
Departamento de Informática

OpenCourseWare

Lourdes Moreno López
Paloma Martínez Fernández

José Luis Martínez Fernández
Rodrigo Alarcón García

Database

3.3. Introduction to MongoDB



Review
DBMS to study in Course "Database"
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Database

Relational databases 

No-SQL 
databases

Aggregate 
data model

Key-Value 
databases
Document databases

Column databases

Graph Databases



▪ NoSQL database (Document-oriented database model) => 
Flexible data scheme

▪ JSON-like documents (http://bsonspec.org/ ).
◦ JSON stored in binary format with some extensions (so it takes up 

less memory space

▪ General purpose database 

▪ Open source database management system (DBMS)

▪ Multiplatform: available for Unix, Linux, Windows, and Mac

▪ Drivers for multiple programming languages

▪ Mongodb website:    https://www.mongoDB.org/
3/41

https://en.wikipedia.org/wiki/JSON
http://bsonspec.org/
https://www.mongodb.org/


JSON
JavaScript Object Notation
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Document databases such as MongoDB use JSON documents in 
order to store records,  just as tables and rows store records in 
a relational database



MongoDB Modeling 
Document Structure

▪ The key decision in designing data models for MongoDB 
applications revolves around the structure of documents 
and how the application represents relationships 
between data. 
◦ MongoDB allows related data to be embedded within 

a single document.
◦ MongoDB can use references to store the 

relationships between data by including links 
or references from one document to another. 

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 5



MongoDB Modeling 
Embedded Data¶
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https://docs.mongodb.com/manual/core/data-modeling-introduction/


MongoDB Modeling
References
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Data Modeling 
Introduction
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Relational model vs 
MongoDB model

9

Relational Model

Database

Table, view

Row

Column

Primary key

Foreign Key

Tables join 

MongoDB

Database

Collection

Document

Column

_id

Reference

Embedded document



Model One-to-One Relationship
Relational => mongoDB
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A person has only one address

PEOPLE {Id, Name, Address)

ADDRESS (Street,City,State,Zip)



Model One-to-One Relationship
Relational => mongoDB
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{
_id: "joe",
name: "Joe Bookreader"

}

{
patron_id: "joe",
street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}

{
_id: "joe",
name: "Joe Bookreader",
address: {

street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}
}

Use embedded documents to describe a 
one-to-one relationship¶

https://docs.mongodb.com/manual/tutorial/model-embedded-one-to-one-relationships-between-documents/


Model One-to-Many Relationships
Relational => mongoDB

▪ Two options: embedded or references
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A person has more than one address

PEOPLE {Id, Name)

ADDRESS (Id,Street,City,State,Zip)

PEOPLE_ADDRESS {Id_people, Id_address)



Model One-to-Many Relationships
Relational => mongoDB
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{
_id: "joe",
name: "Joe Bookreader"

}

{
patron_id: "joe",
street: "123 Fake Street",
city: "Faketon",
state: "MA",
zip: "12345"

}

{
patron_id: "joe",
street: "1 Some Other 

Street",
city: "Boston",
state: "MA",
zip: "12345"

}

{
_id: "joe",
name: "Joe Bookreader",
addresses: [

{
street: "123 Fake 

Street",
city: "Faketon",
state: "MA",
zip: "12345"

},
{

street: "1 Some Other 
Street",

city: "Boston",
state: "MA",
zip: "12345”
}
]
}

Use embedded
documents to 
describe one-to-
many relationships



Model One-to-Many Relationships
Relational => mongoDB
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{ title: "MongoDB: The Definitive Guide",
author: [ "Kristina Chodorow", "Mike 

Dirolf" ],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English",
publisher: {

name: "O'Reilly Media",
founded: 1980,
location: "CA"

} }

{ title: "50 Tips and Tricks for MongoDB 
Developer",

author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English",
publisher: {

name: "O'Reilly Media",
founded: 1980
location: "CA"

}
}

{
name: "O'Reilly Media",
founded: 1980,
location: "CA",
books: [123456789, 234567890, ...]

}

{
_id: 123456789,
title: "MongoDB: The Definitive Guide",
author: [ "Kristina Chodorow", "Mike Dirolf" ],
published_date: ISODate("2010-09-24"),
pages: 216,
language: "English"

}

{
_id: 234567890,
title: "50 Tips and Tricks for MongoDB Developer",
author: "Kristina Chodorow",
published_date: ISODate("2011-05-06"),
pages: 68,
language: "English"

}

use references between documents to describe one-to-many relationships 



MongoDB Shell 
Commands
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mongo shell
Command helpers
help Show help.
db.help() Show help for database 

methods.
db.<collection>.help() Show help on collection 

methods. The <collection> 
can be the name of an 
existing collection or a non-
existing collection
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mongo shell
Command print
show dbs Print a list of all databases on 

the server.
show collections Print a list of all collections 

for the current database.
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mongo shell
Command create, switch 

use <db> Switch current database to 
<db>. The mongo shell 
variable db is set to the 
current database.
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mongo shell
CRUD methods
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db.<collection>.<method>( <filter>, <options>)



mongo shell
CRUD methods. Create 
Operations
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db.collection.insertOne() Inserts a document into a 
collection.

db.collection.insertMany() Inserts multiple documents 
into a collection.



mongo shell
CRUD methods. Read 
Operations
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db.collection.find() Selects documents in a 
collection based on the filter 
and returns a cursor to the 
selected documents



mongo shell
CRUD methods. Update 
Operations

db.collection.updateOne() Updates a single document within 
the collection based on the filter.

db.collection.updateMany() Updates all documents within the 
collection that match the filter.

db.collection.replaceOne() Replaces a single document within 
the collection based on the filter.
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mongo shell
CRUD methods. Delete 
Operations
db.collection.deleteOne() Removes a single document 

from a collection based on 
the filter.

db.collection.deleteMany() Removes all documents that 
match the filter from a 
collection.
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mongo shell
query filter parameters

db.inventory.find({ "qty" : { $gt: 10 }})
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{a: 10} Docs where a is 10 or an array 

containing the value 10.

{a: 10, b: "hello"} Docs where a is 10 and b is "hello".

{a: {$gt: 10}} Docs where a is greater than 10. 

Also available:

$lt (<), $gte (>=), $lte (<=), and $ne 

(!=).

{a: {$in: [10, "hello"]}} Docs where a is either 10 or 

"hello".

{a: {$all: [10, "hello"]}} Docs where a is an array containing 

both 10 and

"hello".



mongo shell
query filter parameters
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{"a.b": 10} Docs where a is an embedded 
document with b equal to 10.

{a: {$elemMatch: {b: 1, c: 2}}} Docs where a is an array that 
contains an element with both b 
equal to 1 and c equal to 2.

{$or: [{a: 1}, {b: 2}]} Docs where a is 1 or b is 2.
{a: /^m/} Docs where a begins with the letter 

m. One can also use the regex 
operator: {a: {$regex: "^m"}}

{a: {$mod: [10, 1]}} Docs where a mod 10 is 1.
{a: {$type: "string"}} Docs where a is a string.
{$text: {$search: "hello"}} Docs that contain "hello" on a full 

text search.



mongo shell
not indexable queries
a: {$nin: [10, "hello"]}} Docs where a is anything but 

10 or "hello".
{a: {$size: 3}} Docs where a is an array with 

exactly 3 elements.
{a: {$exists: true}} Docs containing an a field.
{a: /foo.*bar/} Docs where a matches the 

regular expression foo.*bar.
{a: {$not: {$type: 2}}} Docs where a is not a string. 

$not negates any of the 
other query operators.

DATA BASE, BACHELOR IN DATA SCIENCE AND ENGINEERING 26



mongo shell
field update operators
{$inc: {a: 2}} Increment a by 2.
{$set: {a: 5}} Set a to the value 5.
{$unset: {a: 1}} Delete the a key.
{$max: {a: 10}} Set a to the greater value, either current or 10. 

If a does not exist, set a to 10.

{$min: {a: -10}} Set a to the lowest value, either current or -10. 
If a does not exist, set a to -10.

{$mul: {a: 2}} Set a to the product of the current value of a 
and 2. If a does not exist set a to 0.

{$rename: {a: "b"}} Rename field a to b.
{$setOnInsert: {a: 1}}, 
{upsert: true}

Set field a to 1 in case of upsert operation.
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mongo shell 
field update operators
array update operators
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{$push: {a: 1}} Append the value 1 to the array a.
{$push: {a: {$each: [1, 2]}}} Append both 1 and 2 to the array 

a.
{$push: {a: {$each: [10, 20, 30], 
$slice: -5}}}

Append 10, 20, and 30 to the array 
a, then trim the resulting array to 
contain only the last 5 elements. 
$slice can only be used with the 
$each modifier. Negative values 
trim to the last <num> elements, 
while positive values trim to the 
first <num> elements



mongo shell 
field update operators
array update operators
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{$push: {a: {$each: [50, 60, 70], 
$position: 0}}}

Insert 50, 60, and 70 starting at 
position 0 of the array a. $position 
can only be used with the $each 
modifier.

{$addToSet: {a: 1}} Append the value 1 to the array a 
(if the value doesn't already exist).

{$addToSet: {a: {$each: [1, 2]}}} Append both 1 and 2 to the array a 
(if they don't already exist).

{$pop: {a: 1}} Remove the last element from the 
array a.

{$pop: {a: -1}} Remove the first element from the 
array a.

{$pull: {a: ($gt: 5}}} Remove all values greater than 5 
from the array a.

{$pullAll: {a: [5, 6]}} Remove multiple occurrences of 5 
or 6 from the array a.



MAPPING SQL TO MONGODB
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MAPPING SQL TO MONGODB
examples

CREATE TABLE people ( id MEDIUMINT NOT 
NULL AUTO_INCREMENT, user_id Varchar(30), 
age Number, status char(1), PRIMARY KEY (id) )

db.people.insertOne( { user_id: "abc123", age: 55, status: "A" } )

ALTER TABLE people ADD join_date DATETIME db.people.updateMany( { }, { $set: { join_date: new Date() } } )

ALTER TABLE people DROP COLUMN join_date db.people.updateMany( { }, { $unset: { "join_date": "" } } )

CREATE INDEX idx_user_id_asc ON 
people(user_id)

db.people.createIndex( { user_id: 1 } )

CREATE INDEX idx_user_id_asc_age_desc ON 
people(user_id, age DESC)

db.people.createIndex( { user_id: 1, age: -1 } )

DROP TABLE people db.people.drop()
INSERT INTO people(user_id, age, status) VALUES 
("bcd001", 45, "A")

db.people.insertOne( { user_id: "bcd001", age: 45, status: "A" } )

SELECT * FROM people db.people.find()
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MAPPING SQL TO MONGODB
examples
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SELECT id, user_id, status FROM people db.people.find( { }, { user_id: 1, status: 1 } )

SELECT user_id, status FROM people db.people.find( { }, { user_id: 1, status: 1, _id: 0 } )

SELECT * FROM people WHERE status = "A" db.people.find( { status: "A" } )

SELECT user_id, status FROM people WHERE status = 
"A"

db.people.find( { status: "A" }, { user_id: 1, status: 1, 
_id: 0 } )

SELECT * FROM people WHERE status != "A"' db.people.find( { status: { $ne: "A" } } )

SELECT * FROM people WHERE status = "A" AND age = 
50

db.people.find( { status: "A", age: 50 } )

SELECT * FROM people WHERE status = "A" OR age = 
50

db.people.find( { $or: [ { status: "A" } , { age: 50 } ] } )

SELECT * FROM people WHERE age > 25 db.people.find( { age: { $gt: 25 } } )

SELECT * FROM people WHERE age < 25 db.people.find( { age: { $lt: 25 } } )

SELECT * FROM people WHERE age > 25 AND age <= 
50

db.people.find( { age: { $gt: 25, $lte: 50 } } )

SELECT * FROM people WHERE user_id like "%bc%" db.people.find( { user_id: /bc/ } )



MAPPING SQL TO MONGODB
examples
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SELECT * FROM people WHERE user_id like "bc%" db.people.find( { user_id: { $regex: /^bc/ } } )

SELECT * FROM people WHERE status = "A" ORDER BY 
user_id ASC

db.people.find( { status: "A" } ).sort( { user_id: 1 } )

SELECT * FROM people WHERE status = "A" ORDER BY 
user_id DESC

db.people.find( { status: "A" } ).sort( { user_id: -1 } )

SELECT COUNT(*) FROM people db.people.count()

SELECT COUNT(user_id) FROM people db.people.count( { user_id: { $exists: true } } )

SELECT COUNT(*) FROM people WHERE age > 30 db.people.count( { age: { $gt: 30 } } )

SELECT DISTINCT(status) FROM people db.people.distinct( "status" )

SELECT * FROM people LIMIT 1 db.people.findOne()

SELECT * FROM people LIMIT 5 SKIP 10 db.people.find().limit(5).skip(10)

EXPLAIN SELECT * FROM people WHERE status = "A" db.people.find( { status: "A" } ).explain()

UPDATE people SET status = "C" WHERE age > 25 db.people.updateMany( { age: { $gt: 25 } }, { $set: { 
status: "C" } } )



REFERENCES

▪ MongoDB: The Definitive Guide, Kristina 
Chodorow & Michael Dirolf

▪ The Definitive Guide to MongoDB: A complete guide to 
dealing with Big Data using MongoDB (Definitive Guide 
Apress) , David Hows, 2013

▪ mondoDB, Data Models¶: 
https://docs.mongodb.com/manual/data-modeling/

▪
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