CALCULUS - Taylor polynomial

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 6.1. Approximate the following values, within an error smaller than ε, by means of suitable Taylor polynomials.

- $\sin (1), \varepsilon=10^{-5}$.
- $\sqrt[5]{\frac{3}{2}}, \quad \varepsilon=10^{-2}$.

Problem 6.2. Write the Maclaurin polynomial of degree n for the given functions.
a) $f(x)=\sqrt{1+x}, \quad n=3$.
b) $f(x)=\sin \left(3 x^{2}\right), \quad n \in \mathbb{N}$ (generic).
c) $f(x)=\tan (x), \quad n=5$.
d) $f(x)=e^{-x^{2}} \cos (x), \quad n=3$.
e) $f(x)=\left(1+e^{x}\right)^{2}, \quad n \in \mathbb{N}$ (generic).

Problem 6.3. Write the polynomial $x^{4}-5 x^{3}+x^{2}-3 x+4$ in terms of powers of $x-4$.

Problem 6.4. Write the Taylor formula of degree $n \in \mathbb{N}$ about $a=-1$ for the function $f(x)=1 / x$.

Problem 6.5. Write the Maclaurin polynomial of degree 5 for $f(x)=e^{x} \sin (x)$.

Problem 6.6. Calculate the coefficient of χ^{4} in the Maclaurin polynomial for the function $f(x)=\ln (\cos (x))$.

Problem 6.7. Write the Taylor polynomial of degree 3 about $a=0$ for the given functions.

$$
\begin{aligned}
f(x) & =\sin (2 x) \\
f(x) & =e^{3 x} \\
f(x) & =x e^{-x} \\
f(x) & =e^{x} \ln (1-x) \\
f(x) & =\sin ^{2}(x) \\
f(x) & =\frac{\sqrt{1+x^{2}} \sin (x)}{1+\ln (1+x)}
\end{aligned}
$$

Problem 6.8. Write the Taylor polynomial of degree $n \in \mathbb{N}$ about $a=0$ for the following functions (here, $a \in \mathbb{R}$ is a parameter).

$$
\begin{aligned}
f(x) & =\cos (a x) \\
f(x) & =\frac{e^{a x}-e^{-a x}}{2} \\
f(x) & =e^{a x^{2}} \\
f(x) & =\frac{1+x}{1-x}
\end{aligned}
$$

Problem 6.9. The Taylor polynomial of degree 4 about $a=1$ for the function $f(x)$ is given by $P_{4,1}(x)=2(x-1)^{3}-3(x-1)^{4}$.

- Write an equation for the tangent line to the graph of $f(x)$ at $x=1$.
- Calculate $\lim _{x \rightarrow 1} \frac{f(x)}{(x-1)^{3}}$.
- Compute $f^{(4)}(1)$.

Problem 6.10. Prove the following identities.

$$
\begin{aligned}
& \forall a<1, \quad \sin (x)=o\left(x^{a}\right), \quad \text { as } x \rightarrow 0 \\
& \ln \left(1+x^{2}\right)=o(x), \quad \text { as } x \rightarrow 0 \\
& \tan (x)-\sin (x)=o\left(x^{2}\right), \quad \text { as } x \rightarrow 0 \\
& \ln (x)=o(x), \quad \text { as } x \rightarrow+\infty
\end{aligned}
$$

Problem 6.11. Find the family of polynomials $P(x)$ such that

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1-x^{4}}-P(x)}{x^{7}}=0 .
$$

Problem 6.12. Approximate $f(x)=\cos (x)+e^{x}$ by a polynomial of degree 3 about $a=0$ and find an upper bound for the involved error, when $x \in[-1 / 4,1 / 4]$.

Problem 6.13. How many terms should you consider in the Maclaurin polynomial for $f(x)=e^{x}$ in order to have an approximation with three exact decimal places, when $x \in[-1,1]$?

Problem 6.14. Using a Taylor polynomial of degree 3, approximate the value

$$
\frac{1}{\sqrt{1.1}}
$$

and find an upper bound for the involved error.

Problem 6.15. Calculate an approximation of the given values, within an error smaller than 10^{-3}, by means of suitable Taylor polynomials.

- $\cos (1)$.
- e^{-2}.
- $\ln (2)$.

Problem 6.16. How many terms should you consider in the Taylor series for the function $f(x)=\sin (x)$ about $a=0$ in order to approximate the value $\sin (1 / 2)$ within an error smaller than 10^{-12} ?

Problem 6.17. Calculate the given limits by means of proper Taylor polynomials.
a) $\lim _{x \rightarrow 0} \frac{e^{x}-\sin (x)-1}{x^{2}}$.
b) $\lim _{x \rightarrow 0} \frac{\sin (x)-x+x^{3} / 6}{x^{5}}$.
c) $\lim _{x \rightarrow 0} \frac{\cos (x)-\sqrt{1-x}}{\sin (x)}$.
d) $\lim _{x \rightarrow 0} \frac{\tan (x)-\sin (x)}{x^{3}}$.
e) $\lim _{x \rightarrow 0} \frac{x-\sin (x)}{x[1-\cos (3 x)]}$.
f) $\lim _{x \rightarrow 0} \frac{\cos (x)+e^{x}-x-2}{x^{3}}$.
g) $\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin (x)}\right)$.
h) $\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{x}-\frac{\cos (x)}{\sin (x)}\right)$.
i) $\lim _{x \rightarrow+\infty} x^{3 / 2}(\sqrt{x+1}+\sqrt{x-1}-2 \sqrt{x})$.
j) $\lim _{x \rightarrow+\infty}\left[x-x^{2} \ln \left(1+\frac{1}{x}\right)\right]$.

Problem 6.18. Calculate the following limits by using either Taylor polynomials or the l'Hôpital's rule, as appropriate.
a) $\lim _{x \rightarrow 0^{+}} x \ln \left(e^{x}-1\right)$.
b) $\lim _{x \rightarrow+\infty} \frac{e^{x}-\arctan (x)}{\ln (1+x)}$.
c) $\lim _{x \rightarrow 0^{+}} x^{x}$.
d) $\lim _{x \rightarrow+\infty} \frac{\ln (x)}{x^{a}}, a>0$.
e) $\lim _{x \rightarrow+\infty} \frac{x}{e^{a x}}, a>0$.
f) $\lim _{x \rightarrow+\infty} x^{1 / x} \quad$ (use the change of variable $\left.t=1 / x\right)$.
g) $\lim _{x \rightarrow 0}(1+x)^{1 / x}$.

