

OpenCourseWare

CALCULUS – Taylor polynomial

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 6.1. Approximate the following values, within an error smaller than ε , by means of suitable Taylor polynomials.

- $\sin(1)$, $\epsilon = 10^{-5}$.
- $\sqrt[5]{\frac{3}{2}}$, $\varepsilon = 10^{-2}$.

Problem 6.2. Write the Maclaurin polynomial of degree n for the given functions.

- a) $f(x) = \sqrt{1+x}$, n = 3.
- b) $f(x) = sin(3x^2)$, $n \in \mathbb{N}$ (generic).
- c) f(x) = tan(x), n = 5.
- d) $f(x) = e^{-x^2} \cos(x)$, n = 3.
- e) $f(x) = (1 + e^x)^2$, $n \in \mathbb{N}$ (generic).

Problem 6.3. Write the polynomial $x^4 - 5x^3 + x^2 - 3x + 4$ in terms of powers of x - 4.

Problem 6.4. Write the Taylor formula of degree $n \in \mathbb{N}$ about a = -1 for the function f(x) = 1/x.

Problem 6.5. Write the Maclaurin polynomial of degree 5 for $f(x) = e^x \sin(x)$.

Problem 6.6. Calculate the coefficient of x^4 in the Maclaurin polynomial for the function f(x) = ln(cos(x)).

Problem 6.7. Write the Taylor polynomial of degree 3 about a = 0 for the given functions.

$$\begin{array}{lll} f(x) &=& \sin(2x) \, . \\ f(x) &=& e^{3x} \, . \\ f(x) &=& x \, e^{-x} \, . \\ f(x) &=& e^{x} \ln(1-x) \, . \\ f(x) &=& \sin^{2}(x) \, . \\ f(x) &=& \frac{\sqrt{1+x^{2}} \sin(x)}{1+\ln(1+x)} \, . \end{array}$$

Problem 6.8. Write the Taylor polynomial of degree $n \in \mathbb{N}$ about a = 0 for the following functions (here, $a \in \mathbb{R}$ is a parameter).

$$f(x) = \cos(ax).$$

$$f(x) = \frac{e^{ax} - e^{-ax}}{2}.$$

$$f(x) = e^{ax^{2}}.$$

$$f(x) = \frac{1+x}{1-x}.$$

Problem 6.9. The Taylor polynomial of degree 4 about a = 1 for the function f(x) is given by $P_{4,1}(x) = 2(x-1)^3 - 3(x-1)^4$.

- Write an equation for the tangent line to the graph of f(x) at x = 1.
- Calculate $\lim_{x \to 1} \frac{f(x)}{(x-1)^3}$.
- Compute $f^{(4)}(1)$.

Problem 6.10. Prove the following identities.

$$\begin{array}{ll} \forall \ a < 1 \,, & \sin(x) = o(x^a) \,, & \text{as } x \to 0 \,. \\ \ln(1 + x^2) = o(x) \,, & \text{as } x \to 0 \,. \\ \tan(x) - \sin(x) = o(x^2) \,, & \text{as } x \to 0 \,. \\ \ln(x) = o(x) \,, & \text{as } x \to +\infty \,. \end{array}$$

Problem 6.11. Find the *family* of polynomials P(x) such that

$$\lim_{x\to 0}\frac{\sqrt{1-x^4}-P(x)}{x^7}=0.$$

Problem 6.12. Approximate $f(x) = cos(x) + e^x$ by a polynomial of degree 3 about a = 0 and find an *upper bound* for the involved error, when $x \in [-1/4, 1/4]$.

Problem 6.13. How many terms should you consider in the Maclaurin polynomial for $f(x) = e^x$ in order to have an approximation with three exact decimal places, when $x \in [-1, 1]$?

Problem 6.14. Using a Taylor polynomial of degree 3, approximate the value

$$\frac{1}{\sqrt{1.1}}$$

and find an *upper bound* for the involved error.

Problem 6.15. Calculate an approximation of the given values, within an error smaller than 10^{-3} , by means of suitable Taylor polynomials.

- $\cos(1)$.
- e^{-2} .
- $\ln(2)$.

Problem 6.16. How many terms should you consider in the Taylor series for the function f(x) = sin(x) about a = 0 in order to approximate the value sin(1/2) within an error smaller than 10^{-12} ?

Problem 6.17. Calculate the given limits by means of proper Taylor polynomials.

a)
$$\lim_{x \to 0} \frac{e^{x} - \sin(x) - 1}{x^{2}}.$$

b)
$$\lim_{x \to 0} \frac{\sin(x) - x + x^{3}/6}{x^{5}}.$$

c)
$$\lim_{x \to 0} \frac{\cos(x) - \sqrt{1 - x}}{\sin(x)}.$$

d)
$$\lim_{x \to 0} \frac{\tan(x) - \sin(x)}{x^{3}}.$$

e)
$$\lim_{x \to 0} \frac{x - \sin(x)}{x [1 - \cos(3x)]}.$$

f)
$$\lim_{x \to 0} \frac{\cos(x) + e^x - x - 2}{x^3}.$$

g)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin(x)}\right).$$

h)
$$\lim_{x \to 0} \frac{1}{x} \left(\frac{1}{x} - \frac{\cos(x)}{\sin(x)}\right).$$

i)
$$\lim_{x \to +\infty} x^{3/2} \left(\sqrt{x + 1} + \sqrt{x - 1} - 2\sqrt{x}\right).$$

j)
$$\lim_{x \to +\infty} \left[x - x^2 \ln\left(1 + \frac{1}{x}\right)\right].$$

Problem 6.18. Calculate the following limits by using either Taylor polynomials or the l'Hôpital's rule, as appropriate.

a)
$$\lim_{x \to 0^{+}} x \ln(e^{x} - 1).$$

b)
$$\lim_{x \to +\infty} \frac{e^{x} - \arctan(x)}{\ln(1 + x)}.$$

c)
$$\lim_{x \to 0^{+}} x^{x}.$$

d)
$$\lim_{x \to +\infty} \frac{\ln(x)}{x^{a}}, a > 0.$$

e)
$$\lim_{x \to +\infty} \frac{x}{e^{ax}}, a > 0.$$

f)
$$\lim_{x \to +\infty} x^{1/x} \quad (\text{use the change of variable } t = 1/x).$$

g)
$$\lim_{x \to 0} (1 + x)^{1/x}.$$