
Departamento de Informática

OpenCourseWare

Lourdes Moreno López
Paloma Martínez Fernández

José Luis Martínez Fernández
Rodrigo Alarcón García

Database

3.3. Introduction to MongoDB



Review
DBMS to study in Course "Database"

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 2

Database

Relational databases 

No-SQL 
databases

Aggregate 
data model

Key-Value 
databases
Document databases

Column databases

Graph Databases



▪ NoSQL database (Document-oriented database model) => 
Flexible data scheme

▪ JSON-like documents (http://bsonspec.org/ ).
◦ JSON stored in binary format with some extensions (so it takes up 

less memory space

▪ General purpose database 

▪ Open source database management system (DBMS)

▪ Multiplatform: available for Unix, Linux, Windows, and Mac

▪ Drivers for multiple programming languages

▪ Mongodb website:    https://www.mongoDB.org/
3/41

https://en.wikipedia.org/wiki/JSON
http://bsonspec.org/
https://www.mongodb.org/


JSON
JavaScript Object Notation

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 4

Document databases such as MongoDB use JSON documents in 
order to store records,  just as tables and rows store records in 
a relational database



MongoDB Modeling 
Document Structure

▪ The key decision in designing data models for MongoDB 
applications revolves around the structure of documents 
and how the application represents relationships 
between data. 
◦ MongoDB allows related data to be embedded within 

a single document.
◦ MongoDB can use references to store the 

relationships between data by including links 
or references from one document to another. 

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 5



MongoDB Modeling 
Embedded Data¶

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 6

https://docs.mongodb.com/manual/core/data-modeling-introduction/


MongoDB Modeling
References

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 7



Data Modeling 
Introduction

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 8



Relational model vs 
MongoDB model

9

Relational Model

Database

Table, view

Row

Column

Primary key

Foreign Key

Tables join 

MongoDB

Database

Collection

Document

Column

_id

Reference

Embedded document



Model One-to-One Relationship
Relational => mongoDB

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 10

A person has only one address

PEOPLE {Id, Name, Address)

ADDRESS (Street,City,State,Zip)



Model One-to-One Relationship
Relational => mongoDB

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 11

{
_id: "joe",
name: "Joe Bookreader"

}

{
patron_id: "joe",
street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}

{
_id: "joe",
name: "Joe Bookreader",
address: {

street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}
}

Use embedded documents to describe a 
one-to-one relationship¶

https://docs.mongodb.com/manual/tutorial/model-embedded-one-to-one-relationships-between-documents/


Model One-to-Many Relationships
Relational => mongoDB

▪ Two options: embedded or references

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 12

A person has more than one address

PEOPLE {Id, Name)

ADDRESS (Id,Street,City,State,Zip)

PEOPLE_ADDRESS {Id_people, Id_address)



Model One-to-Many Relationships
Relational => mongoDB

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 13

{
_id: "joe",
name: "Joe Bookreader"

}

{
patron_id: "joe",
street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}

{
patron_id: "joe",
street: "1 Some Other 

Street",
city: "Boston",
state: "MA",
zip: "12345"

}

{
_id: "joe",
name: "Joe Bookreader",
addresses: [

{
street: "123 Fake 

Street",
city: "Faketon",
state: "MA",
zip: "12345"

},
{

street: "1 Some Other 
Street",

city: "Boston",
state: "MA",
zip: "12345”
}
]
}

Use embedded
documents to 
describe one-to-
many relationships



Model One-to-Many Relationships
Relational => mongoDB

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 14

{ title: "MongoDB: The Definitive Guide",
author: [ "Kristina Chodorow", "Mike 

Dirolf" ],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English",
publisher: {

name: "O'Reilly Media",
founded: 1980,
location: "CA"

} }

{ title: "50 Tips and Tricks for MongoDB 
Developer",

author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English",
publisher: {

name: "O'Reilly Media",
founded: 1980
location: "CA"

}
}

{
name: "O'Reilly Media",
founded: 1980,
location: "CA",
books: [123456789, 234567890, ...]

}

{
_id: 123456789,
title: "MongoDB: The Definitive Guide",
author: [ "Kristina Chodorow", "Mike Dirolf" ],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English"

}

{
_id: 234567890,
title: "50 Tips and Tricks for MongoDB Developer",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English"

}

use references between documents to describe one-to-many relationships 



MongoDB Shell 
Commands

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 15



mongo shell
Command helpers
help Show help.
db.help() Show help for database 

methods.
db.<collection>.help() Show help on collection 

methods. The <collection> 
can be the name of an 
existing collection or a non-
existing collection

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 16



mongo shell
Command print
show dbs Print a list of all databases on 

the server.
show collections Print a list of all collections 

for the current database.

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 17



mongo shell
Command create, switch 

use <db> Switch current database to 
<db>. The mongo shell 
variable db is set to the 
current database.

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 18



mongo shell
CRUD methods

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 19

db.<collection>.<method>( <filter>, <options>)



mongo shell
CRUD methods. Create 
Operations

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 20

db.collection.insertOne() Inserts a document into a 
collection.

db.collection.insertMany() Inserts multiple documents 
into a collection.



mongo shell
CRUD methods. Read 
Operations

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 21

db.collection.find() Selects documents in a 
collection based on the filter 
and returns a cursor to the 
selected documents



mongo shell
CRUD methods. Update 
Operations

db.collection.updateOne() Updates a single document within 
the collection based on the filter.

db.collection.updateMany() Updates all documents within the 
collection that match the filter.

db.collection.replaceOne() Replaces a single document within 
the collection based on the filter.

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 22



mongo shell
CRUD methods. Delete 
Operations
db.collection.deleteOne() Removes a single document 

from a collection based on 
the filter.

db.collection.deleteMany() Removes all documents that 
match the filter from a 
collection.

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 23



mongo shell
query filter parameters

db.inventory.find({ "qty" : { $gt: 10 }})

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 24

{a: 10} Docs where a is 10 or an array 

containing the value 10.

{a: 10, b: "hello"} Docs where a is 10 and b is "hello".

{a: {$gt: 10}} Docs where a is greater than 10. 

Also available:

$lt (<), $gte (>=), $lte (<=), and $ne 

(!=).

{a: {$in: [10, "hello"]}} Docs where a is either 10 or 

"hello".

{a: {$all: [10, "hello"]}} Docs where a is an array containing 

both 10 and

"hello".



mongo shell
query filter parameters

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 25

{"a.b": 10} Docs where a is an embedded 
document with b equal to 10.

{a: {$elemMatch: {b: 1, c: 2}}} Docs where a is an array that 
contains an element with both b 
equal to 1 and c equal to 2.

{$or: [{a: 1}, {b: 2}]} Docs where a is 1 or b is 2.
{a: /^m/} Docs where a begins with the letter 

m. One can also use the regex 
operator: {a: {$regex: "^m"}}

{a: {$mod: [10, 1]}} Docs where a mod 10 is 1.
{a: {$type: "string"}} Docs where a is a string.
{$text: {$search: "hello"}} Docs that contain "hello" on a full 

text search.



mongo shell
not indexable queries
a: {$nin: [10, "hello"]}} Docs where a is anything but 

10 or "hello".
{a: {$size: 3}} Docs where a is an array with 

exactly 3 elements.
{a: {$exists: true}} Docs containing an a field.
{a: /foo.*bar/} Docs where a matches the 

regular expression foo.*bar.
{a: {$not: {$type: 2}}} Docs where a is not a string. 

$not negates any of the 
other query operators.

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 26



mongo shell
field update operators
{$inc: {a: 2}} Increment a by 2.
{$set: {a: 5}} Set a to the value 5.
{$unset: {a: 1}} Delete the a key.
{$max: {a: 10}} Set a to the greater value, either current or 10. 

If a does not exist, set a to 10.

{$min: {a: -10}} Set a to the lowest value, either current or -10. 
If a does not exist, set a to -10.

{$mul: {a: 2}} Set a to the product of the current value of a 
and 2. If a does not exist set a to 0.

{$rename: {a: "b"}} Rename field a to b.
{$setOnInsert: {a: 1}}, 
{upsert: true}

Set field a to 1 in case of upsert operation.

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 27



mongo shell 
field update operators
array update operators

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 28

{$push: {a: 1}} Append the value 1 to the array a.
{$push: {a: {$each: [1, 2]}}} Append both 1 and 2 to the array 

a.
{$push: {a: {$each: [10, 20, 30], 
$slice: -5}}}

Append 10, 20, and 30 to the array 
a, then trim the resulting array to 
contain only the last 5 elements. 
$slice can only be used with the 
$each modifier. Negative values 
trim to the last <num> elements, 
while positive values trim to the 
first <num> elements



mongo shell 
field update operators
array update operators

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 29

{$push: {a: {$each: [50, 60, 70], 
$position: 0}}}

Insert 50, 60, and 70 starting at 
position 0 of the array a. $position 
can only be used with the $each 
modifier.

{$addToSet: {a: 1}} Append the value 1 to the array a 
(if the value doesn't already exist).

{$addToSet: {a: {$each: [1, 2]}}} Append both 1 and 2 to the array a 
(if they don't already exist).

{$pop: {a: 1}} Remove the last element from the 
array a.

{$pop: {a: -1}} Remove the first element from the 
array a.

{$pull: {a: ($gt: 5}}} Remove all values greater than 5 
from the array a.

{$pullAll: {a: [5, 6]}} Remove multiple occurrences of 5 
or 6 from the array a.



MAPPING SQL TO MONGODB

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 30



MAPPING SQL TO MONGODB
examples

CREATE TABLE people ( id MEDIUMINT NOT 
NULL AUTO_INCREMENT, user_id Varchar(30), 
age Number, status char(1), PRIMARY KEY (id) )

db.people.insertOne( { user_id: "abc123", age: 55, status: "A" } )

ALTER TABLE people ADD join_date DATETIME db.people.updateMany( { }, { $set: { join_date: new Date() } } )

ALTER TABLE people DROP COLUMN join_date db.people.updateMany( { }, { $unset: { "join_date": "" } } )

CREATE INDEX idx_user_id_asc ON 
people(user_id)

db.people.createIndex( { user_id: 1 } )

CREATE INDEX idx_user_id_asc_age_desc ON 
people(user_id, age DESC)

db.people.createIndex( { user_id: 1, age: -1 } )

DROP TABLE people db.people.drop()
INSERT INTO people(user_id, age, status) VALUES 
("bcd001", 45, "A")

db.people.insertOne( { user_id: "bcd001", age: 45, status: "A" } )

SELECT * FROM people db.people.find()

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 31



MAPPING SQL TO MONGODB
examples

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 32

SELECT id, user_id, status FROM people db.people.find( { }, { user_id: 1, status: 1 } )

SELECT user_id, status FROM people db.people.find( { }, { user_id: 1, status: 1, _id: 0 } )

SELECT * FROM people WHERE status = "A" db.people.find( { status: "A" } )

SELECT user_id, status FROM people WHERE status = 
"A"

db.people.find( { status: "A" }, { user_id: 1, status: 1, 
_id: 0 } )

SELECT * FROM people WHERE status != "A"' db.people.find( { status: { $ne: "A" } } )

SELECT * FROM people WHERE status = "A" AND age = 
50

db.people.find( { status: "A", age: 50 } )

SELECT * FROM people WHERE status = "A" OR age = 
50

db.people.find( { $or: [ { status: "A" } , { age: 50 } ] } )

SELECT * FROM people WHERE age > 25 db.people.find( { age: { $gt: 25 } } )

SELECT * FROM people WHERE age < 25 db.people.find( { age: { $lt: 25 } } )

SELECT * FROM people WHERE age > 25 AND age <= 
50

db.people.find( { age: { $gt: 25, $lte: 50 } } )

SELECT * FROM people WHERE user_id like "%bc%" db.people.find( { user_id: /bc/ } )



MAPPING SQL TO MONGODB
examples

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 33

SELECT * FROM people WHERE user_id like "bc%" db.people.find( { user_id: { $regex: /^bc/ } } )

SELECT * FROM people WHERE status = "A" ORDER BY 
user_id ASC

db.people.find( { status: "A" } ).sort( { user_id: 1 } )

SELECT * FROM people WHERE status = "A" ORDER BY 
user_id DESC

db.people.find( { status: "A" } ).sort( { user_id: -1 } )

SELECT COUNT(*) FROM people db.people.count()

SELECT COUNT(user_id) FROM people db.people.count( { user_id: { $exists: true } } )

SELECT COUNT(*) FROM people WHERE age > 30 db.people.count( { age: { $gt: 30 } } )

SELECT DISTINCT(status) FROM people db.people.distinct( "status" )

SELECT * FROM people LIMIT 1 db.people.findOne()

SELECT * FROM people LIMIT 5 SKIP 10 db.people.find().limit(5).skip(10)

EXPLAIN SELECT * FROM people WHERE status = "A" db.people.find( { status: "A" } ).explain()

UPDATE people SET status = "C" WHERE age > 25 db.people.updateMany( { age: { $gt: 25 } }, { $set: { 
status: "C" } } )



REFERENCES

▪ MongoDB: The Definitive Guide, Kristina 
Chodorow & Michael Dirolf

▪ The Definitive Guide to MongoDB: A complete guide to 
dealing with Big Data using MongoDB (Definitive Guide 
Apress) , David Hows, 2013

▪ mondoDB, Data Models¶: 
https://docs.mongodb.com/manual/data-modeling/

▪

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 34

https://docs.mongodb.com/manual/data-modeling/

