OpenCourseWare

CALCULUS - Local \& global behavior of a real function

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 7.1. Find and classify the local extrema of the following functions.

- $f(x)=2 x^{3}-3 x^{2}-12 x+5$.
- $f(x)=\frac{x+3}{x-2}$.
- $f(x)=x^{2} e^{-2 x}$.

Problem 7.2. Consider the function $f(x)=\left|x^{3}(x-4)\right|-1$.

- Study where $f(x)$ is (strictly) increasing.
- Find and classify the local extrema of $f(x)$.
- Prove that the equation $f(x)=0$ has a unique (real) solution in the interval $(0,1)$.

Problem 7.3. What is the local behavior of the function $f(x)=x^{101}+x^{51}+x+1$ in a neighborhood of $x=0$?

Problem 7.4. Study the concavity of the given functions.

$$
\begin{aligned}
& f(x)=(x-2) x^{2 / 3} \\
& f(x)=x(x-2)^{3 / 2} \\
& f(x)=|x| e^{|x|} \\
& f(x)=\ln \left(x^{2}-6 x+8\right)
\end{aligned}
$$

Problem 7.5. Study the local behavior in a neighborhood of $x=0$ of the function

$$
f(x)=x^{4} \sqrt{1+x^{2}}(\cos (2 x)-1)^{2}
$$

Problem 7.6. Let

$$
f(x)= \begin{cases}\alpha+x+x^{2}, & \text { if } \quad x<0 \\ \beta \sin (x), & \text { if } \quad x \geq 0\end{cases}
$$

where $\alpha, \beta \in \mathbb{R}$.

- For $x<0$, find the intervals where $f(x)$ is decreasing.
- Find the values of α and β such that $f(x)$ is differentiable at $x=0$.
- Let $\alpha=-1$ and $\beta=1$. Find and classify the global extrema of $f(x)$.

Problem 7.7. Let $f(x)=3 x^{4}-4 x^{3}+1$.

- Find and classify the critical points of $f(x)$.
- Determine the intervals where $f(x)$ is increasing.
- Calculate the inflection points of $f(x)$.
- Study the concavity of $f(x)$.

Problem 7.8. Find the global extrema of the following functions in the indicated intervals.

$$
\begin{aligned}
& f(x)=\left|\frac{x}{\sqrt{2}}\right|+\cos (x), \quad \text { with } x \in[-\pi, \pi] \\
& f(x)=2 x^{5 / 3}+5 x^{2 / 3}, \quad \text { with } x \in[-2,1]
\end{aligned}
$$

Problem 7.9. Sketch the graph of the functions $f(x)=e^{x} \sin (x)$ and $g(x)=x^{2} e^{x}$.

Problem 7.10. Sketch the graph of the function

$$
f(x)=x+\ln \left(\left|x^{2}-1\right|\right) .
$$

Then, without any additional calculation, sketch the graph of the function

$$
g(x)=\left|x+\ln \left(\left|x^{2}-1\right|\right)\right|
$$

