OpenCourseWare

CALCULUS - EVALUATION TEST 10 (solutions)

Filippo Terragni, Eduardo Sánchez Villaseñor, Manuel Carretero Cerrajero

Problem 1. Consider the recursive sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ defined as

$$
a_{1}=1 ; \quad a_{n+1}=3-\frac{1}{a_{n}}, \quad \text { with } n=1,2, \ldots
$$

(a) Prove that the sequence is increasing and bounded above by 3 .
(b) Calculate $\lim _{n \rightarrow \infty} a_{n}$.

SOLUTION

(a) Let us prove that the sequence is increasing, namely $a_{n+1}>a_{n}$ for all $n \in \mathbb{N}$, by applying the principle of induction. First, $a_{2}=2>a_{1}=1$. Now, assuming that $a_{k+1}>a_{k}$ for $n=k \in \mathbb{N}$, we get $-1 / a_{k+1}>-1 / a_{k}$. Then, we obtain (for $n=k+1$)

$$
a_{k+2}=3-\frac{1}{a_{k+1}}>3-\frac{1}{a_{k}}=a_{k+1} .
$$

By the same principle, we can prove that $a_{n}<3$ for all $n \in \mathbb{N}$. First, $a_{1}=1<3$. Moreover, assuming that $a_{k}<3$ for $n=k \in \mathbb{N}$, we get $-1 / a_{k}<-1 / 3$. Then, we can write (for $n=k+1$)

$$
a_{k+1}=3-\frac{1}{a_{k}}<3-\frac{1}{3}=\frac{8}{3}<3 .
$$

(b) Let $\lim _{n \rightarrow \infty} a_{n}=L \in \mathbb{R}$, which exists since the sequence is increasing and bounded above. Thus

$$
\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty}\left(3-\frac{1}{a_{n}}\right) \Longrightarrow L=3-\frac{1}{L} \Longrightarrow L=\frac{3}{2} \pm \frac{\sqrt{5}}{2} .
$$

Due to the behavior of the sequence, the desired limit value is $L=\frac{3}{2}+\frac{\sqrt{5}}{2}$.

Problem 2. Analyze the convergence of the series $\sum_{n=1}^{\infty} \frac{3 \ln \left(n^{2}\right)}{(n+1)!}$.

SOLUTION

Let a_{n} be the general term of the series. Then

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{3 \ln \left((n+1)^{2}\right)}{(n+2)!} \frac{(n+1)!}{3 \ln \left(n^{2}\right)}\right|=\frac{\ln (n+1)}{(n+2) \ln (n)} \longrightarrow 0
$$

as $n \rightarrow \infty$. Thus, thanks to the ratio test, the series converges.

Problem 3. Let $f(x)=\sin (x)$.
(a) Use the Taylor polynomial of degree 2 about $a=\pi / 2$ for $f(x)$ to approximate $\sin (\pi / 2+0.1)$ and find an upper bound for the involved error.
(b) Consider the Taylor polynomial of degree $n \in \mathbb{N}$ about $a=\pi / 2$ for $f(x)$ and apply the change of variable $s=x-\pi / 2$. Then, do you recognize the resulting Taylor polynomial?

SOLUTION

(a) We can write

$$
\sin (x)=1-\frac{\left(x-\frac{\pi}{2}\right)^{2}}{2}+R_{2}(x)
$$

which yields the approximation

$$
\sin (\pi / 2+0.1) \approx 1-\frac{(0.1)^{2}}{2}=0.995
$$

Furthermore, the involved error can be upper bounded by using the remainder $R_{2}(x)$ as

$$
\left|\mathrm{R}_{2}(\pi / 2+0.1)\right| \leq \frac{(0.1)^{4}}{24} \approx 4 \times 10^{-6}
$$

(b) By means of the suggested change of variable, we get

$$
\sin (s+\pi / 2) \approx 1-\frac{s^{2}}{2!}+\frac{s^{4}}{4!}+\ldots+(-1)^{n} \frac{s^{2 n}}{(2 n)!}
$$

whose right-hand-side is the Taylor polynomial of degree $n \in \mathbb{N}$ about $a=0$ for the function $\cos (\mathrm{s})$.

Problem 4. Calculate the exact number of real solutions of the equation

$$
\arctan (x)-\frac{1}{2} \ln \left(1+x^{2}\right)+\alpha=0
$$

depending on the value of the parameter $\alpha \in \mathbb{R}$.

SOLUTION

Let $f_{\alpha}(x)=\arctan (x)-\frac{1}{2} \ln \left(1+x^{2}\right)+\alpha$, which is continuous and differentiable in \mathbb{R}. Its first derivative is

$$
f_{\alpha}^{\prime}(x)=\frac{1}{1+x^{2}}-\frac{1}{2} \frac{2 x}{1+x^{2}}=\frac{1-x}{1+x^{2}}
$$

Hence, independently of $\alpha, f_{\alpha}(x)$ is increasing in the interval $(-\infty, 1)$ (positive derivative) and decreasing in the interval $(1,+\infty)$ (negative derivative). In addition, we have

- $\lim _{x \rightarrow \pm \infty} f_{\alpha}(x)=-\infty ;$
- $\mathrm{f}_{\alpha}(1)=\arctan (1)-\frac{\ln (2)}{2}+\alpha=\alpha+\frac{\pi}{4}-\frac{\ln (2)}{2}$.

Thus, the exact number of real solutions of the equation $f_{\alpha}(x)=0$ depends on the value of $f_{\alpha}(1)$. Specifically, if $\alpha>\frac{\ln (2)}{2}-\frac{\pi}{4}\left(f_{\alpha}(1)>0\right)$ there are two solutions, if $\alpha<\frac{\ln (2)}{2}-\frac{\pi}{4}$ $\left(f_{\alpha}(1)<0\right)$ there is no solution, if $\alpha=\frac{\ln (2)}{2}-\frac{\pi}{4}\left(f_{\alpha}(1)=0\right)$ there is a unique solution.

