )

Problem 8.16
(i) Since for x → 0

cosx = 1− x2

2
+o(x3), ex = 1+ x+

x2

2
+

x3

6
+o(x3),

then

P3,0(x) = 2+ x+
x3

6
.

(ii) First of all (cosx)(4) = cosx and (ex)(4) = ex, so f (4)(x) = f (x). Therefore

R3,0(x) =
cosθx+ eθx

24
x4, 0 < θ < 1.

Now |cosθx|⩽ 1 and eθx ⩽ max{ex,1}. Thus for −1/4 ⩽ x ⩽ 1/4

|R3,0(x)|<
1+ e1/4

24

(
1
4

)4

= 3.72×10−4.

Problem 8.17 The reminder of the Taylor expansion of f (x) = ex around a = 0 is

Rn,0(x) =
eθx

(n+1)!
xn+1, 0 < θ < 1,
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so an upper bound for −1 ⩽ x ⩽ 1 will be

|Rn,0(x)|<
e

(n+1)!
.

If we want to have three exact decimal places the error should be smaller than 10−3, so we must
look for the smallest n for which (n+1)! > 103. Since 6! = 720 and 7! = 5040 then n = 6.

Problem 8.18
(i)

1
ρ
= lim

n→∞

n

√
1

2nn2 =
1
2

⇒ ρ = 2.

For x = 2

∞

∑
n=1

2n

2nn2 =
∞

∑
n=1

1
n2 < ∞,

so the interval of absolute convergence is [−2,2].

(ii)

ρ = lim
n→∞

n!
nn ·

(n+1)n+1

(n+1)!
= lim

n→∞

(n+1)n

nn = lim
n→∞

(
1+

1
n

)n

= e.

For x = e

n!en

nn ∼
√

2πn

so the series does not converge absolutely at x = ±e. Therefore the inveral of absolute
convergence is (−e,e).

(iii)

1
ρ
= lim

n→∞

n

√
1

n10n−1 =
1

10
⇒ ρ = 10.

For x = 10

∞

∑
n=1

10n

n10n−1 = 10,
∞

∑
n=1

1
n
= ∞,

so the interval of absolute convergence is (−10,10).

(iv)

ρ = lim
n→∞

√
n+1√

n
= 1.

For x = 1

∞

∑
n=1

1√
n
= ∞,

so the interval of absolute convergence is (−1,1).
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(v) We can rewrite the series as

∞

∑
n=0

(−2)n
(

x− 3
2

)n

,

so the radius of convergence is

1
ρ
= lim

n→∞

n
√

2n = 2 ⇒ ρ =
1
2
.

When x−3/2 =±1/2

∞

∑
n=0

2n
∣∣∣∣x− 3

2

∣∣∣∣n = ∞

∑
n=0

2n 1
2n =

∞

∑
n=0

1 = ∞.

Therefore the interval of absolute convergence is given by |x−3/2|< 1/2, i.e., (1,2).

(vi)

ρ = lim
n→∞

√
2(n+1)√

2n
= 1,

and for |x−2|= 1

∞

∑
n=1

|x−2|n√
2n

=
∞

∑
n=1

1√
2n

= ∞,

so the interval of absolute convergence is given by |x−2|< 1, i.e., (1,3).

Problem 8.19 We can rewrite the function as f (x) = (1− x)−k, which matches the function

(1+ t)α =
∞

∑
n=0

(
α

n

)
tn,

(
α

n

)
=

α(α −1) · · ·(α −n+1)
n!

,

for t =−x and α =−k. Thus

1
(1− x)k =

∞

∑
n=0

(
−k
n

)
(−1)nxn.

Now

(−1)n
(
−k
n

)
= (−1)n (−k)(−k−1) · · ·(−k−n+1)

n!
= (−1)n(−1)n k(k+1) · · ·(k+n−1)

n!

=
(k+n−1)!
n!(k−1)!

=

(
k+n−1

k−1

)
.

Therefore

1
(1− x)k =

∞

∑
n=0

(
n+ k−1

k−1

)
xn.

For k = 1 the coefficients are
(n

0

)
= 1, so

1
1− x

=
∞

∑
n=0

xn,

as expected.
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For k = 2 the coefficients are
(n+1

1

)
= n+1, so

1
(1− x)2 =

∞

∑
n=0

(n+1)xn.

Finally, for k = 3 the coefficients are
(n+2

2

)
= (n+2)(n+1)/2, so

1
(1− x)3 =

1
2

∞

∑
n=0

(n+2)(n+1)xn.

An alternative way of getting the same result goes as follows. We know the result for k = 1
because it is the geometric series,

1
1− x

=
∞

∑
n=0

xn.

Now differentiating this equation we obtain

1
(1− x)2 =

∞

∑
n=0

(n+1)xn,

which is the result for k = 2. And differentiating again,

2
(1− x)3 =

∞

∑
n=0

(n+2)(n+1)xn,

which, divided by 2, yields the result for k = 3.

Problem 8.20 Using the hint we write

1
x2 + x+1

=
1− x
1− x3 =

1
1− x3 −

x
1− x3 .

Now,

1
1− x3 =

∞

∑
n=0

(
x3)n

=
∞

∑
n=0

x3n,
x

1− x3 =
∞

∑
n=0

x3n+1,

therefore

1
x2 + x+1

=
∞

∑
n=0

x3n −
∞

∑
n=0

x3n+1.

In other words, the coefficients an are such that a3n = 1, a3n+1 =−1, and a3n+2 = 0. Accordingly
a300 = 1, a301 =−1, a302 = 0.

Problem 8.21 For a function f (x) that can be expanded as a Taylor series

f (x) =
∞

∑
n=0

f (n)(0)
n!

xn.

Therefore the coefficient of xn in this series is f (n)(0)/n!. Since

log(1+u) =
∞

∑
n=1

(−1)n+1

n
un
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then

log(1+ x2) =
∞

∑
n=1

(−1)n+1

n
x2n.

Therefore f (231)(0) = 0 because the coefficients of the odd terms are all zero, and the coefficient of
x100 is

(−1)51

50
=− 1

50
⇒ f (100)(0)

100!
=− 1

50
⇒ f (100)(0) =−100!

50
.

Problem 8.22
(i) Let us denote f (x) the sum of the series. Then

f ′(x) = ∑
n=1

xn−1 = ∑
n=0

xn =
1

1− x
, |x|< 1.

Therefore f (x) =− log(1− x)+ c. To determine the constant we just calculate f (0). From
the series f (0) = 0, and from the latter expression f (0) = c. Therfore c = 0 and

∞

∑
n=1

xn

n
=− log(1− x), |x|< 1.

(ii) First of all we can write the series as
∞

∑
n=0

(n+1)
( x

2

)n
=

∞

∑
n=0

(n+1)tn,

where t = x/2. Now

∞

∑
n=0

(n+1)tn =
∞

∑
n=1

ntn−1 =
∞

∑
n=1

(tn)′ =
(∗)

(
∞

∑
n=0

tn

)′

=

(
1

1− t

)′
=

1
(1− t)2

(in (*) we have added the term n = 0 to the sum because it is a constant, and the derivative of
a constant is zero). Therefore

∞

∑
n=0

(n+1)2−nxn =
1

(1− x/2)2 =
4

(2− x)2 , |x|< 2.

(The radius of convergence of the geometric series is 1, i.e., converges for |t| < 1; since
t = x/2, our series —which is the derivative of the geometric— converges for |x|< 2.)

Problem 8.23
(i) To begin with

f (x) = sin2 x =
1
2
(1− cos2x),

and since

cos t =
∞

∑
n=0

(−1)n t2n

(2n)!
, t ∈ R,

substituting we obtain

f (x) =
1
2

[
1−

∞

∑
n=0

(−1)n (2x)2n

(2n)!

]
=

1
2

[
−

∞

∑
n=1

(−1)n (2x)2n

(2n)!

]
=

1
2

∞

∑
n=1

(−1)n+122n x2n

(2n)!

=
∞

∑
n=1

(−1)n+122n−1 x2n

(2n)!
, x ∈ R.
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(ii) We can rewrite

f (x) = log

√
1+ x
1− x

=
1
2

log(1+ x)− 1
2

log(1− x)

and use

log(1+ t) =
∞

∑
n=1

(−1)n+1 tn

n
, |t|< 1,

to obtain

f (x) =
1
2

∞

∑
n=1

(−1)n+1 xn

n
+

1
2

∞

∑
n=1

xn

n
=

∞

∑
n=1

[
(−1)n+1 +1

2

]
xn

n
, |x|< 1.

But

(−1)n+1 +1
2

=

{
1 if n is odd,
0 if n is even,

Therefore

f (x) =
∞

∑
n=0

x2n+1

2n+1
, |x|< 1.

(iii) We can rewrite

f (x) =
x
a
· 1

1+bx/a
.

Now since

1
1− t

=
∞

∑
n=0

tn, |t|< 1,

then

f (x) =
x
a

∞

∑
n=0

(−1)n bn

an xn =
∞

∑
n=0

(−1)n bn

an+1 xn+1 =
∞

∑
n=1

(−1)n−1 bn−1

an xn, |x|<
∣∣∣a
b

∣∣∣ .
(iv) We can express

f (x) =
1
2

1
1− x2/2

=
1
2

∞

∑
n=0

(
x2

2

)n

=
∞

∑
n=0

x2n

2n+1 ,

and the converge requires x2/2 < 1, i.e., |x|<
√

2.

(v) We can rewrite

f (x) = (1+ x)e−x − (1− x)ex.

At this point we can already expand the exponential, so that

(1− x)ex = (1− x)
∞

∑
n=0

xn

n!
=

∞

∑
n=0

xn

n!
−

∞

∑
n=0

xn+1

n!
=

∞

∑
n=0

xn

n!
−

∞

∑
n=1

xn

(n−1)!

= 1+
∞

∑
n=1

(
1
n!

− 1
(n−1)!

)
xn = 1+

∞

∑
n=1

(
1
n!

− n
n!

)
xn = 1+

∞

∑
n=1

1−n
n!

xn.
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The expansion of (1+ x)e−x is the same one but changing x by −x, i.e.,

(1+ x)e−x = 1+
∞

∑
n=1

1−n
n!

(−x)n = 1+
∞

∑
n=1

(−1)n 1−n
n!

xn.

Substracting both expansions

f (x) = (1+ x)e−x − (1− x)ex =
∞

∑
n=1

(−1)n 1−n
n!

xn −
∞

∑
n=1

1−n
n!

xn

=
∞

∑
n=1

n−1
n!

xn −
∞

∑
n=1

(−1)n n−1
n!

xn =
∞

∑
n=1

[1− (−1)n]
n−1

n!
xn.

But 1− (−1)n = 2 when n is odd and = 0 when n is even, therefore

f (x) =
∞

∑
k=0

4k
(2k+1)!

x2k+1.

An alternative derivation arises from realising that

f (x) = e−x + xe−x − ex + xex = 2xcoshx−2sinhx,

for then

f (x) = 2x
∞

∑
n=0

x2n

(2n)!
−2

∞

∑
n=0

x2n+1

(2n+1)!
= 2

∞

∑
n=0

x2n+1

(2n)!
−2

∞

∑
n=0

x2n+1

(2n+1)!

= 2
∞

∑
n=0

(
1

(2n)!
− 1

(2n+1)!

)
x2n+1 = 2

∞

∑
n=0

(
2n+1

(2n+1)!
− 1

(2n+1)!

)
x2n+1

= 2
∞

∑
n=0

2n
(2n+1)!

x2n+1 =
∞

∑
n=0

4n
(2n+1)!

x2n+1.

Problem 8.24
(i)

∞

∑
n=0

(−1)n

2nn!
=

∞

∑
n=0

(−1/2)n

n!
=

∞

∑
n=0

xn

n!

∣∣∣∣
x=−1/2

= e−1/2.

(ii)

∞

∑
n=1

n
2n =

∞

∑
n=1

n
(

1
2

)n

=
1
2

∞

∑
n=1

n
(

1
2

)n−1

=
1
2

∞

∑
n=1

nxn−1
∣∣∣∣
x=1/2

=
1
2

(
∞

∑
n=0

xn

)′ ∣∣∣∣
x=1/2

=
1
2

(
1

1− x

)′ ∣∣∣∣
x=1/2

=
1

2(1− x)2

∣∣∣∣
x=1/2

=
1

2(1−1/2)2 = 2.

(iii)

∞

∑
n=1

1
n2n =

∞

∑
n=1

1
n

(
1
2

)n

=
∞

∑
n=1

xn

n

∣∣∣∣
x=1/2

=− log(1− x)
∣∣∣
x=1/2

=− log(1/2) = log2.

(iv)

∞

∑
n=0

(−1)n

2n+1
=

∞

∑
n=0

(−1)n x2n+1

2n+1

∣∣∣∣
x=1

= arctan1 =
π

4
.
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Problem 8.25 For x = 0

f (0) =
∞

∑
n=1

1
n!

= e−1.

For x = 1

f (1) =
∞

∑
n=1

n
n!

=
∞

∑
n=1

1
(n−1)!

=
∞

∑
n=0

1
n!

= e.

For x = 2

f (2) =
∞

∑
n=1

n2

n!
=

∞

∑
n=1

n
(n−1)!

=
∞

∑
n=0

n+1
n!

=
∞

∑
n=1

n
n!

+
∞

∑
n=0

1
n!

= f (1)+ e = 2e.

Problem 8.26 Since f (0) = 2 the series must be

f (x) = 2+
∞

∑
n=1

anxn.

Now,

f ′(x) =
∞

∑
n=1

nanxn−1 =
∞

∑
n=0

(n+1)an+1xn,

so f ′(x) = f (x)+ x implies

∞

∑
n=0

(n+1)an+1xn = x+2+
∞

∑
n=1

anxn,

or equivalently

a1 +2a2x+
∞

∑
n=2

(n+1)an+1xn = 2+(1+a1)x+
∞

∑
n=2

anxn.

From this equality we get a1 = 2, a2 = (1+a1)/2 = 3/2 and for n > 1

an+1 =
an

n+1
.

The iteration yields

an =
1
n

an−1 =
1

n(n−1)
an−2 =

1
n(n−1)(n−2)

an−3 = · · ·= 1
n(n−1)(n−2) · · ·4 ·3

a2.

The denominator is n!/2, so

an =
2a2

n!
=

3
n!
, n > 1.

Therefore

f (x) = 2+2x+3
∞

∑
n=2

xn

n!
= 2+2x+3(ex −1− x) = 3ex −1− x.

It is straightforward to check that this function satisfies both f (0) = 2 and f ′(x) = f (x)+ x.
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Problem 8.27 Let us compute two derivatives of h:

h′ = ( f ′ ◦g)g′, h′′ = ( f ′ ◦g)′g′+( f ′ ◦g)g′′ = ( f ′′ ◦g)(g′)2 +( f ′ ◦g)g′′.

Since f is convex f ′′ ◦ g > 0; since f is increasing f ′ ◦ g > 0; since g is convex g′′ > 0; and of
course (g′)2 ⩾ 0. Therefore h′′ > 0, hence h is convex.

Problem 8.28
(i) f (x) = x5/3 −2x2/3, so

f ′(x) =
5
3

x2/3 − 4
3

x−1/3, f ′′(x) =
10
9

x−1/3 +
4
9

x−4/3 =
10
9

x−4/3
(

x+
2
5

)
.

Since x−4/3 > 0 for all x ̸= 0, then f (x) is concave for x < −2/5 and convex in −2/5 <
x < 0 and x > 0. At x = −2/5 it has an inflection point, and at x = 0 the function has a
nondifferentiable cusp.

(ii) f (x) is not differentiable at x = 0. Now, for x > 0

f (x) = xex, f ′(x) = (x+1)ex, f ′′(x) = (x+2)ex,

so the funtion is always convex. On the other hand, the function is even (because f (−x) =
f (x)), so it is convex also for x < 0.

(iii) x2 −6x+8 = (x−2)(x−4), so the domain of this function is (−∞,2)∪ (4,∞). On the other
hand, in its domain

f (x) = log(x2 −6x+8) = log |x2 −6x+8|= log |x−2|+ log |x−4|,

so

f ′(x) =
1

x−2
+

1
x−4

, f ′′(x) =− 1
(x−2)2 −

1
(x−4)2 ,

and then we have f ′′(x)< 0 in the whole domain of the function. Thus f (x) is concave.

Problem 8.29
(i) f (x) = x+ log |x2 −1|:

(ii) g(x) = f (|x|) h(x) = | f (x)|:
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Problem 8.30

(i) f (x) = ex sinx: this function oscillates between y = ex and y =−ex, crossing the X axis at
x = nπ , where n ∈ Z.

(ii) f (x) =
√

x2 −1−1:

(iii) f (x) = xe1/x:

(iv) f (x) = x2ex:
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(v) f (x) = (x−2)x2/3:

(vi) f (x) = (x2 −1) log
(

1+ x
1− x

)
:

(vii) f (x) =
x

logx
:
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(viii) f (x) =
x2 −1
x2 +1

:

(ix) f (x) =
e1/x

1− x
:

(x) f (x) = log
[
(x−1)(x−2)

]
:
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(xi) f (x) =
ex

x(x−1)
:

(xii) f (x) = 2sinx+ cos2x:

(xiii) f (x) =
x−2√
4x2 +1

:
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(xiv) f (x) =
√

|x−4|:

(xv) f (x) =
1

1+ ex :

(xvi) f (x) =
e2x

ex −1
:
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(xvii) f (x) = e−x sinx: this function oscillates between y = e−x and y =−e−x, crossing the X axis
at x = nπ , where n ∈ Z.

(xviii) f (x) = x2 sin
1
x

: this function has an oblique asymptote because

sin
1
x
=

1
x
+o
(

1
x2

)
(x →±∞)

(given that sin t = t +o(t2) (t → 0)); hence

f (x) = x2
[

1
x
+o
(

1
x2

)]
= x+o(1) (x →±∞).

Therefore the function looks different on a small scale and on a large scale. On a small scale
it is an oscillatory function between −x2 and x2 that crosses the X axis at x =± 1

nπ
, for all

n ∈ Z−{0}; on a large scale it asymptotes to y = x:

Problem 8.31
(i) f (x) = min{log |x3 −3|, log |x+3|}:
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(ii) f (x) =
1

|x|−1
− 1

|x−1|
: this function has a different form for x > 1, for 0 < x < 1 and for

x < 0.
For x > 1

f (x) =
1

x−1
− 1

x−1
= 0.

For 0 < x < 1 we have |x−1|=−(x−1) so

f (x) =
1

x−1
+

1
x−1

=
2

x−1
.

For x < 0 we have |x|−1 =−(x+1) and |x−1|=−(x−1), so

f (x) =− 1
x+1

+
1

x−1
=

2
x2 −1

.

(iii) f (x) =
1

1+ |x|
− 1

1+ |x−a|
(a > 0): this function also has different definitions depending

on whether x > a, 0 < x < a, or x < 0.
For x > a

f (x) =
1

1+ x
− 1

1+ x−a
=

−a
(x+1)(x−a+1)

,

which has two vertical asymptotes, x =−1 and x = a−1, both out of the region x > a.
For 0 < x < a

f (x) =
1

1+ x
− 1

1+a− x
=

2x−a
(x+1)(x−a−1)

,

which again has two asymptotes, x =−1 and x = a+1, both out of the region 0 < x < a.
For x < 0

f (x) =
1

1− x
− 1

1+a− x
=

a
(x−1)(x−a−1)

,

which also has two asymptotes, x = 1 and x = a+1, both out of the region x < 0.
Here is a plot for a = 5 (which is generic):
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(iv) f (x) = x
√

x2 −1: notice that

f (x) = x|x|
√

1− 1
x2 ,

and since
√

1− t = 1− t/2+o(t) (t → 0), when x →±∞,

f (x) = x|x|
[

1− 1
2x2 +o

(
1
x2

)]
= x|x|− |x|

2x
+o(1) =

{
x2 − 1

2 +o(1) (x → ∞),

−x2 + 1
2 +o(1) (x →−∞).

(v) f (x) = arctan log |x2 −1|: when x →±1 the logarithm diverges to −∞, so f (x)→−π/2. In
other words, even though the function is not well defined in x =±1, at these two points it
has an avoidable discontinuity which can be remedied by setting f (±1) =−π/2. On the
other hand, as x →±∞ the logarithm diverges to ∞ and therefore f (x)→ π/2.
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(vi) f (x) = 2arctanx+ arcsin
(

2x
1+ x2

)
: the domain of this function is R because so is the

domain of arctanx and the argument of the arcsin is within [−1,1]. To see this

(x−1)2 ⩾ 0 ⇔ x2 −2x+1 ⩾ 0 ⇔ x2 +1 ⩾ 2x ⇔ 2x
x2 +1

⩽ 1,

(x+1)2 ⩾ 0 ⇔ x2 +2x+1 ⩾ 0 ⇔ x2 +1 ⩾−2x ⇔ − 2x
x2 +1

⩽ 1

⇔ 2x
x2 +1

⩾−1.

if we calculate f ′(x), using the fact that(
2x

1+ x2

)′
=

2(1+ x2)− (2x)2

(1+ x2)2 =
2(1− x2)

(1+ x2)2 ,

we obtain

f ′(x) =
2

1+ x2 +
1√

1− 4x2

(1+x2)2

2(1− x2)

(1+ x2)2 .

But

1− 4x2

(1+ x2)2 =
1+2x2 + x4 −4x2

(1+ x2)2 =
1−2x2 + x4

(1+ x2)2 =
(1− x2)2

(1+ x2)2 ,

so

f ′(x) =
2

1+ x2 +
(1+ x2)

|1− x2|
· 2(1− x2)

(1+ x2)2 =
2

1+ x2

[
1+

1− x2

|1− x2|

]
.

Now

1− x2

|1− x2|
=

{
1, |x|< 1,
−1, |x|> 1,

therefore

f ′(x) =


4

1+ x2 , |x|< 1,

0, |x|> 1.

Function f (x) is thus constant if |x|> 1 and strictly increasing if |x|< 1. Besides, f (x) is
obviously continuous because so are all functions involved, so the constant values it takes for
x ⩾ 1 and x ⩽−1 can be found as

f (±1) =±2arctan1+±arcsin1 =±
(

2 · π

4
+

π

2

)
=±π.
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Problem 8.32

Problem 8.33 Let us calculate the derivative of f (x):

f ′(x) =
3+ x2 − (1+ x)2x

(3+ x2)2 =
3−2x− x2

(3+ x2)2 =
(3+ x)(1− x)
(3+ x2)2 ,

so the function increases for −3 < x < 1 and decreases for x <−3 and x > 1, hence it has a local
maximum at x = 1 and a local minimum at x = −3. The X axis is a horizontal asymptote, and
f (1) = 1/2, f (−3) =−1/6. Besides f (x) = 0 for x =−1 only. Here is a plot of the function:

Therefore

g(x) = sup
y>x

f (y) =


1
2
, x < 1,

f (x), x ⩾ 1,
h(x) = inf

y>x
f (y) =


−1

6
, x <−3,

f (x), −3 ⩾ x ⩽−1,
0, −1 < x.

Here is a plot of these functions:
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Problem 8.34 We first need to calculate two derivatives of f (x):

f ′(x) =
2x

1+ x2 , f ′′(x) =
2(1− x2)

(1+ x2)2 ,

Thus x =±1 are inflection points of f (x) (because f ′′(x)< 0 on one side of them and f ′′(x)> 0
on the other side). The slopes at these two points are f ′(1) = 1, f ′(−1) =−1, and the coordinates
of those points are

(
1, f (1)

)
= (1, log2),

(
−1, f (−1)

)
= (−1, log2). Therefore the two straight

tangents are

y = log2+(x−1), y = log2− (x+1).

The plot of f (x) along with these two tangents goes as follows:



D.9 Primitives 279

D.9 Primitives
Problem 9.1

(i) cos−2 x = sec2 x = 1+ tan2 x = (tanx)′; hence∫ dx
cos2 x

= tanx+ c.

(ii) sinx− cosx =−(cosx+ sinx)′; hence∫ sinx− cosx
sinx+ cosx

dx =− log |sinx+ cosx|+ c.

(iii) 2x = (x2 +1)′; hence∫ x
(x2 +1)5/2 dx =−1

3
(
x2 +1

)−3/2
+ c.

(iv)
1+ sinx
1+ cosx

=
(1+ sinx)(1− cosx)

1− cos2 x
=

1+ sinx− cosx− sinxcosx
sin2 x

, thus

∫ 1+ sinx
1+ cosx

dx =
∫

csc2 xdx+
∫

cscxdx−
∫ cosx

sin2 x
dx−

∫
cotxdx

=− cotx− log |cscx+ cotx|+ cscx− log |sinx|

=
1− cosx

sinx
− log(1+ cosx)+ c.

(v)
1

1− sinx
=

1+ sinx
1− sin2 x

=
1+ sinx
cos2 x

, thus

∫ dx
1− sinx

=
∫

sec2 xdx+
∫ sinx

cos2 x
dx = tanx+ secx+ c =

sinx+1
cosx

+ c.

(vi) 2x = (1+ x2)′; hence∫ x√
1+ x2

dx =
√

1+ x2 + c.

(vii) As
(
1−

√
x
)′
=− 1

2
√

x
,

∫ 1+
√

1−
√

x√
x

dx =−2
∫ (

1+
√

1−
√

x
)(

1−
√

x
)′ dx

=−2
(
1−

√
x
)
− 4

3
(
1−

√
x
)3/2

+ c = 2
√

x− 4
3
(
1−

√
x
)3/2

+ c′

(where c′ = c−2).

(viii)
cos3 x
sin4 x

=
cos2 x
sin4 x

(sinx)′ =
1− sin2 x

sin4 x
(sinx)′, hence

∫ cos3 x
sin4 x

dx =
∫ ( 1

sin4 x
− 1

sin2 x

)
(sinx)′ dx =−1

3
csc3 x+ cscx+ c.

(ix) x3
√

1− x2 = x(x2−1)
√

1− x2+x
√

1− x2 =−x(1−x2)3/2+x(1−x2)1/2. Since (1−x2)′=
−2x, then∫

x3
√

1− x2 dx =
1
5
(
1− x2)5/2 − 1

3
(
1− x2)3/2

+ c.
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Problem 9.2

(i) − 1
2(x−1)2 −

2
x−1

+ log |x−1|+ c;

(ii) − 1
3(x−1)

− 1
3

log |x−1|+ 1
6

log(x2 + x+1)+
1

3
√

3
arctan

(
2x+1√

3

)
+ c;

(iii) 5 log |x−1|−3log |x|+ 3
x
+ c;

(iv) 2arctan(x−1)+ c;

(v) 2x2 +7x+3log |x−2|−4log |x−3|+5log |x+3|+ c;

(vi)
x2

2
+

1
4(x−1)

− 1
4(x+1)

+ c.

Problem 9.3

(i)
2
7
(x−1)7/2 +

4
5
(x−1)5/2 +

2
3
(x−1)3/2 + c;

(ii)
2
3

(
−x3/2 cosx3/2 + sinx3/2

)
+ c;

(iii)
x
2

cos(logx)+
x
2

sin(logx)+ c;

(iv) − x
2

cos(logx)+
x
2

sin(logx)+ c;

(v)
x
2
+

x
10

cos(2logx)+
x
5

sin(2logx)+ c;

(vi) 2
√

x+ log |x+3|−2
√

3arctan
√

x
3
+ c;

(vii)
1
3
[
1− (x+1)2]3/2 −

[
1− (x+1)2]1/2

+ c;

(viii) − 1
2(1+ x2)

+
1

4(1+ x2)2 + c;

(ix) 2arctan
√

1+ x+ c;

(x) −3
2
(1− x)2/3 +3(1− x)1/3 −3log

∣∣1+(1− x)1/3∣∣+ c;

(xi)
e2x

2
−2ex + log

(
e2x +2ex +2

)
+2arctan(ex +1)+ c;

(xii) arctan
√

e2x −1+ c;

(xiii) 2
√

ex −1−2arctan
√

ex −1+ c;

(xiv)
1
7

cos7 x+
1
5

cos5 x+
1
3

cos3 x+ cosx+
1
2

log(1− cosx)− 1
2

log(1+ cosx)+ c;

(xv)
√

2x+5−3log
(

3+
√

2x+5
)
+ c;

(xvi) − 1
t −1

+ log |t −1|− 1
t +1

− log |t +1|+ c, with t =
√
(x−1)/(x+1);

(xvii)
4
5
(√

x+1
)5/2 − 4

3
(√

x+1
)3/2

+ c;

(xviii) x−2
√

x+2+2log
(√

x+2+1
)
+ c;

(xix) 2
√

2+ ex +
√

2log
(√

2+ ex −
√

2
)
−
√

2log
(√

2+ ex +
√

2
)
+ c;
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(xx)
1
5

log | tanx+2|− 1
10

log
(
tan2 x+1

)
+

7
5

x+ c;

(xxi) log
∣∣∣tan

x
2

∣∣∣−2log
(

tan2 x
2
+3
)
+

2√
3

arctan
(

tan(x/2)√
3

)
+ c;

(xxii)
6
5

(
1+ x1/3

)5/2
−2
(

1+ x1/3
)3/2

+ c;

(xxiii) log
∣∣(x+2)1/3−1

∣∣− 1
2

log
[
(x+2)2/3 +(x+2)1/3 +1

]
+
√

3arctan

(
2(x+2)1/3 +1√

3

)
+c;

(xxiv)
1
4

log |ex −2|− 1
4

log(ex +2)+ c.

Problem 9.4

(i) sin2 x =
1
2
− cos2x

2
, hence

∫
sin2 xdx =

x
2
− 1

4
sin2x+ c.

(ii) cos2 x =
1
2
+

cos2x
2

, hence

∫
cos2 xdx =

x
2
+

1
4

sin2x+ c.

(iii) sin4 x =
1
4
(1 − cos2x)2 =

1
4
− 1

2
cos2x +

1
4

cos2 2x =
1
4
− 1

2
cos2x +

1
8
+

1
8

cos4x =
3
8
−

1
2

cos2x+
1
8

cos4x, hence

∫
sin4 xdx =

3
8

x− 1
4

sin2x+
1

32
sin4x+ c.

(iv) cos4 x =
1
4
(1+ cos2x)2 =

1
4
+

1
2

cos2x+
1
4

cos2 2x =
3
8
+

1
2

cos2x+
1
8

cos4x, hence

∫
cos4 xdx =

3
8

x+
1
4

sin2x+
1

32
sin4x+ c.

(v) cos6 x =
1
8
(1+cos2x)3 =

1
8
+

3
8

cos2x+
3
8

cos2 2x+
1
8

cos3 2x =
5
16

+
3
8

cos2x+
3
16

cos4x+
1
16

(1− sin2 2x)(sin2x)′, hence

∫
cos6 xdx =

5
16

x+
3

16
sin2x+

3
64

sin4x+
1
16

sin2x− 1
48

sin3 2x+ c

=
5
16

x+
1
4

sin2x+
3
64

sin4x− 1
48

sin3 2x+ c.

(vi) sin2 xcos2 x =
1
4
− 1

4
cos2 2x =

1
8
− 1

8
cos4x, hence

∫
sin2 xcos2 xdx =

x
8
− 1

32
sin4x+ c.

(vii) tan2 x = (tanx)′−1, hence∫
tan2 xdx = tanx− x+ c.
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(viii) tan4 x = tan2 x(tanx)′− tan2 x = tan2 x(tanx)′− (tanx)′+1, hence∫
tan4 xdx =

1
3

tan3 x− tanx+ x+ c.

(ix)
1

cos4 x
= (1+ tan2 x)(tanx)′, hence∫ dx

cos4 x
dx = tanx+

1
3

tan3 x+ c.

(x) sin5 x =−sin4 x(cosx)′ =−(1− cos2 x)2(cosx)′ = (−1+2cos2 x− cos4 x)(cosx)′, thus∫
sin5 xdx =−cosx+

2
3

cos3 x− 1
5

cos5 x+ c.

(xi) cos3 sin2 x = (1− sin2 x)sin2 x(sinx)′ = (sin2 x− sin4 x)(sinx)′, so∫
cos3 sin2 xdx =

1
3

sin3 x− 1
5

sin5 x+ c.

(xii) sec6 x = (1+ tan2 x)2(tanx)′ = (1+2tan2 x+ tan4 x)(tanx)′, hence∫
sec6 xdx = tanx+

2
3

tan3 x+
1
5

tan5 x+ c.

(xiii) sin3 xcos2 x =−(1− cos2 x)cos2 x(cosx)′ = (cos4 x− cos2 x)(cosx)′, therefore∫
sin3 xcos2 xdx =

1
5

cos5 x− 1
3

cos3 x+ c.

(xiv) tan3 x = tanx[(tanx)′−1] = tanx(tanx)′− tanx, thus∫
tan3 xdx =

1
2

tan2 x+ log |cosx|+ c.

(xv) tan3 xsec4 x = tan3 x(1+ tan2 x)(tanx)′ = (tan3 x+ tan5 x)(tanx)′, thus∫
tan3 xsec4 xdx =

1
4

tan4 x+
1
6

tan6 x+ c.

Problem 9.5

(i) tan2(2x) =
1
2
(tan2x)′−1, so

∫
x tan2(2x)dx =

1
2

∫
x(tan2x)′ dx−

∫
xdx =−x2

2
+

x
2

tan2x− 1
2

∫
tan2xdx

=−x2

2
+

x
2

tan2x+
1
4

log |cos2x|+ c.

(ii) Since (ex)′ = ex,∫
ex sinπxdx = ex sinπx−π

∫
ex cosπxdx = ex sinπx−πex cosπx−π

2
∫

ex sinπxdx.

Therefore

(1+π
2)
∫

ex sinπxdx = ex(sinπx−π cosπx)

and finally∫
ex sinπxdx =

ex

1+π2 (sinπx−π cosπx)+ c.



D.9 Primitives 283

(iii) Since (ex)′ = ex,∫
ex cos2xdx = ex cos2x+2

∫
ex sin2xdx = ex cos2x+2ex sin2x−4

∫
ex cos2xdx.

Then

5
∫

ex cos2xdx = ex(cos2x+2sin2x)

and ∫
ex cos2xdx =

ex

5
(cos2x+2sin2x)+ c.

(iv) Since sec2 x = 1+ tan2 x = (tanx)′ and (secx)′ = secx tanx,∫
sec3 xdx = secx tanx−

∫
tan2 xsecxdx = secx tanx−

∫
sec3 xdx+

∫
secxdx

= secx tanx−
∫

sec3 xdx+ log |secx+ tanx|,

therefore

2
∫

sec3 xdx = secx tanx+ log |secx+ tanx|

and finally∫
sec3 xdx =

1
2

secx tanx+
1
2

log |secx+ tanx|+ c.

(v) First of all tan2(3x)sec3(3x) =
1
3

tan2(3x)(tan3x)′ sec3x =
1
9
[

tan3(3x)
]′ sec3x. Thus,

I(x) =
∫

tan2(3x)sec3(3x)dx =
1
9

tan3(3x)sec3x− 1
9

∫
tan3(3x)(sec3x)′ dx

=
1
9

tan3(3x)sec3x− 1
3

∫
tan4(3x)sec3xdx.

But tan2(3x) = sec2(3x)−1, so∫
tan4(3x)sec3xdx =

∫
tan2(3x)sec3(3x)dx−

∫
tan2(3x)sec3xdx

= I(x)−
∫

sec3(3x)dx+
∫

sec3xdx.

And from the previous exercise,∫
sec3(3x)dx =

1
6

sec3x tan3x+
1
6

log |sec3x+ tan3x|,∫
sec3xdx =

1
3

log |sec3x+ tan3x|.

Therefore,∫
tan4(3x)sec3xdx = I(x)− 1

6
sec3x tan3x+

1
6

log |sec3x+ tan3x|.
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This yields

I(x) =
1
9

tan3(3x)sec3x− 1
3

I(x)+
1
18

sec3x tan3x− 1
18

log |sec3x+ tan3x|,

from which
4
3

I(x) =
1
9

tan3(3x)sec3x+
1

18
sec3x tan3x− 1

18
log |sec3x+ tan3x|,

which leads to

I(x) =
1

12
tan3(3x)sec3x+

1
24

sec3x tan3x− 1
24

log |sec3x+ tan3x|+ c

=
1

12
tan3xsec3(3x)− 1

24
sec3x tan3x− 1

24
log |sec3x+ tan3x|+ c.

(The last line is obtain by replacing tan2(3x) = sec2(3x)−1.)

(vi) Since esinx cosx =
(
esinx

)′,∫
esinx cos3 xdx = esinx cos2 x+2

∫
esinx cosxsinxdx

= esinx cos2 x+2esinx sinx−2
∫

esinx cosxdx

= esinx cos2 x+2esinx sinx−2esinx + c = esinx (cos2 x+2sinx−2
)
+ c

= esinx (−sin2 x+2sinx−1
)
+ c =−esinx (1− sinx)2 + c.

(vii)
∫

x2 logxdx =
x3

3
logx− 1

3

∫
x3 1

x
dx =

x3

3
logx− x3

9
+ c.

(viii) If m ̸=−1,∫
xm logxdx =

xm+1

m+1
logx− 1

m+1

∫
xm+1 1

x
dx =

xm+1

m+1
logx− xm+1

(m+1)2 + c.

If m =−1,∫ 1
x

logxdx =
∫

logx(logx)′ dx =
1
2
(logx)2 + c.

(ix) Taking 1 = (x)′,∫
(logx)3 dx = x(logx)3 −3

∫
�x(logx)2 1

�x
dx.

Similarly,∫
(logx)2 dx = x(logx)2 −2

∫
�x logx

1

�x
dx = x(logx)2 −2x logx+2x.

Thus, ∫
(logx)3 dx = x(logx)3 −3x(logx)2 +6x logx−6x+ c.

(x)
∫

x(logx)2 dx =
x2

2
(logx)2 −

∫
x2 logx

1
x

dx. Also,

∫
x logxdx =

x2

2
logx− 1

2

∫
x2 1

x
dx =

x2

2
logx− x2

4
.

Therefore∫
x(logx)2 dx =

x2

2
(logx)2 − x2

2
logx+

x2

4
+ c.
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(xi) On the one hand,
x

(1+ x2)2 =−1
2

(
1

1+ x2

)′
, so

∫ x logx
(1+ x2)2 dx =−1

2
logx

1+ x2 +
1
2

∫ dx
x(1+ x2)

dx.

On the other hand,

1
x(1+ x2)

=
A
x
+

Bx+C
1+ x2 ⇒ 1 = A(1+ x2)+Bx2 +Cx.

Setting x = 0 we obtain A = 1. Thus,

1 = 1+ x2 +Bx2 +Cx ⇒ −x2 = Bx2 +CX ⇒ B =−1, C = 0.

Hence,∫ dx
x(1+ x2)

dx =
∫ dx

x
−
∫ x

1+ x2 dx = logx− 1
2

log(1+ x2).

(Notice: we do not need to write log |x| because the logx of the integrand forces x > 0.)
Therefore,∫ x logx

(1+ x2)2 dx =− logx
2(1+ x2)

+
1
2

logx− 1
4

log(1+ x2)+ c.

(xii) Using 1 = (x)′ we get∫
arctan 3

√
xdx = xarctan 3

√
x− 1

3

∫
x

x−2/3

1+ x2/3 dx = xarctan 3
√

x− 1
3

∫ x1/3

1+ x2/3 dx.

Now,

x1/3

1+ x2/3 = x−1/3 x2/3

1+ x2/3 = x−1/3
(

1− 1
1+ x2/3

)
=

3
2

(
1− 1

1+ x2/3

)(
x2/3

)′
,

thus

1
3

∫ x1/3

1+ x2/3 dx =
x2/3

2
− 1

2
log
(

1+ x2/3
)
.

Accordingly,∫
arctan 3

√
xdx = xarctan 3

√
x−

3
√

x2

2
+

1
2

log
(

1+ 3
√

x2
)
+ c.

Problem 9.6
(i) Using the change of variable x = sec t, with dx = sec t tan t dt,∫ x2 +1√

x2 −1
dx =

∫ sec2 t +1
���tan t

sec t���tan t dt =
∫

sec3 t dt +
∫

sec t dt.

Using ∫
sec3 t dt =

1
2

sec t tan t +
1
2

log |sec t + tan t|,∫
sec t dt = log |sec t + tan t|,

∫ x2 +1√
x2 −1

dx =
1
2

sec t tan t+
3
2

log |sec t+ tan t|+c =
1
2

x
√

x2 −1+
3
2

log
∣∣∣x+√x2 −1

∣∣∣+c.
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(ii) Using the change of variable x = tan t, with dx = sec2 t dt, and the identity sec2 t = 1+ tan2 t,∫ x2

(x2 +1)5/2 dx =
∫ tan2 t

sec5 t
sec2 t dt =

∫
tan2 t cos3 t dt =

∫
sin2 t cos t dt =

1
3

sin3 t.

Since sin t =
tan t√

1+ tan2 t
,

∫ x2

(x2 +1)5/2 dx =
x3

3(x2 +1)3/2 + c.

(iii) Using the change of variable x = sin t, with dx = cos t dt,

∫ x2

(1− x2)3/2 dx =
∫ sin2 t

cos3 t
cos t dt =

∫
tan2 t dt = tan t− t+c =

x√
1− x2

−arcsinx+c.

(iv) Using the change of variable x = sin t, with dx = cos t dt,

∫ dx

x2
√

1− x2
=
∫

���cos t
sin2 t���cos t

dt =
∫

csc2 t dt =−cot t + c =−
√

1− x2

x
+ c.

(v) Using the change of variable x = 3y, with dx = 3dy,

∫ dx

x2
√

9− x2
=

3
27

∫ dy

y2
√

1− y2
=−

√
1− y2

9y
+ c =−

√
9− x2

9x
+ c.

Problem 9.7
(i) First of all we write

Im =
∫

sinm xdx =
∫

sin2 xsinm−2 xdx =
∫
(1− cos2 x)sinm−2 xdx

= Im−2 −
∫

cos2 xsinm−2 xdx.

Now, since

d
dx

sinm−1 x = (m−1)sinm−2 xcosx,

we can integrate by parts∫
cos2 xsinm−2 xdx =

1
m−1

sinm−1 xcosx− 1
m−1

∫
sinm−1 x(−sinx)dx

=
1

m−1
sinm−1 xcosx+

1
m−1

Im.

Therefore

Im = Im−2 −
1

m−1
Im − 1

m−1
sinm−1 xcosx,

which can be rewritten as(
1+

1
m−1

)
Im = Im−2−

1
m−1

sinm−1 xcosx ⇒ Im =
m−1

m
Im−2−

1
m

sinm−1 xcosx.
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(ii) Integrating by parts,

Im =
∫
(logx)m dx = x(logx)m −

∫
�xm(logx)m−1 1

�x
dx = x(logx)m −mIm−1.

(iii) Integrating by parts,

Im =
∫

xme−x dx =−xme−x +
∫

mxm−1e−x dx =−xme−x +mIm−1.

(iv) First of all,

tanm x = tanm−2 x tan2 x = tanm−2 x(tan2 x+1−1) = tanm−2 x(tanx)′− tanm−2 x.

Thus,

Im =
∫

tanm xdx =−Im−2 +
∫

tanm−2 x(tanx)′ dx.

Now, integrating by parts,∫
tanm−2 x(tanx)′ dx = tanm−1 x−

∫
(m−2) tanm−3 x(1+ tan2 x) tanxdx

= tanm−1 x− (m−2)(Im−2 + Im).

Therefore,

Im =−Im−2+ tanm−1 x−(m−2)(Im−2+Im) ⇒ (m−1)Im =−(m−1)Im−2+ tanm−1 x,

so

Im =−Im−2 +
1

m−1
tanm−1 x.

(v) First of all

secm x = secm−2 xsec2 x = secm−2 x(tanx)′,

so integrating by parts,

Im =
∫

secm xdx = tanxsecm−2 x−
∫
(m−2)secm−3 x(secx tanx) tanxdx.

But

secm−3 x(secx tanx) tanx = secm−2 x tan2 x = secm−2 x(sec2 x−1),

therefore

Im = tanxsecm−2 x−(m−2)(Im− Im−2) ⇒ (m−1)Im = tanxsecm−2 x+(m−2)Im−2,

and finally

Im =
1

m−1
tanxsecm−2 x+

m−2
m−1

Im−2.
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(vi) First of all

sinm xcosn x = sinm−1 x(−cosx)′ cosn x,=−sinm−1 x
1

n+1
(
cosn+1 x

)′
,

so integrating by parts,

Im,n =
∫

sinm xcosn xdx

=− 1
n+1

sinm−1 xcosn+1 x+
1

n+1

∫
(m−1)sinm−2 xcosxcosn+1 xdx

=− 1
n+1

sinm−1 xcosn+1 x+
m−1
n+1

∫
sinm−2 xcosn+2 xdx.

But

sinm−2 xcosn+2 x = sinm−2 xcosn xcos2 x = sinm−2 xcosn x(1− sin2 x)

= sinm−2 xcosn x− sinm xcosn x,

therefore

Im,n =− 1
n+1

sinm−1 xcosn+1 x+
m−1
n+1

(Im−2,n − Im,n),

from which

m+n
n+1

Im,n =− 1
n+1

sinm−1 xcosn+1 x+
m−1
n+1

Im−2,n,

and finally

Im,n =− 1
m+n

sinm−1 xcosn+1 x+
m−1
m+n

Im−2,n.

Problem 9.8 There is no need to calculate the integral. If the right-hand side is the primitive of the
integrand then

(
Ax+B log |ccosx+d sinx|

)′
=

acosx+bsinx
ccosx+d sinx

,

in other words,

A+B
−csinx+d cosx
ccosx+d cosx

=
acosx+bsinx
ccosx+d sinx

,

which when reduced to a single fraction becomes

(Ac+Bd)cosx+(Ad −Bc)sinx
ccosx+d cosx

=
acosx+bsinx
ccosx+d sinx

.

The two functions are the same if, and only if,

Ac+Bd = a,
Ad −Bc = b,

}
⇒ A =

ac+bd
c2 +d2 , B =

ad −bc
c2 +d2 .
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D.10 Fundamental Theorem of Calculus

Problem 10.1 For x < 0,

4− x2

(4+ x2)2 =
4+ x2 −2x2

(4+ x2)2 =
1

4+ x2 −
2x2

(4+ x2)2 .

Now, ∫ dx
4+ x2 =

1
2

arctan
x
2

and ∫ 2x2

(4+ x2)2 dx =
∫

x
2x

(4+ x2)2 dx =− x
4+ x2 +

∫ dx
4+ x2 =− x

4+ x2 +
1
2

arctan
x
2
.

Thus,

f (x) =
x

4+ x2 +a.

For x > 0, with the change t =
√

x (dx = 2t dt),

f (x) =
∫

e
√

x dx = 2
∫

tet dt = 2(t −1)et +b = 2
(√

x−1
)

e
√

x +b.

Continuity and f (0) = 0 requires f (0−) = a = 0 and f (0+) =−2+b = 0, thus

f (x) =


x

4+ x2 , x < 0,

2(
√

x−1)e
√

x +2, x ⩾ 0.

Problem 10.2
(a) Changing x =−t,

I =
∫ a

−a
f (x)dx =

∫ a

−a
f (−t)dt =−

∫ a

−a
f (t)dt =−I ⇒ 2I = 0 ⇒ I = 0.

(b) Using the same change,∫ a

−a
f (x)dx =

∫ a

0
f (x)dx+

∫ 0

−a
f (x)dx =

∫ a

0
f (x)dx+

∫ a

0
f (−t)︸ ︷︷ ︸
= f (t)

dt = 2
∫ a

0
f (x)dx.

(c) Changing t = x−8,∫ 10

6
sin
(

sin
(
(x−8)3))dx =

∫ 2

−2
sin
(

sin
(
t3))dt = 0

because the integrand is an odd function.

Problem 10.3 These are all Riemann’s sums:
(i)

lim
n→∞

n

∑
k=1

n
n2 + k2 = lim

n→∞

n

∑
k=1

1
n
· 1

1+(k/n)2 =
∫ 1

0

dx
1+ x2 = arctan1 =

π

4
.
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(ii)

lim
n→∞

1
n

n

∑
k=1

n
√

e2k = lim
n→∞

n

∑
k=1

1
n
· e2k/n =

∫ 1

0
e2x dx =

e2 −1
2

.

(iii)

lim
n→∞

n−1

∑
k=1

1√
n2 − k2

= lim
n→∞

n−1

∑
k=1

1
n
· 1√

1− (k/n)2
=
∫ 1

0

dx√
1− x2

= arcsin1 =
π

2
.

Problem 10.4
(i) For x < 0,

F(x) =
∫ x

−1
(−t)et dt = (1− x)ex − 2

e
.

For x ⩾ 0,

F(x) =
∫ 0

−1
(−t)et dt +

∫ x

0
te−t dt = 1− 2

e
+1− (1+ x)e−x = 2− 2

e
− (1+ x)e−x.

(ii) For x < 1/2,

F(x) =
∫ x

−1

(
1
2
− t
)

dt =
2+ x− x2

2
=

(2− x)(1+ x)
2

For x ⩾ 1/2,

F(x) =
∫ 1/2

−1

(
1
2
− t
)

dt +
∫ x

1/2

(
t − 1

2

)
dt =

9
4
+

(x−2)(1+ x)
2

.

(iii) For x < 0,

F(x) =
∫ x

−1
(−1)dt =−1− x.

For x ⩾ 0,

F(x) =
∫ 0

−1
(−1)dt +

∫ x

0
dt =−1+ x.

Thus, F(x) = |x|−1.

(iv) For x < 0,

F(x) =
∫ x

−1
t2 dt =

x3 +1
3

.

For x ⩾ 0,

F(x) =
∫ 0

−1
t2 dt +

∫ x

0
(t2 −1)dt =

∫ x

−1
t2 dt −

∫ x

0
dt =

x3 +1
3

− x =
x3 −3x+1

3
.

(v) For x ⩽ 0,

F(x) =
∫ x

−1
dt = x+1.

For x > 0,

F(x) =
∫ 0

−1
dt +

∫ x

0
(t +1)dt =

∫ x

−1
dt +

∫ x

0
t dt =

x2

2
+ x+1.
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(vi) For x ⩽−1/2,

F(x) =
∫ x

−1
(1+ t)dt =

(1+ x)2

2
.

For −1/2 < x < 1/2,

F(x) =
∫ −1/2

−1
(1+ t)dt +

1
2

∫ x

−1/2
dt =

1
8
+

2x+1
4

=
4x+3

8
.

For x ⩾ 1/2,

F(x) =
∫ −1/2

−1
(1+ t)dt +

1
2

∫ 1/2

−1/2
dt +

∫ x

1/2
(1− t)dt =

3
4
− (1− x)2

2
.

(vii) For −1 ⩽ x < 1/2 we have cos(πx/2)> sin(πx/2), hence

F(x) =
∫ x

−1
cos(πt/2)dt =

2
π

[
1+ sin(πx/2)

]
.

For 1/2 < x ⩽ 1 we have sin(πx/2)> cos(πx/2), hence

F(x) =
∫ 1/2

−1
cos(πt/2)dt +

∫ x

1/2
sin(πt/2)dt =

2
π

[
1+

√
2− cos(πx/2)

]
.

Problem 10.5
(i) With the change t =

√
ex −1, i.e., x = log

(
1+ t2

)
(hence dx = 2t dt/(1+ t2)), we get

∫ log2

0

√
ex −1dx =

∫ 1

0

2t2

1+ t2 dt = 2−2arctan1 =
4−π

2
.

(ii) With the change x = sec t (hence x2 −1 = tan2 t and dx = sec t tan t dt) we obtain

∫ 2

1

√
x2 −1

x
dx =

∫
π/3

0
tan2 t dt = (tan t − t)

∣∣∣π/3

0
− π

3
=
√

3− π

3
.

Problem 10.6

(i) F ′(x) =
3ex3 −2ex2

x
.

(ii) F ′(x) =
6x2

1+ sin2 (x3)
.

(iii) F ′(x) =
sin3 x

1+ sin6 (∫ x
1 sin3 t dt

)
+
(∫ x

1 sin3 t dt
)2 .

(iv) F ′(x) =
2x tanx∫ x2

1
tan

√
t dt

exp

{∫ x2

1
tan

√
t dt

}
.

(v) F ′(x) = 2x
∫ x

0
f (t)dt + x2 f (x).

(vi) F ′(x) = cos
(∫ x

0
sin
(∫ y

0
sin3 t dt

)
dy
)

sin
(∫ x

0
sin3 t dt

)
.
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Problem 10.7 f ′(x) = e−(x−1)2 −e−2(x−1), so f ′(x) = 0 when (x−1)2 = 2(x−1), i.e., when x = 1
or x = 3. Between those two values (x−1)2 < 2(x−1), and for x > 3 the opposite holds. Therefore
f ′(x)> 0 for 1 < x < 3 and f ′(x)< 0 for x > 3. Thus there is a local maximum at x = 3 —which
is the absolute maximum. To obtain the absolute minimum we need to obtain

lim
x→∞

f (x) = lim
x→∞

(∫ x−1

0
e−t2

dt −
∫ x−1

0
e−2t dt

)
=

√
π

2
− lim

x→∞

1
2

(
1− e−2(x−1)

)
=

√
π −1
2

> 0.

Since f (1) = 0, the absolute minimum is reached at x = 1.

Problem 10.8 Function f (x) =
∫ x

0
et2

dt − 1 is an increasing function because f ′(x) = ex2
> 0.

Further f (0) =−1. On the other hand, et2
> 1 for all t > 0, so

f (1) =
∫ 1

0
et2

dt −1 >
∫ 1

0
dt −1 = 0.

Therefore f (x) = 0 has a unique solution in (0,1).

Problem 10.9 F(x) is a continuous function (is the difference of two integrals) in [0,1]. On the
other hand,

F(0) = 2
���

��
∫ 0

0
f (t)dt −

∫ 1

0
f (t)dt =−

∫ 1

0
f (t)dt < 0

(it is negative because f (x)> 0 in [0,1], therefore the integral is positive), and

F(1) = 2
∫ 1

0
f (t)dt −

�
����

∫ 1

1
f (t)dt = 2

∫ 1

0
f (t)dt > 0

(it is positive for the same reason). Since F(x) has opposite signs at the extremes of the interval it
must be zero somewhere in between. Thus, the equation F(x) = 0 has at least one solution. To see
that there are no more solutions we differentiate

F ′(x) = 2 f (x)− f (x)(−1) = 3 f (x)> 0.

Therefore F(x) increases monotonically in [0,1], hence can be zero only once in the interval.

Problem 10.10 If x > 0 the equation G′(x) = 2xsin
(
x2
)

esin(x2) = 0 has solutions x =
√

nπ , with
n ∈ N. Since the exponential is always positive, the sign of G′(x) is determined by sin

(
x2
)
. So

it starts being positive and alternates sign every other solution. So
√
(2k−1)π are maxima and√

2kπ are minima (k ∈ N).

Problem 10.11 For x = 4
√

π/4 we get y = 0. On the other hand, since y′ =−2x tan
(
x4
)
, the slope

at x = 4
√

π/4 will be −2 4
√

π/4 =− 4
√

4π . This yields for the tangent straight line the equation

y =− 4
√

4π

(
x− 4
√

π/4
)
=
√

π − 4
√

4πx.

Problem 10.12 If the function must be continuous at 0 then lim
x→0−

f (x) = lim
x→0+

f (x). But

lim
x→0−

f (x) = lim
x→0

ex −1− x
x2 = lim

x→0

1+ x+ x2/2+o(x2)−1− x
x2 = lim

x→0

x2/2+o(x2)

x2

= lim
x→0

[
1
2
+o(1)

]
=

1
2
,

lim
x→0+

f (x) = lim
x→0

(
a+b

∫ x

0
e−t4

dt
)
= a+b

∫ 0

0
e−t4

dt = a.
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Hence a = 1/2. Now, for the function to be differentiable at x = 0 it must hold

lim
x→0−

f (x)− f (0)
x

= lim
x→0+

f (x)− f (0)
x

.

Since f (0) = 1/2,

lim
x→0−

f (x)− f (0)
x

= lim
x→0

ex −1− x
x2 − 1

2
x

= lim
x→0

ex −1− x− x2/2
x3

= lim
x→0

1+ x+ x2/2+ x3/6+o(x3)−1− x− x2/2
x3 = lim

x→0

x3/6+o(x3)

x3

= lim
x→0

[
1
6
+o(1)

]
=

1
6
,

lim
x→0+

f (x)− f (0)
x

= lim
x→0

1
2
+b

∫ x

0
e−t4

dt − 1
2

x
= lim

x→0

b
x

∫ x

0
e−t4

dt = b
d
dx

(∫ x

0
e−t4

dt
)∣∣∣∣

x=0

= be−x4
∣∣∣
x=0

= b.

Therefore b = 1/6.
Here is a shorter alternative. We can Taylor expand both functions up to first order. On the one

hand

ex = 1+ x+
x2

2
+

x3

6
+0(x3),

therefore

ex −1− x
x2 =

1
2
+

x
6
+o(x).

On the other hand if

g(x) =
∫ x

0
e−t4

dt

then g(0) = 0, g′(x) = e−x4
and g′(0) = 1, so

g(x) = x+o(x),

therefore

a+b
∫ x

0
e−t4

dt = a+bx+o(x).

If f (x) has to be continuous and differentiable at x = 0 both expansions must coincide up to first
order, hence we obtain the same values for a and b.

Problem 10.13
(i) Using l’Hôpital’s rule once we get

lim
x→0

ex2 −1
3x2 =

1
3
.
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(ii) Since lim
x→0

cosx = 1,

lim
x→0

cosx
x4

∫ x

0
sin
(
t3) dt = lim

x→0

1
x4

∫ x

0
sin
(
t3) dt.

Applying l’Hôpital’s rule once we get

lim
x→0

sin
(
x3
)

4x3 =
1
4
.

Problem 10.14 Using l’Hôpital’s rule once we get

lim
x→0±

2x tan |x|
6x2 = lim

x→0±

tan |x|
3x

=±1
3
.

Problem 10.15
(a) Since

sin t
t

=
∞

∑
n=0

(−1)n t2n

(2n+1)!
,

∫ x2

0
t2n dt =

x4n+2

2n+1
,

we obtain

f (x) =
∞

∑
n=0

(−1)n

(2n+1)!
x2n+2

2n+1
.

(b) 1− cosx =
x2

2
+o
(
x2) (x → 0) and f (x) = x2 +o

(
x2
)

(x → 0), so

lim
x→0

f (x)
1− cosx

= 2.

(c) The series converges because

f (1/n) =
1
n2 +o

(
1
n2

)
and

∞

∑
n=1

1
n2 < ∞.

Problem 10.16

f ′(x) =
1

a2 + x2 −
1
x2

1
a2 +1/x2 =

1
a2 + x2 −

1
a2x2 +1

,

so in order to have f ′(x) = 0 for any x we need a =±1.

Problem 10.17

(a) f (x) =
∞

∑
n=0

x2n

n!
− x2 −1 =

∞

∑
n=2

x2n

n!
. Then

g(x) =
∞

∑
n=2

x2n+1

n!(2n+1)
.

(b) Since g(x) = x5/10+o
(
x5
)

(x → 0) —i.e., the first nonzero derivative at x = 0 is the fifth—,
the point x = 0 is an inflection point.

Problem 10.18
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(a) dt = 2sinθ cosθ dθ = sin2θ dθ , therefore

I =
∫ 1

0
arcsin

√
t dt =

∫
π/2

0
arcsin(sinθ) sin2θ dθ =

∫
π/2

0
θ sin2θ dθ .

We can now integrate by parts, where u = θ and v′ = sin2θ , and then

I =−θ

2
cos2θ

∣∣∣∣π/2

0
+

1
2

∫
π/2

0
cos2θ dθ =

π

4
+

1
4

sin2θ

∣∣∣π/2

0
=

π

4
+0.

Thus ∫ 1

0
arcsin

√
t dt =

π

4
.

(b) Differentiating,

f ′(x) = 2sinxcosxarcsin(sinx)−2cosxsinxarccos(cosx) = xsin2x− xsin2x = 0.

Therefore f (x) is constant.

(c) We can calculate c by substituting any value of x, for instance x = π/2. Then

c = f (π/2) =
∫ 1

0
arcsin

√
t dt +

∫ 0

0
arccos

√
t dt =

∫ 1

0
arcsin

√
t dt.

But this is precisely the integral we have obtained in (a), so c = π/4.

Problem 10.19
(a) Setting x = 0 in the equation∫ g(0)

0

(
et2

+ e−t2
)

dt = 0.

Since the integrand is a strictly positive function, the only possibility for this equation to hold
is that g(0) = 0.

Differentiating,

g′(x)
(

eg(x)2
+ e−g(x)2

)
= 3x2 +

3
1+ x2 ,

thus, using g(0) = 0, we obtain g′(0) = 3/2.

Finally, we know that g(0) = 0 so g−1(0) = 0. Then

(
g−1)′ (0) = 1

g′ (g−1(0))
=

1
g′(0)

=
2
3
.

(b) Since it is an indeterminacy 0
0 we can use l’Hôpital’s rule and calculate

lim
x→0

(
g−1
)′
(x)

g′(x)
=

(
g−1
)′
(0)

g′(0)
=

2/3
3/2

=
4
9
.

Problem 10.20
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(a) With this change of variables the limits remain the same, so

I =
∫

π

0
x f (sinx)dx =

∫
π

0
(π − y) f (sin

(
π − y)

)
dy.

But since sin(π − y) = siny, we have

I =
∫

π

0
(π − y) f (siny)dy = π

∫
π

0
f (siny)dy− I.

Thus

I =
π

2

∫
π

0
f (sinx)dx.

(b) Since

sinx
1+ cos2 x

=
sinx

2− sin2 x
= f (sinx),

we are in the situation described in the previous item. Hence

I =
∫

π

0

xsinx
1+ cos2 x

dx =
π

2

∫
π

0

sinx
1+ cos2 x

dx =−π

2

∫
π

0

(cosx)′

1+ cos2 x
dx

=−π

2
arctan(cosx)

∣∣∣π
0
=−π

2
(−2arctan1) =

π2

4
.

Problem 10.21 Differentiating the equation,

f (x) =−x2 f (x)+2x15 +2x17 ⇒ (1+ x2) f (x) = 2x15(1+ x2) ⇒ f (x) = 2x15.

Now substituting back into the equation and setting x = 1,∫ 1

0
f (t)dt =

1
8
+

1
9
+ c ⇒ t16

8

∣∣∣∣1
0
=

1
8
+

1
9
+ c ⇒ 1

8
=

1
8
+

1
9
+ c ⇒ c =−1

9
.

Problem 10.22 By definition f (x)∼ g(x) (x → a) if

lim
x→a

f (x)
g(x)

= 1.

In our case we have to calculate the limit

ℓ= lim
x→∞

∫ x
0 et2

dt
ex2

/2x
.

Since this is a ∞

∞
indeterminacy, we can apply l’Hôpital and obtain

ℓ= lim
x→∞

ex2

(4x2ex2 −2ex2
)/4x2

= lim
x→∞

4x2

4x2 −2
= 1.

This proves the equivalence.

Problem 10.23
(a) R0(x) =

∫ x

a
f ′(t)dt = f (x)− f (a).

(b) Rn(x) =
1
n!

[
(x− t)n f (n)(t)

∣∣∣x
a
+n

∫ x

a
(x− t)n−1 f (n)(t)dt

]
=− f (n)(a)

n!
(x−a)n +Rn−1(x).
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(c) Using the recurrence iteratively we obtain

R0(x) = f (x)− f (a),

R1(x) = f (x)− f (a)− f ′(a)(x−a),

R2(x) = f (x)− f (a)− f ′(a)(x−a)− f ′′(a)
2

(x−a)2,

...

Rn(x) = f (x)− f (a)− f ′(a)(x−a)−·· ·− f (n)(a)
n!

(x−a)n.

In other words, Rn(x) = f (x)−Pn,a(x), where Pn,a(x) is Taylor’s polynomial of f (x) at the
point a. Function Rn(x) is therefore the remainder of order n of Taylor’s approximation.
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D.11 Geometric Applications of Integrals

Problem 11.1
(i) Here is the figure delimited by the three curves:

y = x2 and y = (x− 2)2 meet at x = 1; y = x2 and y = (2− x)/6 meet at x = 1/2; and
y = (x−2)2 and y = (2− x)/6 meet at x = 11/6 and x = 2. The area enclosed by this three
curves is calculated as

A =
∫ 1

1/2

(
x2 − 2− x

6

)
dx+

∫ 11/6

1

(
(x−2)2 − 2− x

6

)
dx =

71
162

.

(ii) Here is the figure delimited by the two circumferences:

They meet at x = 1/2. By symmetry,

A = 4
∫ 1

1/2

√
1− x2 dx = 4

∫
π/2

π/6
cos2 t dt = 2

∫
π/2

π/6
(1+ cos2t)dt =

2π

3
−

√
3

2
,

using the change x = sin t and the identity 2cos2 t = 1+ cos2t.

(iii) Here is the figure delimited by the four curves:
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The area is then

A =
∫ 1/2

0

(
1− 1− x

1+ x

)
dx+

∫ 1

1/2

(
2− x
1+ x

− 1− x
1+ x

)
dx+

∫ 2

1

2− x
1+ x

dx

=
∫ 1/2

0

2x
1+ x

dx+
∫ 1

1/2

dx
1+ x

+
∫ 2

1

2− x
1+ x

dx = 1−2log(1+ x)
∣∣∣1/2

0
+ log(1+ x)

∣∣∣1
1/2

+3log(1+ x)
∣∣∣2
1
−1 =−2log(3/2)+ log2− log(3/2)+3log3−3log2 = log2.

The result is easier to obtain if we express the curves as

x =
1− y
1+ y

, x =
2− y
1+ y

,

for then

A =
∫ 1

0

(
2− y
1+ y

− 1− y
1+ y

)
dy =

∫ 1

0

dy
1+ y

dy = log2.

(iv) Here is the figure delimited by the curve:

By symmetry, the area is

A = 2
∫ b

a
(b− x)

√
x−adx = 2

∫ b

a

[
(b−a)− (x−a)

]√
x−adx =

8
15

(b−a)5/2.

Problem 11.2 Given the figure

the area is obtained, by symmetry, as

A =2
∫ 1

0

x(1− x2)

(x2 +1)3/2 dx = 2
∫

π/4

0
tan t(1− tan2 t︸ ︷︷ ︸

=2− 1
cos2 t

)cos3 t
dt

cos2 t
= 2

∫
π/4

0

(
2sin t − sin t

cos2 t

)
dt

=4(−cos t)
∣∣∣π/4

0
− 2

cos t

∣∣∣∣π/4

0
= 6−4

√
2,

where we have made the change of variable x = tan t and used the identity 1+ tan2 x = 1/cos2 x.
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Problem 11.3
(i) Here is the figure:

The area is obtained as

A =
1
2

∫ 2π

0
a2

θ
2 dθ =

4
3

π
3a2.

(ii) Here is the figure:

The area is obtained, by symmetry, as

A =
∫

π/6

0
a2 cos2 3θ dθ =

a2

2

∫
π/6

0
(1+ cos6θ)dθ =

π

12
a2.

(iii) Here is the figure:

The area is obtained, by symmetry, as

A =
∫

π/4

0
a2 cos2θ dθ =

a2

2
.

Problem 11.4
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(a) Both curves meet at x = 0 and x = 1, and within [0,1] we have
√

x ⩾ x2. Then

A =
∫ 1

0

(√
x− x2) dx =

1
3
.

(b)

V = π

∫ 1

0
xdx−π

∫ 1

0
x4 dx =

3π

10
.

Problem 11.5
(i)

V =π

∫ 2π

0
(1+ sinx)2 dx = π

∫ 2π

0

(
1+2sinx+ sin2 x

)
dx

= π

∫ 2π

0

(
3
2
+2sinx− 1

2
sin2x

)
dx = 3π

2.

(ii)

V =
4
3

π(2R)3 − 4
3

πR3 =
28
3

πR3.

(iii) Since x ⩾ sinx within [0,π],

V =π

∫
π

0

(
x2 − sin2 x

)
dx = π

∫
π

0

(
x2 − 1

2
+

1
2

sin2x
)

dx =
π4

3
− π2

2
.

Problem 11.6
(i)

V =π

∫ a

−a
b2
(

1− x2

a2

)
dx =

4
3

πb2a.

(ii)

V = 4π

∫ a

0
xb

√
1− x2

a2 dx =−4
3

πba2
(

1− x2

a2

)3/2
∣∣∣∣∣
a

0

=
4
3

πba2.

(iii) The area of the triangular section at x will be

a(x) = 2b

√
1− x2

a2 ,

hence

V = 2b
∫ a

−a

√
1− x2

a2 dx = 2ab
∫

π/2

−π/2
cos2

θ dθ = ab
∫

π/2

−π/2
(1+ cos2θ)dθ = πab,

using the change of variable x = asinθ .

Problem 11.7
(a) By symmetry

A =2
∫ a

−a
b

√
1− x2

a2 dx = πab

(see Problem 11.6(iii)).
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(b) Rewrite the equation of the ellipsoid

x2

a2 +
y2

b2 = 1− z2

c2 ⇒ x2

a(z)2 +
y2

b(z)2 = 1,

where

a(z) = a

√
1− z2

c2 , b(z) = b

√
1− z2

c2 .

This means that the sections of the ellipsoid perpendicular to the Z axis are ellipses, with
axis a(z) and b(z) (−c ⩽ z ⩽ c). Their area is A(z) = πa(z)b(z) (see (a)), therefore

V = πab
∫ c

−c

(
1− z2

c2

)
dz =

4
3

πabc.

(c) If the ellipse
x2

a2 +
y2

b2 = 1 rotates around the X axis, it generates an ellipsoid with c= b, hence

V = 4πab2/3. If it does around the Y axis, the ellipsoid will have c = a, hence V = 4πa2b/3.

Problem 11.8

(i) r(x)=
(
x,ex/2 + e−x/2

)
, thus r′(x)=

(
1,(ex/2 − e−x/2)/2

)
and ∥r′(x)∥=

√
1+ sinh2(x/2)=

cosh(x/2). Accordingly

L =
∫ 2

0
cosh

x
2

dx = 2sinh1 = e− e−1.

(ii) r′(t) =
(
a(1− cos t),asin t

)
,

∥r′(t)∥= a
√

(1− cos t)2 + sin2 t = a
√

2(1− cos t) = 2a
∣∣∣sin

t
2

∣∣∣
Therefore

L = 2a
∫ 2π

0
sin

t
2

dt = 4a
∫

π

0
|sinu|du = 8a.

(iii) One arc of the curve can be parametrised r(x) =
(
x,(4− x2/3)3/2

)
, where 0 ⩽ x ⩽ 8 (the

other three have identical length). Thus r′(x) =
(
1,−x−1/3(4− x2/3)1/2

)
and ∥r′(x)∥ =√

1+ x−2/3(4− x2/3) = 2x−1/3. Accordingly

L = 8
∫ 8

0
x−1/3 dx = 48.

(iv) Taking r(x) =
(
x,y(x)

)
we get, after a lengthy calculation,

r′(x) =

(
1,−

√
a2 − x2

x

)
⇒ ∥r′(x)∥=

√
1+

a2 − x2

x2 =
a
x
.

Therefore

L = a
∫ a

a/2

dx
x

= a log2.
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(v) The parametrisation is r(θ) =
(
r(θ)cosθ ,r(θ)sinθ

)
, so

r′(θ) =
(
r′(θ)cosθ − r(θ)sinθ ,r′(θ)sinθ + r(θ)cosθ

)
and therefore, using cos2 θ + sin2

θ = 1,

∥r′(θ)∥=
√

r′(θ)2 + r(θ)2 =

√
sin2

θ +(1+ cosθ)2 =
√

2(1+ cosθ) = 2
∣∣∣∣cos

θ

2

∣∣∣∣ .
Accordingly,

L = 2
∫ 2π

0

∣∣∣∣cos
θ

2

∣∣∣∣ dθ = 4
∫

π

0
|cos t|dt = 8

∫
π/2

0
cos t dt = 8.
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