uc3m Universidad Carlos III de Madrid

OpenCourseWare

Database

Tema 1. Introduction

Lourdes Moreno López
Paloma Martínez Fernández
José Luis Martínez Fernández
Rodrigo Alarcón García

Content

- Introduction. Database Systems History
- Database. Database Management Systems (DBMS).
 Database Users
- Development Methodology. Data Modelling. Data Model

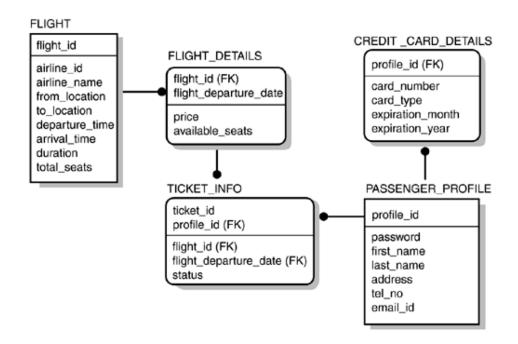
Fuente: https://pxhere.com/es/photo/1571969 (CCO Dominio publico)

Learning objectives

- The student should be able to:
 - Know in a broad way, what is a database and its importance in nowadays
 - Know in a broad way, what is a Database Management System (DBMS)
 - Know in a broad way, the methodology for design a database

Introduction. Database Systems History

- Database systems are an essential component of our life
- Most of us make activities every day that involve a database, examples:
 - Going to the bank to deposit or withdraw funds
 - Making a hotel or airline reservation
 - Accessing a computerized library catalog to search for a bibliographic item
 - Purchasing something online
- Because these activities involve a computer accessing a database.



Example: App for making an airline reservation (flight)

booking)

Fuente: https://www.pexels.com/es-es/foto/personaque-usa-la-aplicacion-google-maps-a-traves-de-untelefono-inteligente-android-negro-35969/

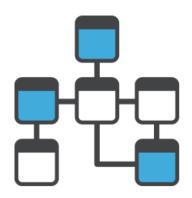
- These applications are traditional database applications
- These database systems are called SQL systems
- The most of the information that is stored is either textual or numeric
- Examples:

- Dates
- Phone numbers
- Social security numbers
- Credit card numbers
- Customer names
- Addresses
- Product names and numbers
- Transaction information

 The proliferation of social media Web sites, such as Facebook, Twitter, ... have led to new applications of database systems

• Example: Personalized Recommendation System for e-Commerce

- New types of database systems have been created referred to as big data storage systems, or No-SQL systems
- These database systems store nontraditional data such as tweets, images, video, documents
- Examples:
- Text files
- Reports
- Email messages
- Audio files
- Video files
- Images
- Surveillance imagery



- 1950s and early 1960s:
 - Data processing using magnetic tapes for storage
 - Tapes provide only sequential access
 - Punched cards for input

- Late 1960s and 1970s:
 - Hard disks allow direct access to data
 - Network and hierarchical data models in widespread use
- Ted Codd defines the relational data model
 - Would win the ACM Turing Award for this work
 - IBM Research begins System R prototype
 - UC Berkeley begins Ingres prototype
- High-performance (for the era) transaction processing

- <u>1980s:</u>
 - Research relational prototypes evolve into commercial systems
 - SQL becomes industry standard
 - Parallel and distributed database systems
 - Object-oriented database systems

<u>1990s:</u>

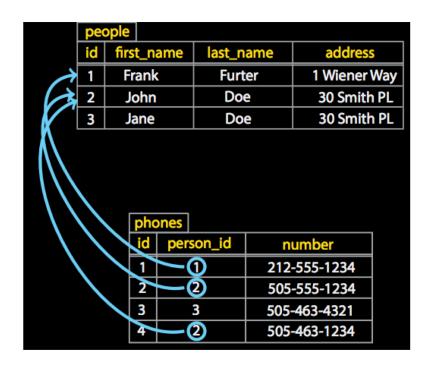
- Large decision support and data-mining applications
- Large multi-terabyte data warehouses
- => Emergence of web commerce applications

Fuente: https://www.pexels.com/es-es/foto/telefono-inteligente-ordenador-portatil-macbook-tecnologia-6214479/

<u>2000s:</u>

- XML and XQuery standards
- Automated database administration
- Increasing use of highly parallel database systems => Web-scale distributed data storage systems

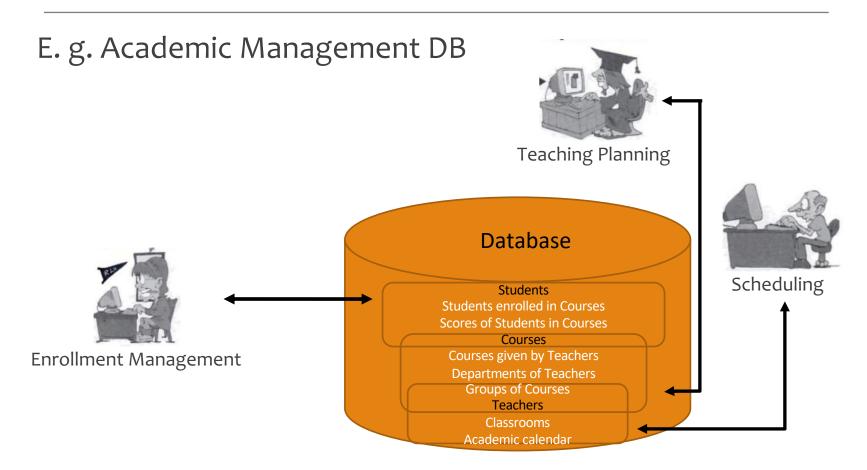
<u>2010s:</u>


- New types of database systems were necessary to manage these huge databases:
 - systems that would provide fast search and retrieval as well as reliable and safe storage of nontraditional types of data, such as social media posts and tweets —
- The proliferation of applications and platforms such as social media Web sites, large e-commerce companies, Web search indexes, and cloud storage/backup led to a surge in the amount of data stored on large databases and massive servers
- => Emergence of Big Data Storage Systems and NOSQL Databases

Database. Database Management Systems (DBMS). Database Users

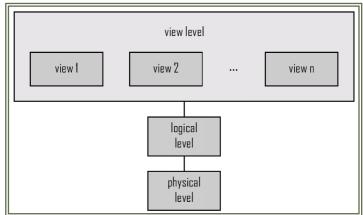
Database

- A database is a collection of related data
 - E. g.: names, telephone numbers, and addresses of the people

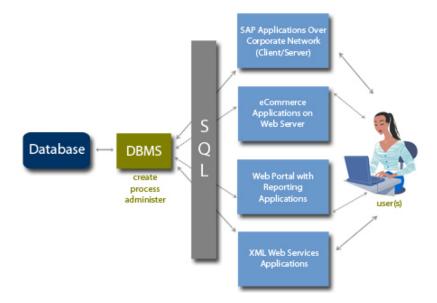


Database

- A database
 - represents some aspect of the real world, called the universe of discourse or miniworld
 - is a logically coherent collection of data with some inherent meaning
 - is designed and built with data for a specific purpose


Database

Database Three-levels Architecture


- View level: includes a user views of application programs which hide details of data types.
- Logical level: describes data stored in database, and the relationships among the data.
- Physical level: describes how a record is stored.

DataBase Management Systems (DBMS)

• The DataBase Management System (DBMS) is a generalpurpose software system that facilitates the processes of defining, constructing, manipulating, and sharing databases among various users and applications.

DataBase Management Systems (DBMS)

- Functions provided by the DBMS include:
 - manipulating a database includes functions such as:
 - querying the database to retrieve specific data
 - updating the database to reflect changes in the miniworld
 - generating reports from the data
 - protecting the database and maintaining it over a long period of time
 - a security protection against unauthorized or malicious access

Database Users

- Database Administrators
- Database Designers
- End Users
- System analysts and Application Programmers (Software Engineers)

Fuente: https://www.pexels.com/es-es/foto/foto-de-mujer-con-laptop-3194518/

Database Users Database Administrators

- Database Administrators coordinate all the activities of the database system
 - Administrator has a good understanding of the enterprise's information resources and needs.

Fuente: https://www.pexels.com/es-es/foto/mujer-de-pie-mientras-lleva-portatil-1181354/

Database Users Database Administrators

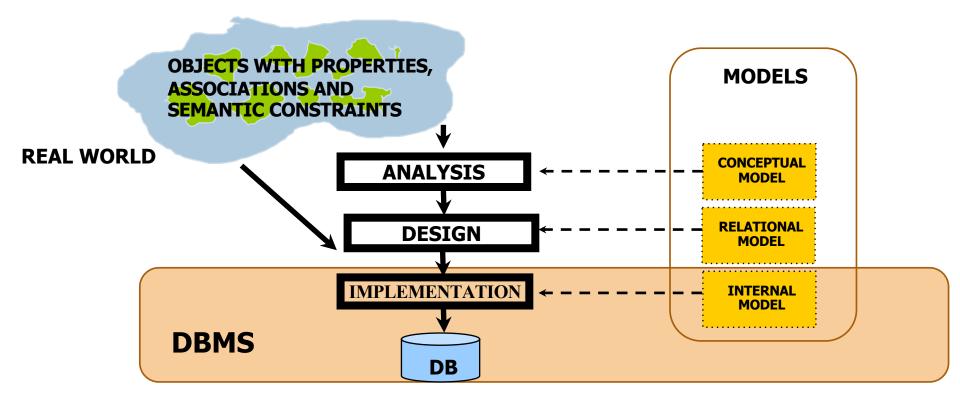
- Database administrator's duties include:
 - Defining storage structure and access method
 - Modifying schema and physical organization
 - Granting users authority to access the database
 - Backing up data
 - Monitoring performance and responding to changes

Database Users Database Designers

- Database designers are responsible for:
 - Identifying the data to be stored in the database and for choosing appropriate structures to represent and store this data
 - These tasks are mostly undertaken before the database is actually implemented
 - Communicate with all database users in order to understand their requirements and to create a design that meets these requirements

Database Users System analysts and Application Programmers (Software Engineers)

- System analysts determine the requirements of endusers and develop specifications for these requirements
- Application programmers implement these specifications as programs; then they test, debug, document, and maintain these canned transactions.
- Analysts and programmers should be familiar with the full range of capabilities provided by the DBMS to accomplish their task


Database Users End Users

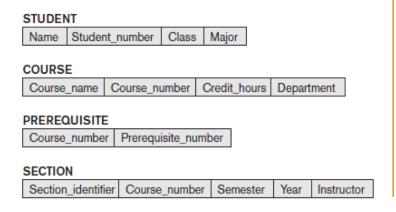
- Users are differentiated by the way they expect to interact with the system
 - Application programmers interact with system through DML calls
 - Sophisticated users form requests in a database query language
 - Specialized users write specialized database applications that do not fit into the traditional data processing framework
 - Naïve users invoke one of the permanent application programs that have been written previously

Development Methodology. Data Modelling. Data Model

Development Methodology

Data Model Model, Schema, Instance

- A Data model provides a set of concepts, rules and conventions that allow us to describe the structure of a database and manipulate data stored in it
- A Schema is a logical structure of the DB that is specified during database design and is not expected to change frequently
- An instance is the actual content of the database at a particular point in time.



Data Model Model, Schema, Instance

Database Schema

Instance

Stone

Section identifier Grade

GRADE_REPORT

Student number

Name	Student_number		Clas	SS	Major		
Smith	17		1		CS		
Brown	8		2		CS		
OURSE	ureo nem	no I (Course	number	Cro	dit hours	Department
Course_name			Course_number		Ore		CS
Intro to Computer Science			CS1310			4	
Data Structures			CS3320			4	CS
Discrete Mathematics			MATH2410			3	MATH
Database			CS3380			3	CS
Section_id	dentifier	Course_n	umber	Seme	ster	Year	Instructor
8	5	MATH2410		Fall		07	King
9:	2	CS1310		Fall		07	Anderson
10	2	CS3320		Spring		08	Knuth
113	2	MATH2410		Fall		08	Chang
119		CS1310		Fall		08	Anderson

CS3380

Student_number	Section_identifier	Grade	
17	112	В	
17	119	С	
8	85	Α	
8	92	Α	
8	102	В	
8	135	Α	
		•	

GRADE REPORT

DDEDECHISITE

FREREGOISHE					
Course_number	Prerequisite_number				
CS3380	CS3320				
CS3380	MATH2410				
CS3320	CS1310				

Data Model Structured Query Language

- To communicate with DBMS we need a language:
 - To describe DB schemas Data Definition Language
 (DLL)
 - To access and manipulate the data organized by the appropriate data model Data Manipulation
 Language (DML)

In Relational Databases is **SQL** (**Structured Query Language**)

Data Model

- Now we know that to build a DB we need:
- 1. To know the elements of a model to define a database
- 2. To learn how to apply the model to obtain a diagram representing the information to be stored in the DB
- => (next class) Topic 2.1 Relational Model in order to design a database

Bibliography

- Connolly, Thomas M, Begg, Carolyn E. Database systems: a practical approach to design, implementation, and management. Addison Wesley. 2015
- Elmasri, Ramez, Navathe, Sham. Fundamentals of database systems. Pearson Addison Wesley. 2017