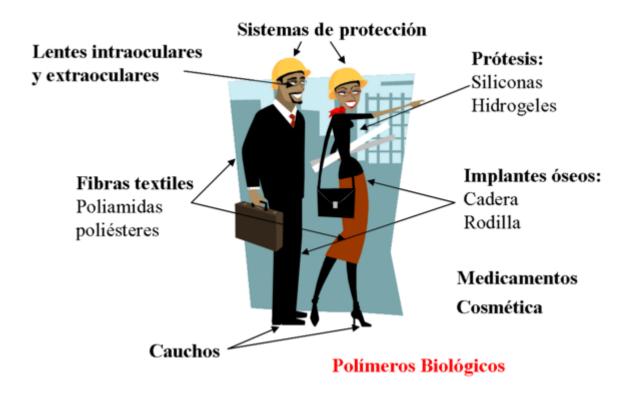
uc3m Universidad Carlos III de Madrid

Curso OpenCourseWare


QUÍMICA DE LOS MATERIALES

Javier Pozuelo de Diego

Tema 6. Materiales metálicos, cerámicos y polímeros (III)

Polímeros en nuestro entorno

Polímeros en la construcción

Materiales estructurales

Mobiliario

Recubrimientos:

Suelos Paredes

Aislantes:

Térmicos Acústicos Eléctricos

Ventanas inteligentes

Saneamientos

Tuberías Desagües Polímeros en automoción

Polímero

Compuesto orgánico, natural o sintético, de elevado peso molecular constituido por unidades estructurales repetitivas o lo que es igual cadenas de gran tamaño formadas por la unión covalente de varias unidades monoméricas (**macromolécula**)

Plástico

Aquellos polímeros cuya propiedad fundamental es la plasticidad (**termoplásticos**). Se deforma plásticamente bajo acción de presión y/o calor

Mezcla (de un polímero con los aditivos y cargas) que pueda ser transformada por flujo o moldeo en forma líquida o fundida

Características generales

	Ventajas	Aplicaciones	
↓ Tf	Fácil procesado	Productos de elevado consumo	
ε↓	Elevada ductilidad	Neumáticos. Plásticos para embalaje	
ρ↓	Productos ligeros	automóvil, aeronautica y aeroespacial	
↑σt	Aislantes térmicos	Construcción	
$\downarrow_{\sigma e}$	Aislantes eléctricos	Recubrimiento de cables	
↑ Rquímica	Elevada R _{corrosión}	Tuberías. Recipientes. Recubrimientos	

Polimerización

Consiste en una secuencia de reacciones químicas desde los monómeros a los polímeros

	1838 Vulcanización del caucho
	1846 Nitrato de celulosa
	1870 Celuloide
	1907 Baquelita
Antecedentes Históricos	1920 Hipótesis macromolecular (Staudinguer)
Antecedentes Historicos	1926 Poli cloruro de vinilo (PVC)
	1933 Polietileno (PE)
	1938 Nailon (fibras)
	1939 Poliestireno (PS)

1954 Polipropileno (PP)1960 Aplicaciones de Resinas Epoxi198- Polímeros de altas prestaciones

Posibilidades de polimerización

Existen diferentes posibilidades de polimerización, de tal forma que un monómero puede originar varios tipos de polímero y la combinación de varios monómeros pueden crear innumerables tipos de polímero

Grado polimerización (Xn): Es el número de unidadesrepetitivas en la cadena

Tipos de polimerización: Poliadición y policondensación

Polimerización por Adición o en cadena, Poliadición

Se produce por apertura de doble enlace

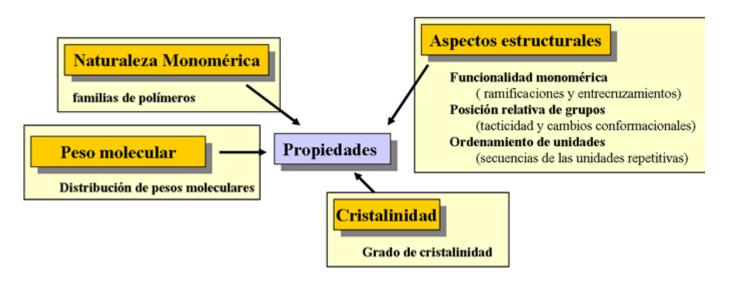
Puede ser radicálica, iónica (cationica o aniónica) o de coordinación

Ejemplo:
$$CH_2 = CH_2 \longrightarrow (-CH_2 - CH_2 -)_x$$

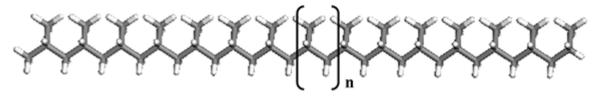
etileno \longrightarrow polietileno

4

Mecanismo de polimerización radicálica


Polimerización por condensación o en etapas

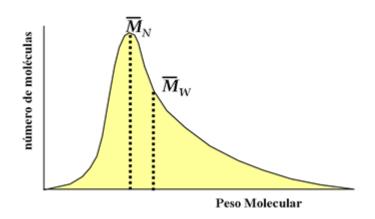
Se produce reacción entre dos grupos funcionales distintos y se libera una molécula pequeña.


Ejemplo: síntesis de una poliamida a partir del correpondiente aminoácido.

Conceptos Generales

Las propiedades de los polímeros dependen de múltiples factores:

El peso molecular


El peso molecular de una cadena i será:

 $\boldsymbol{M_{\scriptscriptstyle t}} = \boldsymbol{M_{\scriptscriptstyle 0}} \cdot \boldsymbol{X_{\scriptscriptstyle t}} \qquad Donde: \quad \boldsymbol{M_{\scriptscriptstyle 0}} = \boldsymbol{M} \big(\text{unidad repetitiva} \, \big) \, \mathbf{y} \, \, \mathbf{X_{\scriptscriptstyle i}} = \mathbf{grado} \, \, \mathbf{de} \, \mathbf{polimerizaci\'{o}} \mathbf{n}$

En poliadición: $M_0 = M$ (monómero) En policondensación: $M_0 \neq M$ (monómero)

Distribución de pesos moleculares

En las reacciones de polimerización la terminación puede ocurrir en cualquier instante, esto hace que cada cadena tenga pesos moleculares distintos

Peso Molecular promedio en número $\overline{M}_N = \sum_{i=1}^N M_i x_i$

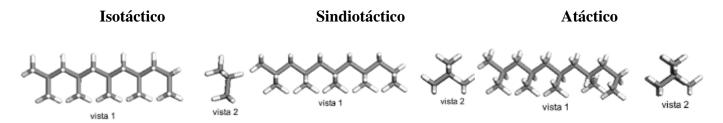
Peso Molecular promedio en peso $\overline{M_W} = \sum_{i=1}^{N} M_i w_i$

Polidispersidad: $\alpha = \frac{\overline{M_W}}{\overline{M_N}}$

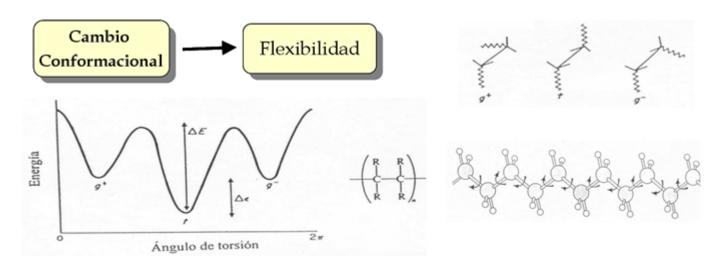

Aspectos Estructurales

Funcionalidad monomérica

Polímeros lineales; func=2 Polímeros ramificados; func>2 Polímeros entrecruzados; func>2



Posición relativa de los grupos


Tacticidad

Secuencia en copolímeros

Homopolímero Copolímero al ternante Copolímero al azar Copolímero de bloques

Estado Conformacional

Cristalinidad

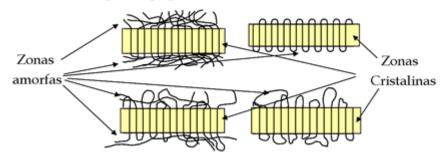
Empaquetamiento cadenas macromoleculares para producir una disposición atómica con un ordenamiento periódico

En un polímero existirán regiones amorfas y regiones cristalinas

- Las propiedades dependen del grado de cristalinidad
 - La cristalización aumenta el empaquetamiento ρ = den Donde:
- La densidad de las regiones cristalinas será mayor que la densidad de las regiones amorfas.

grado de cristalini dad = $\frac{\rho_c(\rho - \rho_a)}{\rho(\rho_c - \rho_a)}$

 ρ = densidad total


Donde: $\rho_c = \text{densidad zona cristalina}$

 ρ_a = densidad zona amorfa

Morfología de los cristales poliméricos

• Monocristales poliméricos

Diferentes tipos de plegamientos

• Esferulitas. Son sistemas cristalinos de los polímeros

•

Factores que afecfan a la cristalinidad

Velocidad de enfriamientoMientra mayor es la velocidad de enfriamiento mayor es el número de

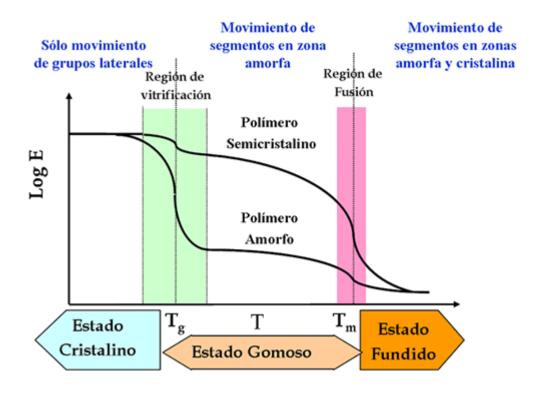
cristales y menor es el tamaño de ellos

Configuración de cadenasLas estructuras monoméricas complejas disminuye el grado depoliméricascristalinidad

Los Polímeros lineales tienen mayor grado de empaquetamiento por tanta tiene mayor grado cristalinidad

Los Polímeros ramificados tienen menor grado cristalinidad

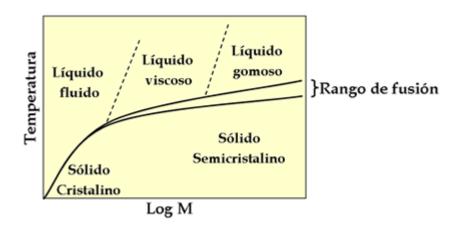
Polímeros Atácticos pueden ser amorfos


Polímeros Isotácticos o sindiotácticos son más cristalinos

Polímeros de condensación lineales suelen ser cristalinos

Transiciones térmicas

Temperatura de Fusión, Tm


Temperatura de Transición Vítrea, Tg

Factores que influyen en Tm

Peso molecular

Al aumentar M se disminuye la movilidad, esto aumenta el orden, por lo que es más difícil fundirlo, aumenta Tm

Flexibilidad

Un aumento de la flexibilidad provoca un aumento de la entropía, los que hace que disminuya la temperatura de fusión.

En el equilibrio $\Rightarrow \Delta G=0 \Rightarrow T_m = \Delta H/\Delta S$

Polímero	T _m (° C)	T _g (° C)
Polietileno (HDPE)	137	-120
Polipropileno (atáctico)	176	-20
Poliestireno (cristal)	239	90

Ramificaciones

Si aumentan las ramificaciones aumenta el Volumen libre, esto hace que disminuya la Cristalinidad y a su vez disminuya Tm

Interacciones intermoleculares

Si aumentan las Interacciones las cadenas se ordenan con mayor facilidad, esto hace que aumente la Cristalinidad y a su vez aumente Tm. (Ej: grupos polares y enlaces de hidrógeno)

Factores que influyen en Tg

Al aumenta el peso molecular disminuye la movilidad y por tanto aumenta Tg

Peso molecular

$$T_{\rm g} = T_{\rm g(\infty)} - \frac{C}{M}$$

Flexibilidad

Al aumentar la flexibilidad aumenta la movilidad de las cadenas, dismunuye la energía conformacional y aumenta la entropía, por lo que disminuye Tg

Al aumentar la Simetria disminuye el momento dipolar y por tanto disminuye

la Tg

Interacciones Si aumentan la Interacciones aumenta la energía necesaria para poder moverse

intermoleculares y por tanto aumenta la Tg

[-CH ₂ -CHX-] _n con X	T _g (°C)
-H (PE)	-110
-CH ₃ (PP)	-20
-Cl (PVC)	81
-C=N (AN)	97
-C ₆ H ₅ (PS)	100

Tipos de Polímeros

Termoplásticos

Son polímeros lineales o ramificados, pero no entrecruzados.

Se hacen fluidos: por calentamiento y/o presión toman una forma determinada que se mantiene una vez enfriado. Este proceso puede repetirse, en principio, indefinidamente.

La mayoría se obtienen por adición

Termoplásticos de uso común:

Polietileno (PE)	$\begin{bmatrix} -CH_2-CH_2- \end{bmatrix}_{\!\scriptscriptstyle 0}$	
Polipropileno (PP)	$\left[-CH_2-CH(CH_3)-\right]_{e}$	
Poliestireno (PS)	$\left[-CH_2-CH(C_6H_5)-\right]_n$	
Policloruro de vinilo (PVC)	$\begin{bmatrix} -CH_2 - CHCI - \end{bmatrix}_a$	

Termoplásticos de ingeniería:

Poliamidas (PA)	[-NH-COR-],
Poliésteres	$[-R-COOR-]_n$
Polióxidos (POM, POE,)	$[-R-O-R'-]_{\eta}$
Policarbonatos (PC)	$[-R-O-CO-O-R'-]_{\scriptscriptstyle{0}}$

Termoestables

Estructura entrecruzada y son infusibles e insolubles

Para dar forma se realiza con un intermedio(termoendurecible) y posteriormente se realiza un entrecruzamiento

La mayoría obtenidos por poliadición

Ejemplos:

Resinas epoxi (EP), Poliuretanos (PU), Resinas fenólicas,

Elastómeros

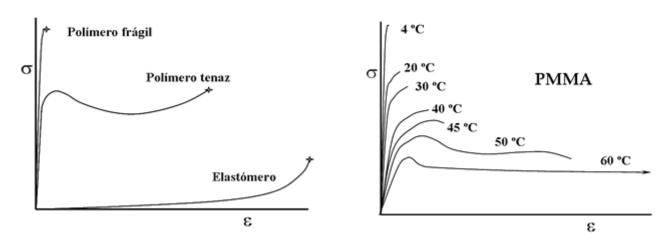
Estructuras poco entrecruzadas, insolubles, infusibles pero hinchan.

Caucho natural (NR)
$$[-CH_2-C(CH_3)=CH-CH_2-]_n$$
Polibutadieno (PB) $[-CH_2-CH=CH-CH_2-]_n$ Copolímeros Butadieno:Estireno(SBR)

propiedades generales de los tres tipos de polímeros

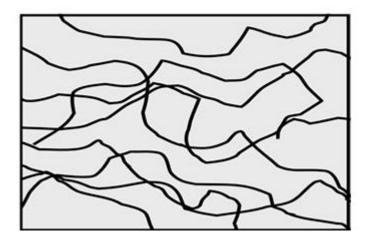
	Termoplásticos	Termoestables	Elastómeros
Calor	Funde	No funde	No funde
Disolventes	Solubles	Insolubles	Insolubles, se hinchan
Estructura	Lineales	Entrecruzados	Poco entrecruzados
Cristalinidad	Amorfos o cristalinos	Amorfos	Amorfos
Prop. Mecánicas	Rígidos a T <t<sub>g E $\approx 10^3$ MPa</t<sub>	Rígidos, $\varepsilon \approx 4\%$ E $\approx 10^4$ MPa	ε≈ 100-1000% E bajos≈ MPa
Procesado	Sin reacción química	Con reacción química	Con reacción química
Ejemplos	PE, PP, PVC, Poliamidas, Poliésteres	Resinas epoxi, Resinas fenol-formaldehido	Caucho, Polibutadieno, Poliisopreno.

Propiedades Mecánicas de los Polímeros


Curvas tensión-deformación en polímeros

Módulo de elasticidad (entre 0,01 y 4 GPa)

Resistencia a rotura (10 a 100 MPa)


Deformación porcentual a rotura (2 a 1000 %)

Sus propiedades mecánicas cambian mucho con la temperatura

Mecanismo de deformación

El proceso de deformación se produce mayoritariamente en las zonas amorfas, las cadenas se orientan en la dirección de la tensión, cristalizan y rompen.

Factores que influyen en comportamiento mecánico

Cuanto mayor es el **Peso molecular** mayor es la resistencia a la tracción

Cuanto mayor es la **cristalinidad** mayores son: La rtesistencia a la tracción, el módulo elástico y la densidad

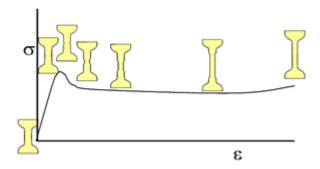
grupos laterales

Grupos voluminosos aumentan la rigidez, la resistencia a la tensión R y disminuye la ductilidad

grupos polares

Aumentan las fuerzas intermoleculares lo que aumenta la resistencia a la tensión

Predeformación. Aumenta la resistencia a la tracción y disminuye la elengación

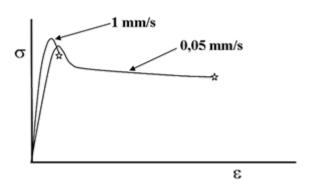

Deformación macroscópica:

Los segmentos de cadena se orientan cuando aparece la estricción

Aumenta la resistencia en la zona donde se orientan las cadenas

Crece la estricción en lugar de hacerse más aguda

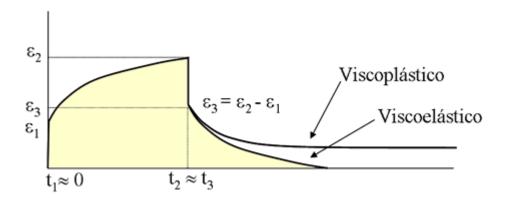
Se prolonga la estricción y el ordenamiento de cadenas


Comportamiento viscoelástico de polímeros

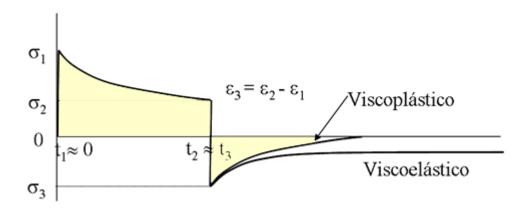
Las propiedades mecánicas dependen de la velocidad de deformación

Si aumenta la velocidad de Deformación:

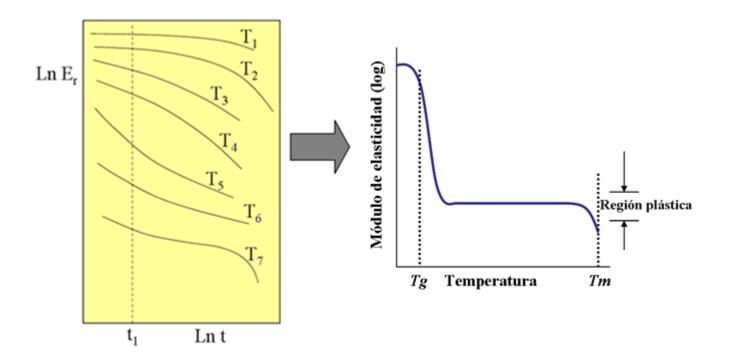
Aumenta la fragilidad


Aumenta la dificultad para el desenredo

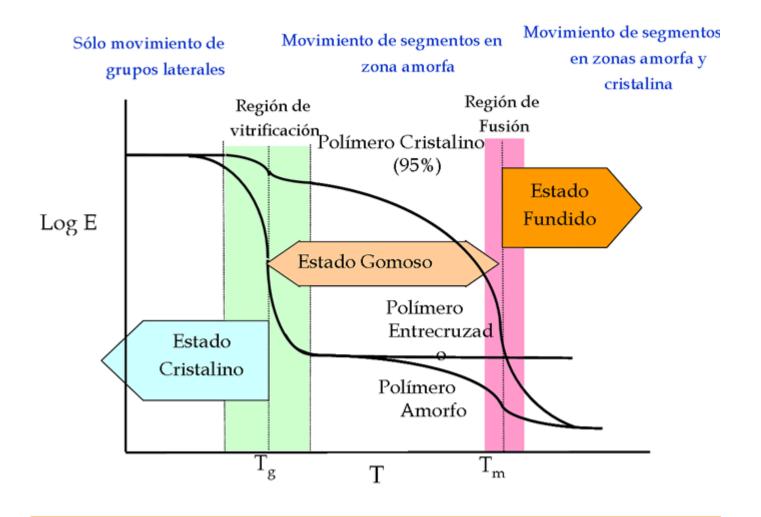
Ensayos a baja velocidad de deformación: fluencia y relajación


Ensayo de fluencia $\sigma = cte \ y \ \epsilon = f(t)$

Material viscoelástico : ϵ = 0 tras un tiempo de σ = 0 (recupera) Material viscoplástico : ϵ ≠ 0 tras un tiempo de σ = 0 (no recupera)


Ensayo de relajación ε = cte y σ = f (t)

Material viscoelástico : σ = 0 tras un tiempo de ε = 0 (recupera) Material viscoplástico : σ ≠ 0 tras un tiempo de ε = 0 (no recup.)

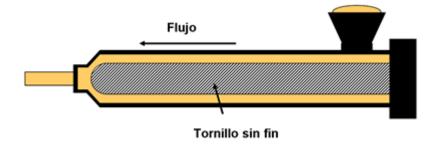


Módulo de Elasticidad

Se mide σ = f (t) a diferentes Temperaturas **Siendo** E_r = σ (t)/ ϵ_0 , módulo de relajación viscoelástica Con los valores para t_1 se construye E vs. T

Comportamiento del Módulo de elasticidad

Fundamentalmente han sido desarrollados para termoplásticos (más eficaces en tiempo y economía)


Procesos de transformación

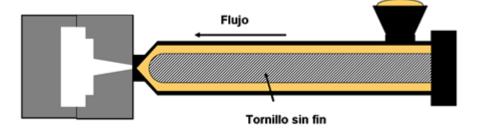
La temperatura y la viscosidad son parámetros críticos

Los polímeros se procesan con aditivos, estabilizantes, cargas,

Extrusión

El extrusor es un tornillo de Arquímedes alimentado por una tolva y terminado en un dado que da forma al extruido Obtención de perfiles, tubos, ... (sección constante). Es el proceso que transforma mayor nº de Toneladas/año

La parte más complicada e importante es el husillo (tornillo) Son derivados de este proceso la extrusión soplado, la extrusión de láminas y el soplado de películas

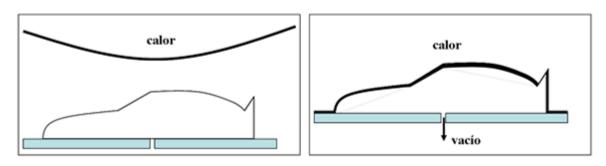

Inyección

Es el Proceso más versáatil y que produce mayor nº de piezas/año

Se introduce el polímero fundido dentro de un molde

La parte más importante es el molde

Son derivados de este proceso inyección-soplado, inyección reactiva en molde (RIM), ...


Moldeo rotacional o rotomoldeo

Se introduce el material en forma de granza dentro del molde que se calienta mientras gira simultáneamente en dos direcciones.

Termoconformado

Una lámina se calienta y se moldea por presión y/o vacío.

Fabricación de espumas poliméricas y EPS

Se genera un gas en la masa de plástico fundido que lo espuma

